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Abstract : Let (Ω,Σ, µ) be a σ-finite measure space and assume that E is an ideal
of L0. Let ρ and ρ∗ be two modulars defined on E, Eρ and Eρ∗ the modular spaces
for ρ and ρ∗ respectively. In Eρ ∩ Eρ∗ a two-modular convergence can be defined
as follows: a sequence (fn) in Eρ ∩ Eρ∗ is said to be two-modular convergent to
f ∈ Eρ∩Eρ∗ whenever fn → f with respect to modular ρ∗ and (fn) is ρ-bounded.
We introduce a two-modular topology γW (Tρ, Tρ∗) in Eρ ∩ Eρ∗ and show that
the convergence in this topology is equivalent to the two-modular convergence.
We prove also that the two-modular convergence is equivalent to some modular
convergence. The most important fact on this paper is a characterization of linear
functionals on the space Lϕ1 ∩ Lϕ2 , continuous with respect to the two-modular
topology γW (Tmϕ1

, Tmϕ2
). The functions ϕ1 and ϕ2 are not assumed to be convex.
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1 Introduction.

Let (Ω, Σ, µ) be a σ-finite complete measure space. We denote by L0(Ω) the set
of µ-equivalence classes of all real valued Σ -measurable functions defined and a.e.
finite on Ω. Then L0(Ω) is a super Dedekind complete Riesz space under the
ordering f ≤ g whenever f(ω) ≤ g(ω) a.e. on Ω. Recall that a set E ⊂ L0

is solid whenever from the conditions |f | ≤ |g|, g ∈ E and f ∈ L0 it follows that
f ∈ E. If the set E is also linear we call it an ideal of L0. Assume that E is an
ideal of L0.
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1.1 Modular spaces.

1.1.1

A functional ρ : E → [0,∞] is called a modular if the following conditions are
satisfied:

(i) ρ(f) = 0 ⇔ f = 0.

(ii) ρ(f) ≤ ρ(g) if |f | ≤ |g|.

(iii) ρ(f + g) = ρ(f) + ρ(g) for |f | ∧ |g| = 0.

From (ii) and (iii) we obtain the condition

(iv) ρ(f ∨ g) ≤ ρ(f) + ρ(g).

Since the inequality ρ(αf + βg) ≤ ρ(f ∨ g) is true for all f, g ∈ E and all
scalars α, β such that |α|s + |β|s ≤ 1 and 0 < s ≤ 1, then we also obtain
ρ(αf + βg) ≤ ρ(f) + ρ(g).

We have proved that for each 0 < s ≤ 1 modular ρ is an s- modular in sense of
[5]. This type of modulars was introduced by Albrycht and Musielak in [1] and in
the case s = 1 by Musielak and Orlicz in [7].

If 0 < s1 < s2 ≤ 1 and ρ is an s2-modular, then ρ is also an s1-modular.
The linear space Eρ = {f ∈ E : ρ(λf) → 0 as λ → 0} is called a modular space
for ρ. The formula |f |ρ = inf{ε > 0 : ρ(f/ε

1
s ) ≤ ε} defines an F-norm in Eρ,

which has the same properties as the norm defined in ([7], 1.21).

1.1.2

The modular ρ : E → [0,∞] is called s-convex, ( 0 < s ≤ 1 ) if ρ(αf + βf) ≤
|α|sρ(f) + |β|sρ(g) for any f, g ∈ E and any scalars α, β with |α|s + |β|s ≤ 1.

A 1-convex modular will be called briefly convex. Every s-convex modular is an s-
modular. The formula ||f ||sρ = inf{ε > 0 : ρ(f/ε

1
s ) ≤ 1} defines an s-homogeneous

norm in Eρ (see [1]).

1.1.3

A sequence (fn) in Eρ is called ρ-convergent to f ∈ Eρ, in symbols fn
ρ→ f , if

there exists a constant λ > 0 such that ρ(λ(fn − f)) → 0 as n →∞ ([1], [7]).
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1.1.4

A set Z in Eρ will be called ρ-bounded if for any sequence (fn) in Z and any
sequence of numbers εn → 0, we have εnfn

ρ→ 0 (see [3]).

If ρ is an s-convex modular, then a set Z ⊂ Eρ is ρ-bounded if and only if there
exists a constant r > 0 such that ||f ||sρ ≤ r for all f ∈ Z.

1.1.5

We say that a modular ρ satisfies the σ-Fatou property if 0 ≤ fn ↑ f ∈ E implies
ρ(fn) ↑ ρ(f). We say that a modular ρ satisfies the σ-Lebesgue property if from the
conditions fn ↓ 0 in E and ρ(λf1) < ∞ for some λ > 0 it follows that ρ(λfn) ↓ 0.
We say that ρ satisfies the σ-Levi property if 0 ≤ fn ↑ in E and the set {fn : n ∈ N}
is modularly bounded implies that fn ↑ f in E for some f ∈ E (see [9]).

1.1.6

Let ρ1 be an s1-modular and ρ2 an s2-modular. Let E0 be a linear subspace of
E. We say that ρ2 is non weaker than ρ1 on E0, in symbols ρ1 ≺ ρ2 on E0, if for
every sequence (fn) in E0 fn

ρ2→ 0 implies fn
ρ1→ 0.

1.1.7

We say that ρ-convergence of sequence (fn) in Eρ is generated by a linear topology

if there exists a linear topology T in Eρ such that fn
T→ 0 if and only if fn

ρ→ 0
for every sequence (fn) in Eρ.

1.1.8

It is said that ρ satisfies the B2-condition in Eρ if ρ(fn) → 0 implies ρ(2fn) → 0
for every sequence (fn) in Eρ (see [7]).

1.2 Modular bases.

In this section we introduce a notion of an s-modular base in linear space, which
is a generalization of the notion of a modular base introduced by Leśniewicz in
[5] and [6]. A notion of s-premodular bases in linear lattices was considered by
Leśniewicz and Orlicz in [4].

1.2.1

Let U be an arbitrary subset of E. By bal.U we denote the set of all functions
f ∈ E such that f = ag, where |a| ≤ 1, g ∈ U . If bal.U = U , then U is called a
balanced set.
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1.2.2

Let U be an arbitrary nonempty subset of E,
Γs(U) = {αf + βg : f, g ∈ U, |α|s + |β|s ≤ 1} for U ⊂ E, 0 < s ≤ 1.

A non-void family B of subsets of E will be called an s-modular base in E if the
following conditions are satisfied:

(M1) for every two sets U1, U2 ∈ B there exists U ∈ B such that
Γs(U) ⊂ U1 ∩ U2,

(M2) every set U ∈ B is absorbing in E, i.e. for every f ∈ E there
exists a number λ 6= 0 such that λf ∈ U .

If 0 < s1 < s2 ≤ 1 and a family B is a s2-modular base in E, then B is also a
s1-modular base.
An s-modular base B = {Un} of absorbing and balanced sets in E such that
Γs(Un+1) ⊂ Un for n ∈ N, is called a sequential s-modular base in E ([5], 1.1). A
1-modular base will be called briefly a modular base.

1.2.3

Let B1 be an s1-modular base on E and let B2 be an s2-modular base on E. We
shall say that B2 is non-weaker than B1, in symbols B1 ≺ B2 if there exists a
number α 6= 0 such that for every set U1 ∈ B1 there exists a set U2 ∈ B2 satisfying
αU2 ⊂ U1.

We say that B1 and B2 are equivalent, in symbols B1 ∼ B2, if symultaneuosly
B1 ≺ B2 and B2 ≺ B1.

1.2.4

([5], 2.1) We say that the base B of all neighbourhoods of the origin is a linear-
topological base if it satisfies the following conditions:

(LT1) for every set U1 ∈ B there exists a set U2 ∈ B such that U2 + U2 ⊂ U1,

(LT2) for every set U1 ∈ B there exists a set U2 ∈ B such that bal.U2 ⊂ U1,

(LT3) for each two sets U1, U2 ∈ B there exists U3 ∈ B such that U3 ⊂ U1 ∩ U2,

(LT4) every set U ∈ B is absorbing in E.

If non-void family of sets B satisfies the conditions (LT1)–(LT4), there is a unique
linear topology T on E, i.e. (E, T ) is a linear-topological space.

Theorem 1.1. If B1 ∼ B2 and B1 is a linear topological base, then B2 is also a
linear topological base ( see [5], 2.5 ).
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1.2.5

Let B be an s-modular base in E. A sequence (fn) in E is called convergent to
f ∈ E with respect to B , in symbols fn

B→ f , if there exists a number α 6= 0 such
that for every U ∈ B there exists a natural number N such that for every n ≥ N
there holds α(fn − f) ∈ U (see [5]).

Theorem 1.2. ([6], 1.3 ). Let B1 be an s1-modular base and let B2 be a sequential
s2-modular base in E. Relation B1 ≺ B2 holds if and only if for every sequence
(fn) in E we have: fn

B2→ 0 implies fn
B1→ 0.

Theorem 1.3. Let B be an s-modular base in E. Then the family

B∧ = {
∞⋃

N=1

(
N∑

n=1

Un) : (Un) is a sequence of sets in B}

is a linear topological base in E. Moreover, the following conditions are satisfied:

(1) B∧ ≺ B
(2) if B1 is an arbitrary linear topological base in E such that B1 ≺ B, then

B1 ≺ B∧.

Proof It suffices to note that the inclusion bal.U ⊂ Γs(U) holds for any U ∈ B.
The rest follows from ( [5], 4.1 and 4.2 ).

Theorem 1.4. Let B be an s-modular base in E. Then the family of sets of the
form B∨ = {αU : U ∈ B, α 6= 0} is a linear topological base in E. Moreover, the
following conditions are satisfied:

(i) B ≺ B∨

(ii) if B1 is an arbitrary linear topological base in E such that B ≺ B1, then
B∨ ≺ B1.

Proof Denote by ∆(A) = {αf + βg : f, g ∈ A, sup(|α|, |β|) ≤ 1} for A ⊂ E.
It suffices to note that the inclusion ∆(2−

1
s λU) ⊂ λΓs(U) holds for any U ∈ B

and λ > 0. The rest follows from ( [5], 3.1 and 3.4 ).

Theorem 1.5. Let B be an s-modular base in E. Then B is a linear topological
base if and only if B∧ ∼ B∨.

Proof It follows from Theorem 0.1, 0.3 and 0.4 ( see [5], 3.5, 4.4 ).
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2 Two-modular topology on modular spaces.

Let ρ be an s-modular on linear space E, Eρ the modular space of ρ and E0
ρ a

linear subspace of the space Eρ. Denote Bρ(ε) = {f ∈ E : ρ(f) < ε}. Then the
family Bρ,E0

ρ
= {Bρ(ε) ∩ E0

ρ : ε > 0} is an s-modular base in E0
ρ .

Moreover, the family Bc
ρ,E0

ρ
= {Bρ(2−n+1)∩E0

ρ : n ∈ N} is a sequential s-modular

base in E0
ρ , equivalent to Bρ,E0

ρ
( [6], 2.2 ). It is seen that fn

ρ→ f if and only if
fn → f with respect to the base Bρ,E0

ρ
and if and only if fn → f with respect to

the base Bc
ρ,E0

ρ
for a sequence (fn) in E0

ρ and f ∈ E0
ρ ([6], 2.3). In view of Theorem

0.3 we get:

Theorem 2.1. The family

B∧ρ,E0
ρ

= {
∞⋃

n=1

(
n∑

i=1

(Bρ(εi) ∩ E0
ρ)) : εi > 0}

constitutes a base of neighbourhoods of 0 for some linear topology in E0
ρ , which we

will denote by T ∧ρ,E0
ρ
. Moreover, the following conditions hold:

(i) B∧ρ,E0
ρ
≺ Bρ,E0

ρ

(ii) if B is an arbitrary linear topological base in E0
ρ such that B ≺ Bρ,E0

ρ
, then

B ≺ B∧ρ,E0
ρ
.

Theorem 2.2. The topology T ∧ρ,E0
ρ

is the finest of all linear topologies T on E0
ρ ,

which satisfy the condition (∗) : fn
ρ→ 0 implies fn

T→ 0 for every sequence (fn)
in E0

ρ.

Proof Let T be a linear topology on E0
ρ which satisfies the condition (∗). We

have fn
ρ→ 0 if and only if fn → 0 with respect to Bc

ρ,E0
ρ
. Hence from Theorem

0.2 we get BT ≺ Bc
ρ,E0

ρ
, where BT is a base of neighbourhoods of 0 for T . Since

Bc
ρ,E0

ρ
∼ Bρ,E0

ρ
, we get BT ≺ Bρ,E0

ρ
and hence by Theorem 1.1 we get that BT ≺

B∧ρ,E0
ρ
. Since BT and B∧

ρ,E0
ρ

are linear-topological bases, we get T ≺ T ∧ρ,E0
ρ
.

In the case of E0
ρ = Eρ the topology T ∧ρ,E0

ρ
will be denoted by T ∧ρ and called a lower

topology ( or the modular topology ) for a modular ρ. Moreover, in this case we
will denote modular bases by Bρ (respectively B∧ρ ) instead of Bρ,Eρ (respectively
B∧ρ,Eρ

).
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Now we recall a definition of two-modular convergence on Eρ∩Eρ∗ and prove that
we can define a modular ρ̃ such that the two-modular convergence is equivalent to
the modular convergence with respect to ρ̃.

Definition 2.1. Let ρ and ρ∗ be two modulars on E. We say that a sequence
(fn) in Eρ ∩Eρ∗ is two-modularly convergent ( γ-convergent ) to f ∈ Eρ ∩Eρ∗ if

fn
ρ∗→ f as n →∞ and (fn) is ρ-bounded. We denote this by fn

γ→ f ( see [8]).

Definition 2.2. We say that a linear functional F on Eρ ∩ Eρ∗ is γ-linear if

fn
ρ∗→ 0 and (fn) is ρ-bounded implies F (fn) → 0.

Definition 2.3. Let ρ and ρ∗ be modulars on E. Assume that modular ρ is s-
convex. We define a functional ρ̃ by the formula

ρ̃(f) =

{
ρ∗(f) if ρ(f) ≤ 1
∞ if ρ(f) > 1

.

It is obvious that the functional ρ̃ satisfies the conditions (i)–(iii) from 0.1.1, so it
is a modular on E.

Theorem 2.3. If ρ is an s-convex modular then a sequence (fn) ⊂ Eρ ∩ Eρ∗ is
γ-convergent to f ∈ Eρ ∩ Eρ∗ if and only if it is ρ̃-convergent to f .

Proof Let fn
ρ̃→ f . Then there exists λ > 0 such that ρ∗(λ(fn − f)) =

ρ̃(λ(fn − f)) → 0 as n → ∞, so fn
ρ∗→ f . Further, for every εn → 0 we can find

n0 ∈ N such that |εn|
λ ≤ 1 and ρ̃(λ(fn−f)) < ∞ for n ≥ n0. Then ρ(λ(fn−f)) ≤ 1

for every n ≥ n0 and ρ(εn(fn − f)) ≤ |εn|s
λs ρ(λ(fn − f)) ≤ |εn|s

λs → 0. Hence

ρ( 1
2εnfn) = ρ( 1

2εn(fn − f) + 1
2εnf) ≤ ρ(εn(fn − f)) + ρ(εnf) ≤

ρ(εn(fn − f)) + |εn|sρ(f) → 0

i.e. (fn) is ρ-bounded. Therefore fn
γ→ f .

Assume that fn
γ→ f . Since fn

ρ∗→ f , there exists λ1 > 0 such that ρ∗(λ1(fn −
f)) → 0. Since (fn − f) ⊂ Eρ, then there exists a number λ2 > 0 such that
ρ(λ2(fn − f)) ≤ 1. Let λ = min(λ1, λ2). Then we have ρ̃(λ(fn − f)) = ρ∗(λ(fn −
f)) → 0.

Let Bρ(ε) = {f ∈ E : ρ(f) ≤ ε} and Bρ∗(ε) = {f ∈ E : ρ∗(f) ≤ ε} for r > 0 and
ε > 0. Denote Bρ = {Bρ(ε) : ε > 0}, Bρ∗ = {Bρ∗(ε) : ε > 0} .

We introduce a linear topology on Eρ ∩ Eρ∗ and we will prove that the con-
vergence in this topology is equivalent to the two-modular convergence. Next we
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prove that introduced two-modular topology is equal to some modular topology
(see Theorems 1.4 and 1.5). We also show that this topology is the finest of all
linear topologies τ on Eρ ∩Eρ∗ satisfying the condition τ |Z = Tρ∗ |Z , where Tρ∗ is
the topology for which the base of the neighbourhoods of zero is Bρ∗ and Z is an
arbitrary ρ-bounded set (see Theorem 1.6).

Theorem 2.4. Let ρ and ρ∗ be two modulars defined on E. Assume that ρ is
s-convex and ρ∗ satisfies the B2 condition. The family BW of all sets of the form

(∗)
∞⋃

n=1

(
n∑

i=1

iBρ(r) ∩Bρ∗(εi)),

where {εi : i ≥ 1} is a sequence positive numbers, forms a base of neighbourhoods
of 0 for some linear topology on Eρ ∩ Eρ∗ .

Proof We will show that the conditions (LT1)–(LT4) are satisfied. Let M({Bρ∗(εi)}, Bρ(r))
=

⋃∞
n=1(

∑n
i=1 iBρ(r) ∩Bρ∗(εi)), where {Bρ∗(εi)} is a sequence of the sets of Bρ∗

and Bρ(r) ∈ Bρ be an arbitrary neighbourhood of 0 in BW . Let λ ∈ R. Then

λM({Bρ∗(εi)}, Bρ(r)) = {λ ∑n
i=1 fi : fi ∈ Bρ∗(εi), i−1fi ∈ Bρ(r)} =

{∑n
i=1 λfi : λfi ∈ λBρ∗(εi), i−1λfi ∈ λBρ(r)} = M({λBρ∗(εi)}, λBρ(r)).

Hence we obtain that the sets (∗) are balanced. For every function f ∈ Eρ ∩Eρ∗

there exists λ 6= 0 such that λf ∈ Bρ∗(ε1)∩Bρ(r), i.e. the sets M({Bρ∗(εi)}, Bρ(r))
are absorbing. Let M({Bρ∗(εi)}, Bρ(r1)) and M({Bρ∗(δi)}, Bρ(r2)) be arbitrary
neighbourhoods of 0 in BW . Since Bρ and Bρ∗ are the modular bases, there
exist numbers ηi and r3 such that Bρ∗(ηi) ⊂ Bρ∗(εi) ∩ Bρ∗(δi) and Bρ(r3) ⊂
Bρ(r1) ∩ Bρ(r2). Thus we have M({Bρ∗(ηi)}, Bρ(r3)) ⊂ M({Bρ∗(εi)}, Bρ(r1)) ∩
M({Bρ∗(δi)}, Bρ(r2)).

Since modular ρ is s-convex and ρ∗ satisfies the condition B2, we can choose
Bρ∗(αi) ∈ Bρ∗ and Bρ(r′) ∈ Bρ such that Bρ∗(αi)+Bρ∗(αi) ⊂ Bρ∗(εi) and Bρ(r′)+
Bρ(r′) ⊂ Bρ(r). We prove that M({Bρ∗(αi)}, Bρ(r′)) + M({Bρ∗(αi)}, Bρ(r′))
⊂ M({Bρ∗(εi)}, Bρ(r)).
In fact, if f ∈ M({Bρ∗(αi)}, Bρ(r′))+M({Bρ∗(αi)}, Bρ(r′)), then f = g+h, where
g = g1 + · · ·+ gm, gi ∈ Bρ∗(αi), i−1gi ∈ Bρ(r′), 1 ≤ i ≤ m and h = h1 + · · ·+ hn,
where hi ∈ Bρ∗(αi), i−1hi ∈ Bρ(r′), 1 ≤ i ≤ n. For m ≤ n we obtain

f = (g1 + h1) + (g2 + h2) + · · ·+ (gm + hm) + hm+1 + · · ·+ hn.
Since Bρ∗(αi)+Bρ∗(αi) ⊂ Bρ∗(εi) and Bρ(r′)+Bρ(r′) ⊂ Bρ(r), so gi+hi ∈ Bρ∗(εi)
and i−1(gi + hi) ∈ Bρ(r) for i = 1, ..., m and hi ∈ Bρ∗(αi), i−1hi ∈ Bρ(r′) for
i = m + 1, ..., n. From this it follows that
f ∈ M({Bρ∗(εi)}, Bρ(r)).

We have proved that there is a unique linear topology τ on Eρ ∩ Eρ∗ such that
BW is the base of the neighbourhoods of zero of τ .
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Definition 2.4. The topology defined in Theorem 1.4 is called the two-modular
topology on Eρ ∩ Eρ∗ and it is denoted by γW (Tρ, Tρ∗) or shortly γW .

Theorem 2.5. Let ρ and ρ∗ be two modulars defined on E. Assume that ρ is
s-convex and ρ∗ satisfies the B2 condition. The base of neighbourhoods of zero
in the modular topology T ∧ρ̃ is equivalent to the base of neighbourhoods zero of
γW (Tρ, Tρ∗).

Proof Let K = Bρ(1). Since ρ is s-convex, for arbitrary set Bρ(r) ∈ Bρ there
exists a natural number n0 such that K ⊂ nBρ(r) for n > n0, hence

W ({Bρ∗(εn0+n) ∩K}) =⋃∞
n=1(Bρ∗(εn0+1) ∩K + · · ·+ Bρ∗(εn0+n) ∩K) ⊂⋃∞
n=1(Bρ∗(εn0+1) ∩ (n0 + 1)Bρ(r) + · · ·+ Bρ∗(εn0+n) ∩ (n0 + n)Bρ(r)) =

M({Bρ∗(εi)}, Bρ(r)).

We have showed that for every set M ∈ BW there exists a set W ∈ B∧ρ̃ such that
W ⊂ M , i.e. BW ≺ B∧ρ̃ .

For every sequence {Bρ∗(εi)} ⊂ Bρ∗ there exists a sequence {Bρ∗(βi)} ⊂ Bρ∗ such
that Bρ∗(ε1) = Bρ∗(β1) and (k + 1)−1Bρ∗(βk+1) ⊂ Bρ∗(εnk+1)∩ · · · ∩Bρ∗(εnk+1),
where nk = 1

2k(k + 1), k ∈ N. Thus we obtain:

M({Bρ∗(βk)},K) =
⋃∞

k=1(Bρ∗(β1) ∩K + · · ·+ Bρ∗(βk+1) ∩ (k + 1)K) ⊂⋃∞
k=1(Bρ∗(ε1) ∩K + · · ·+ (Bρ∗(εnk+1) ∩K + · · ·+ Bρ∗(εnk+1) ∩K)) =

W ({Bρ∗(εi) ∩K}).
We have proved that for arbitrary W ∈ B∧ρ̃ there exists the set M ∈ BW such that
M ⊂ W , i.e. B∧ρ̃ ≺ BW .

Since T ∧ρ̃ ∼ γW (Tρ, Tρ∗), from Theorem 2.5 in [5] we obtain that T ∧ρ̃ is a linear
topology on Eρ ∩ Eρ∗ .

Theorem 2.6. Let ρ and ρ∗ be two modulars defined on E. Assume that ρ is
s-convex and ρ∗ satisfies the B2 condition. The two-modular topology γW is the
finest of all linear topologies τ on Eρ ∩ Eρ∗ satisfying the condition τ |Z = Tρ∗ |Z ,
where Z is arbitrary ρ-bounded set.

Proof Let Z be arbitrary ρ-bounded set. First we show that γW |Z = Tρ∗ |Z .
Let ε > 0. Since ρ∗ satisfies the B2 condition, there exists a number ε1 > 0 such
that Bρ∗(ε1) + Bρ∗(ε1) ⊂ Bρ∗(ε). Next, there exists a number ε2 > 0 such that
Bρ∗(ε2) + Bρ∗(ε2) ⊂ Bρ∗(ε1). By induction we obtain a sequence (εn) such that
Bρ∗(εn) + Bρ∗(εn) ⊂ Bρ∗(εn−1) for all n ∈ N. Hence we obtain that
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Bρ∗(ε1) + Bρ∗(ε2) + · · ·+ Bρ∗(εn) ⊂
Bρ∗(ε1) + Bρ∗(ε2) + · · ·+ Bρ∗(εn) + Bρ∗(εn) ⊂
Bρ∗(ε1) + Bρ∗(ε2) + · · ·+ Bρ∗(εn−1) + Bρ∗(εn−1) ⊂ · · · ⊂
Bρ∗(ε1) + Bρ∗(ε2) + Bρ∗(ε2) ⊂ Bρ∗(ε1) + Bρ∗(ε1) ⊂ Bρ∗(ε)

for every n and

Bρ∗(ε1) ∩Bρ(r) + Bρ∗(ε2) ∩ 2Bρ(r) + · · ·Bρ∗(εn) ∩ nBρ(r) ⊂
Bρ∗(ε1) + Bρ∗(ε2) + · · ·+ Bρ∗(εn) ⊂ Bρ∗(ε).

Thus we obtain that M({Bρ∗(εi)}, Bρ(r)) ⊂ Bρ∗(ε) i.e. Tρ∗ ≺ γW .

We will prove that γW |Z ≺ Tρ∗ |Z , i.e. every neighbourhood of the form (f0 +
M({Bρ∗(εi)}, Bρ(r)))∩Z contains a neighbourhood of the form (f0 +Bρ∗(ε))∩Z.
Since the set Z −Z is ρ-bounded for every M = M({Bρ∗(εi)}, Bρ(r)) there exists
m ∈ N such that Z−Z ⊂ mBρ(r). Let εm = ε for m ∈ N. Then Bρ∗(ε)∩(Z−Z) ⊂
Bρ∗(εm) ∩ mBρ(r) ⊂ M . Since for every f0 ∈ Z we have (f0 + Bρ∗(ε)) ∩ Z ⊂
f0 +Bρ∗(ε)∩ (Z−Z), so (f0 +Bρ∗(ε))∩Z ⊂ f0 +Bρ∗(ε)∩ (Z−Z) ⊂ (f0 +M)∩Z.

Assume that τ |Z = Tρ∗ |Z . Let B′ be a ρ-bounded neighbourhood of 0 in τ . Since τ
is a linear topology, there exists a sequence {B′

n} such that B′
1 + · · ·+B′

n ⊂ B′ for
all n. Since the sets nBρ(r) are ρ-bounded, Tρ∗ |nBρ(r) = τ |nBρ(r). Hence for every
n there exists Tρ∗ -neighbourhood of zero Bρ∗(εn) such that Bρ∗(εn)∩nBρ(r) ⊂ B′

n.
We have

Bρ∗(ε1) ∩Bρ(r) + Bρ∗(ε2) ∩ 2Bρ(r) + · · ·+ Bρ∗(εn) ∩ nBρ(r) ⊂
B′

1 + B′
2 + · · ·+ B′

n ⊂ B′, i.e. M ⊂ B′.
We have proved that if τ |Z = Tρ∗ |Z , then τ ≺ γW .

Now we will show that the convergence in two-modular topology γW is equiv-
alent with the two-modular convergence (see Theorem 1.8). First we will prove a
fact, which we use in the proof.

Denote:

(1) B1 = {Bρ∗(ε0) ∩
∞⋂

n=1
((nBρ(r) + Bρ∗(εn)) : εn > 0},

(2) B2 = {Bρ∗(ε0) ∩
∞⋂

n=1
((anBρ(r) + Bρ∗(εn)) : εn > 0},

where (an) is an arbitrary sequence positive numbers such that an →∞ as n →∞
and a1 ≤ 1.

Theorem 2.7. Let ρ and ρ∗ be two modulars defined on E. Assume that modular
ρ is s-convex and modular ρ∗ satisfies the B2 condition. The bases B1 i B2 are
equivalent and the sets of the form (1) and (2) constitute a base of neighbourhoods
of zero of two-modular topology.

Proof Assume that U is an arbitrary set of the form (1). Let (kn) be an
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increasing sequence of natural numbers such that k1 = 1, kn ≥ an for all n ≥ 2 and
(δn) be a sequence such that the following inclusions hold Bρ∗(δ0) ⊂

⋂k1−1
p=0 Bρ∗(εp)

and Bρ∗(δn) ⊂ ⋂kn+1−1
p=kn

Bρ∗(εp) for every n ∈ N. Since anBρ(r) + Bρ∗(δn) ⊂⋂kn+1−1
p=kn

(pBρ(r)+Bρ∗(εp)) we get Bρ∗(δ0)∩
⋂∞

n=1 (anBρ(r) + Bρ∗(δn)) ⊂ Bρ∗(ε0)∩⋂∞
p=1 (pBρ(r) + Bρ∗(εp)), i.e. B1 ≺ B2.

We prove that B2 ≺ B1. Assume that V is an arbitrary set of the form (2).
Let (mn) be an increasing sequence such that amn ≥ n for all n ∈ N and
(δn) a sequence of positive numbers such that Bρ∗(δ0) ⊂

⋂m1−1
p=0 Bρ∗(εp) and

Bρ∗(δn) ⊂ ⋂mn+1−1
p=mn

Bρ∗(εp) for all n ∈ N. Hence we get Bρ∗(δn) + nBρ(r) ⊂⋂mn+1−1
p=mn

(Bρ∗(εp) + apBρ(r)) and from this it follows that
Bρ∗(δ0) ∩

⋂∞
n=1 (nBρ(r) + Bρ∗(δn)) ⊂ Bρ∗(ε0) ∩

⋂∞
p=1 (apBρ(r) + Bρ∗(εp)).

We will show that the sets of the form (1) and (2) constitute the base of neigh-
bourhoods of zero of two-modular topology γW (Tρ, Tρ∗). First we will prove that
every set of the form Bρ∗(ε0)∩

⋂∞
n=1

(
n · 2n

s Bρ(r) + Bρ∗(εn)
)

contains some neigh-
bourhood M({Bρ∗(δn)}, Bρ(r)) in the topology γW , i.e. B2 ≺ BW for an = n · 2n

s .
Let Bρ∗(δ1) be an arbitrary set such that Bρ∗(δ1) + Bρ∗(δ1) ⊂ Bρ∗(ε0). By the
induction we get a sequence Bρ∗(δn) such that Bρ∗(δn) + Bρ∗(δn) ⊂ Bρ∗(δn−1) ∩
Bρ∗(εn−1) for all n > 1. Thus we have

Bρ∗(δ1)+Bρ∗(δ2)+ · · ·+Bρ∗(δn) ⊂ Bρ∗(δ1)+Bρ∗(δ2)+ · · ·+Bρ∗(δn)+Bρ∗(δn) ⊂
Bρ∗(δ1)+Bρ∗(δ2)+ · · ·+Bρ∗(δn−1)+Bρ∗(δn−1)∩Bρ∗(εn−1) ⊂ Bρ∗(δ1)+Bρ∗(δ2)+
· · ·+ Bρ∗(δn−1) + Bρ∗(δn−1) ⊂ · · · ⊂ Bρ∗(δ1) + Bρ∗(δ1) ⊂ Bρ∗(ε0).

Hence for every p ∈ N we have Bρ∗(δn)+Bρ∗(δn+1)+ · · ·+Bρ∗(δn+p) ⊂ Bρ∗(δn)+
Bρ∗(δn) ⊂ Bρ∗(δn−1) ∩Bρ∗(εn−1) ⊂ Bρ∗(εn−1) and

M({Bρ∗(δn)}, Bρ(r)) =

=
⋃∞

p=1(Bρ∗(δ1) ∩Bρ(r) + Bρ∗(δ2) ∩ 2Bρ(r) + · · ·
+Bρ∗(δn−1) ∩ (n− 1)Bρ(r) + Bρ∗(δn) ∩ nBρ(r)+

Bρ∗(δn+1) ∩ (n + 1)Bρ(r) + · · ·+ Bρ∗(δn+p) ∩ (n + p)Bρ(r)) ⊂⋃∞
p=1(Bρ(r) + 2Bρ(r) + · · ·+ (n− 1)Bρ(r) + Bρ∗(δn)+

Bρ∗(δn+1) + · · ·+ Bρ∗(δn+p)) ⊂ n · 2n
s Bρ(r) + Bρ∗(εn−1)

for every n > 1, so M({Bρ∗(δn)}, Bρ(r)) ⊂
⋂∞

n=1(n · 2
n
s Bρ(r) + Bρ∗(εn−1)), i.e.

B2 ≺ BW .

Now we prove that every neighbourhood of zero M({Bρ∗(εn)}, Bρ(r)) contains a
set of the form

⋂∞
n=1 (nBρ(r) + Bρ∗(δn)), i.e. BW ≺ B1. Let (mn) be a sequence of

natural numbers such that mn ≥ n·2 1
s for n ∈ N. Since modular ρ∗ satisfies the B2

condition, there exists a sequence (δn) such that Bρ∗(δ0) + Bρ∗(δ0) ⊂ Bρ∗(εm1),
Bρ∗(δp−1) + Bρ∗(δp−1) ⊂ Bρ∗(εmp), Bρ∗(δp) ⊂ Bρ∗(δp−1) for p ∈ N. Let f ∈
Bρ∗(δ0) ∩

⋂∞
n=1(Bρ∗(δn) + nBρ(r)). Then f ∈ Bρ∗(δ0) and for every n ∈ N we
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have f = gn + hn, where gn ∈ nBρ(r), hn ∈ Bρ∗(δn). Let f1 = g1, fn = gn − gn−1

for n > 1. Hence for every n ∈ N we have

f1 + f2 + · · ·+ fn + hn = g1 + (g2 − g1) + · · ·
+(gn − gn−1) + hn = gn + hn = f .

Since f = gn−1 + hn−1, then hn−1 = f − gn−1 = fn + hn, so
fn = hn − hn−1 ∈ Bρ∗(δn−1) + Bρ∗(δn).

On the other hand fn = gn− gn−1 ∈ nBρ(r)+(n−1)Bρ(r) ⊂ mnBρ(r). From the
definition of the sets Bρ∗(δn) it follows that Bρ∗(δn−1) + Bρ∗(δn) ⊂ Bρ∗(δn−1) +
Bρ∗(δn−1) ⊂ Bρ∗(εmn

), so fn ∈ Bρ∗(εmn
) ∩mnBρ(r).

Since f ∈ Eρ and modular ρ is s-convex, there exists k0 ∈ N such that f ∈ k0Bρ(r).
From the equality hn = f − gn we get hn ∈ (k0 + n)Bρ(r), where k0 is a natural

number such that f ∈ k0Bρ(r). If n0 >
k0 − 2

1
s

2
1
s − 1

, then mn0+1 ≥ (n0 + 1) · 2 1
s >

k0 + n0. Hence hn0 ∈ (k0 + n0)Bρ(r) ⊂ mn0+1Bρ(r).

On the other hand hn0 ∈ Bρ∗(δn0) ⊂ Bρ∗(δn0) + Bρ∗(δn0) ⊂ Bρ∗(εmn0+1). Hence
we have hn0 ∈ Bρ∗(εmn0+1) ∩ mn0+1Bρ(r) and f = f1 + f2 + · · · + fn0 + hn0 ∈
Bρ∗(εm1)∩m1Bρ(r)+Bρ∗(εm2)∩m2Bρ(r)+· · ·+Bρ∗(εmn0

)∩mn0Bρ(r)+Bρ∗(εmn0+1)∩
mn0+1Bρ(r) ⊂ M({Bρ∗(εn)}, Bρ(r)). Since f = gn + hn ∈ Bρ∗(δn) + nBρ(r) for
every n ∈ N, so

⋂∞
n=1(Bρ∗(δn) + nBρ(r)) ⊂ M({Bρ∗(εn)}, Bρ(r)).

Since BW ≺ B1, B2 ≺ BW i B1 ∼ B2, so the sets of the form (1) and (2) constitute
the base of the neighbourhoods of zero of the two-modular topology γW .

From Theorem 1.8 in [9] we know that if ρ satisfies the B2 condition, then fn
ρ→ f

if and only if fn → f with respect to the topology T ∧ρ and if and only if fn → f
with respect to the topology Tρ.

Theorem 2.8. Let ρ and ρ∗ be two modulars defined on E. Assume that ρ is
s-convex, ρ∗ satisfies the B2 condition and the sets nBρ(r) are closed in topology
Tρ∗ for all n ∈ N. For an arbitrary sequence (fn) ⊂ Eρ ∩ Eρ∗ and f ∈ Eρ ∩ Eρ∗ ,

we have fn
ρ∗→ f and (fn) is ρ-bounded if and only if fn → f with respect to the

two-modular topology γW (Tρ, Tρ∗).

Proof Let fn → f with respect to the two-modular topology γW . Since
Tρ∗ ≺ γW ( see proof of Theorem 1.6), we get fn → f with respect to the topology
Tρ∗ . Since ρ∗ satisfies the B2 condition, from Theorem 1.8 in [9] we get that

fn
ρ∗→ f . It suffices to prove that the sequence (fn) is ρ-bounded. Assume that the

sequence (fn) is not ρ-bounded. Since the two-modular topology is linear, we can
assume that f = 0, i.e. fn → 0 with respect to γW . If the sequence (fn) is not
ρ-bounded, there exists a sequence (kn) such that fkn /∈ nBρ(r). Since all the sets
nBρ(r) are closed in topology Tρ∗ , for every n ∈ N there exists a number εn > 0
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such that fkn /∈ nBρ(r) + Bρ∗(εn). Hence the set U =
∞⋂

n=1
(nBρ(r) + Bρ∗(εn))

does not contain any element fkn . Since the set U is a neighbourhood of zero in
two-modular topology, we obtain contradiction with the fact that fn → 0 with
respect to γW . Thus the sequence (fn) is ρ-bounded.

Now we assume that fn
γ→ f , i.e. fn

ρ∗→ f and (fn) is ρ-bounded. Let
Z = {fn : n ∈ N}. Since ρ∗ satisfies the B2 condition, from Theorem 1.8 in [9] we
get fn → f with respect to the topology Tρ∗ . Since Z is ρ-bounded, Tρ∗ |Z = γW |Z ,
hence fn → f with respect γW .

Theorem 2.9. Let ρ and ρ∗ be two modulars defined on E. Assume that ρ is
s-convex, ρ∗ satisfies the B2 condition and the sets nBρ(r) are closed in topology
Tρ∗ for all n ∈ N. For a linear functional F on Eρ ∩Eρ∗ the following conditions
are equivalent:

(i) F is continuous in the modular topology T ∧ρ̃ .

(ii) F is γ-linear.

(iii) F is continuous in the two-modular topology γW .

(iv) For every i > 0 the restriction F |iBρ(r) is continuous in Tρ∗ |iBρ(r).

Proof (i) ⇔ (iii). This equivalence follows from Theorem 1.5.
(iii) ⇒ (iv). Since γW |iBρ(r) = Tρ∗ |iBρ(r), the functional F |iBρ(r) is continuous in
Tρ∗ |iBρ(r).
(iv) ⇒ (iii). We will show that F is continuous at 0. Let ε > 0. Since the functional
F |iBρ(r) : (iBρ(r), Tρ∗ |iBρ(r)) is continuous, for arbitrary i > 0 there exists εi >

0 such that F (Bρ∗(εi) ∩ iBρ(r)) ⊂ (− ε

2i+1
,

ε

2i+1
). Hence F (

∑n
i=1 iBρ(r) ∩

Bρ∗(εi)) ⊂
∑n

i=1(−
ε

2i+1
,

ε

2i+1
) ⊂ (−ε, ε),

and we obtain that

F (
⋃∞

n=1

∑n
i=1 iBρ(r) ∩Bρ∗(εi)) ⊂

⋃∞
n=1(F (

∑n
i=1(iBρ(r) ∩Bρ∗(εi)))) ⊂

(−ε, ε),
so F is continuous with respect to γW .

(ii) ⇒ (iii). If the functional F is γ-linear, for every i > 0 the restriction F |iBρ(r)

is continuous with respect to Tρ∗ |iBρ(r). Hence F is continuous with respect to
γW .

(iii) ⇒ (ii). Let fn
γ→ 0. ¿From Theorem 1.3 fn

ρ̃→ 0 and from Theorem 1.2

fn

T ∧ρ̃→ 0. Since γW = T ∧ρ̃ (Theorem 1.5) and F is continuous with respect to the
two-modular topology γW , then F (fn) → 0.
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3 Applications to Orlicz spaces.

In this section we will apply theorems 1.8 and 1.9 to the theory of Orlicz spaces.
We will show that these theorems are true only in case when Orlicz functions take
the value +∞ for some u > 0, i.e. when Lϕ ⊂ L∞.

Assume that (Ω, Σ, µ) is a σ-finite atomless measure space. An Orlicz function
ϕ : [0,∞) → [0,∞) is a non-decreasing, left-continuous, continuous at 0 function,
which is not identically equal to 0. Assume that lim

u→∞
inf ϕ(u)/u > 0. The Orlicz

function ϕ determines a functional
mϕ : L0 → [0,∞] by the formula mϕ(f) =

∫
Ω

ϕ(|f(ω)|)dµ.

The Orlicz space Lϕ generated by ϕ is the ideal of L0 defined by:

Lϕ = {f ∈ L0 : mϕ(λf) < ∞ for some λ > 0}
and the space Eϕ of finite elements is defined by:

Eϕ = {f ∈ L0 : mϕ(λf) < ∞ for every λ > 0}.
The functional mϕ restricted to Lϕ is a semimodular, i.e. it satisfies the following
conditions:

1) mϕ(λf) = 0 for all λ > 0 if and only if f = 0

2) mϕ(αf + βg) ≤ mϕ(f) + mϕ(g) for the scalars α and β such that α, β ≥ 0
and α + β = 1

3) mϕ(αf) = mϕ(f) for |α| = 1

4) |f | ≤ |g| implies mϕ(f) ≤ mϕ(g).

Recall that the Orlicz function ϕ satisfies the ∆2- condition if there exists a
number K > 0 such that ϕ(2u) ≤ Kϕ(u) for all u ≥ 0.

It is known that the modular mϕ satisfies the σ-Levi and the σ-Fatou properties
and if the function ϕ satisfies the ∆2-condition, then mϕ satisfies also the σ-
Lebegue property.

Let ϕ1 i ϕ2 be the Orlicz functions. Assume that ϕ1 is s-convex and ϕ2 satisfies
the ∆2 condition. Then the modular mϕ1 is s-convex and mϕ2 satisfies the B2
condition. We know that the functional m defined by the formula

m(f) =

{
mϕ2(f) when mϕ1(f) ≤ 1
∞ when mϕ1(f) > 1

is a modular on L0. We have created a modular space (L,m). It turns out that
there does not exist an Orlicz function ϕ ( with the assumption that ϕ1 and ϕ2
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have only the finite values) such that m = mϕ. The space L is not an Orlicz space
except a trivial case when the measure µ takes only the values 0 and ∞.

Let ϕ1 and ϕ2 be the Orlicz functions, mϕ1 and mϕ2 modulars generated by
them. In the case when the measure µ takes only the values 0 and ∞, the only
integrable function is f = 0 and the Orlicz space Lϕ = {0} for every ϕ. In this
case we get that the condition mϕ1(f) ≤ 1 is satisfied only for f = 0 and then also
mϕ2(f) = 0, so m(f) = mϕ(f) = 0 for every Orlicz function ϕ. When f 6= 0, then
∞ =

∫
Ω

ϕ1(f)dµ > 1, so m(λf) = mϕ(λf) = ∞ for every λ > 0, so f /∈ Lϕ.

We shall show that if µ has the positive values there does not exist the function
ϕ such that m(f) = mϕ(f). Assume that such function exists and take an arbitrary
λ > 0. Consider the expression mϕ1(λf) =

∫
Ω

ϕ1(λ|f |)dµ as f 6= 0. Taking
λ → ∞, from the property of Orlicz function ϕ1 we have ϕ1(λ|f |) → ∞ on the
set of positive measure. From Beppo-Levi Theorem

∫
Ω

ϕ1(λ|f |)dµ → ∞, so this
integral is bigger than 1 for sufficiently large λ i.e. λ > λ0. From the definition
of mϕ we get that mϕ(λf) =

∫
Ω

ϕ(λ|f |)dµ = ∞ for λ > λ0. Hence f /∈ Eϕ, i.e.
Eϕ = {0}. On the other hand take the set A ∈ Σ such that 0 < µ(A) < ∞ and
denote by f a characteristic function of the set A. This is a non-zero function and
for every λ > 0 we have mϕ(λf) =

∫
Ω

ϕ(λ|f |)dµ =
∫

A
ϕ(λ)dµ = µ(A)ϕ(λ) < ∞.

We get that f = χA ∈ Eϕ, so we have obtained a contradiction.

It turns out that there exist functions ϕ1 and ϕ2 such that m = mϕ (see
Example 2.1) In this case let r > 0 be fixed real number and (εi) a sequence
of positive numbers. Denote Bmϕ(ε) = {f ∈ L0 : mϕ(f) ≤ ε}. Then from
Theorem 1.4 the family

⋃∞
n=1(

∑n
i=1 iBmϕ1

(r) ∩ Bmϕ2
(εi)) constitutes a base of

the neighbourhoods 0 for topology γW on Lϕ1 ∩Lϕ2 . From Theorem 1.5 we obtain
that the modular topology T ∧mϕ

for which the base of the neighbourhoods of 0 are
sets of the form

⋃∞
n=1(

∑n
i=1 Bmϕ(εi)) is equal to the topology γW .

We will prove that for all n ∈ N the sets nBmϕ1
(r) are closed in topology

Tmϕ2
. Since modular mϕ1 is s-convex and modular mϕ2 satisfies the B2 condition,

it suffices to show that the set Bmϕ1
(r) is mϕ2-closed. Let f ∈ Lϕ1 ∩Lϕ2 . Assume

that mϕ1(fn) ≤ r for all n ∈ N and fn

mϕ2−→ f . Since mϕ2(fn − f) → 0, fn → f
a.e. and |fn| → |f | a.e. Denote gn = inf

n≤m
|fm|. Then 0 ≤ gn ↑ |f | and gn ≤ |fn|

for all n ∈ N. Since modular mϕ1 satisfies the σ-Fatou property, we get mϕ1(f) =
lim

n→∞
mϕ1(gn) ≤ lim inf

n→∞
mϕ1(fn) ≤ r, i.e. f ∈ Bmϕ1 (r).

Hence from Theorems 1.8 and 1.9 we obtain the following corollaries:

Corollary 3.1. Let ϕ1 and ϕ2 be two Orlicz functions. Assume that ϕ1 is s-convex
and ϕ2 satisfies the ∆2 condition. For an arbitrary sequence (fn) ⊂ Lϕ1 ∩Lϕ2 and
f ∈ Lϕ1 ∩ Lϕ2 , we have: fn

mϕ2−→ f and (fn) is mϕ1-bounded if and only if fn → f
with respect to two-modular topology γW (Tmϕ1

, Tmϕ2
)
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Corollary 3.2. Let ϕ1 and ϕ2 be two Orlicz functions. Assume that ϕ1 is s-
convex and ϕ2 satisfies the ∆2 condition. For a linear functional F on Lϕ1 ∩ Lϕ2

the following conditions are equivalent:

(i) F is continuous in the modular topology T ∧mϕ
.

(ii) F is γ-linear.

(iii) F is continuous in the two-modular topology γW .

(iv) For every i > 0 the restriction F |iBϕ1 (r) is continuous in Tmϕ2
|iBϕ1 (r).

Example 2.1. Let Ω = R, µ be the Lebesgue measure on R. Assume that ϕ2 is an
arbitrary Orlicz function satisfying the ∆2 condition for all u ≥ 0 and the function
ϕ1 is defined by the formula

ϕ1(u) =

{
0 for u ∈ [0, 1]
∞ for u > 1.

Then the modular m is defined by the formula

m(f) =

{
mϕ2(f) for ||f ||∞ ≤ 1
∞ for ||f ||∞ > 1.

We will prove that m = mϕ, where the function ϕ is defined by the formula

ϕ(u) =

{
ϕ2(u) for u ∈ [0, 1]
∞ for u > 1.

Let ||f ||∞ ≤ 1, i.e. |f(ω)| ≤ 1 for a.e. ω ∈ R. Thus m(f) = mϕ2(f) from
the definition of m and mϕ(f) =

∫
Ω

ϕ(|f(ω)|)dω =
∫
Ω

ϕ2(|f(ω)|)dω = mϕ2(f) =
m(f). If ||f ||∞ > 1, then m(f) = ∞ = mϕ(f).

It turns out that the function ϕ2 is not assumed to be convex. In this case the
Orlicz space Lϕ2 is not locally convex.

Define the Orlicz function ϕ : [0,∞) → [0,∞) by the formula

ϕ(u) =





u2 for u ∈ [0, 1]
(u− 2n)2 + n for u ∈ [2n, 2n + 1), n ∈ N
n for u ∈ [2n− 1, 2n), n ∈ N.

This function is not equivalent to any s-convex Orlicz function, but it satisfies
the ∆2 condition for all u ≥ 0 and lim

u→∞
inf ϕ(u)

u > 0.
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Let ϕ1 be a function from Example 2.1 and ϕ2 the function defined above.
Then there exist nonzero linear and continuous functionals on the space Lϕ1 ∩Lϕ2

and we obtain the equivalence of the conditions (i)− (iv) in Corollary 2.2.
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