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Abstract : Let (2, X, 1) be a o-finite measure space and assume that F is an ideal
of LY. Let p and p* be two modulars defined on E, E, and E,- the modular spaces
for p and p* respectively. In E, N E,« a two-modular convergence can be defined
as follows: a sequence (f,) in E, N E,- is said to be two-modular convergent to
f € E,NE,- whenever f, — f with respect to modular p* and (f,) is p-bounded.
We introduce a two-modular topology vw(7,,7,-) in E, N E,- and show that
the convergence in this topology is equivalent to the two-modular convergence.
We prove also that the two-modular convergence is equivalent to some modular
convergence. The most important fact on this paper is a characterization of linear
functionals on the space L¥* N L¥2, continuous with respect to the two-modular
topology Yw (7, s Tm,,, ). The functions o1 and ¢z are not assumed to be convex.
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1 Introduction.

Let (Q,3, 1) be a o-finite complete measure space. We denote by L°(£2) the set
of p-equivalence classes of all real valued ¥ -measurable functions defined and a.e.
finite on Q. Then L°(Q) is a super Dedekind complete Riesz space under the
ordering f < g whenever f(w) < g(w) a.e. on Q. Recall that a set E C LY
is solid whenever from the conditions |f| < |g|, ¢ € E and f € L° it follows that
f € E. If the set F is also linear we call it an ideal of L. Assume that E is an
ideal of L0,
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1.1 Modular spaces.

1.1.1

A functional p : E — [0,00] is called a modular if the following conditions are
satisfied:

(i) p(f)=0&f=0.
(i) p(f) < plg) if |f] < gl

(iii) p(f +9) = p(f) +plg) for [f[Alg]=0.
From (i7) and (44i) we obtain the condition
(iv) p(f Vv g) <p(f)+p(9).

Since the inequality p(af + Bg) < p(f V g) is true for all f,g € E and all
scalars a, such that |a]® +|6]° < 1 and 0 < s < 1, then we also obtain

plaf + Bg) < p(f) + plg).

We have proved that for each 0 < s < 1 modular p is an s- modular in sense of
[5]. This type of modulars was introduced by Albrycht and Musielak in [1] and in
the case s = 1 by Musielak and Orlicz in [7].

If 0<s; <sy<1and pisan ss-modular, then p is also an s;-modular.

The linear space E, = {f € E: p(Af) — 0 as A — 0} is called a modular space
for p. The formula |f|, = inf{e > 0 : p(f/e%) < €} defines an F-norm in E,,
which has the same properties as the norm defined in ([7], 1.21).

1.1.2

The modular p : E — [0, 00] is called s-convex, (0 < s < 1) if plaf+ 8f) <
lal®o(f) + |8|°p(g) for any f,g € E and any scalars a, § with |a]® + |G]® < 1.

A 1-convex modular will be called briefly convex. Every s-convex modular is an s-
1

modular. The formula || f||5 = inf{e > 0: p(f/e%) < 1} defines an s-homogeneous

norm in E, (see [1]).

1.1.3

A sequence (f,) in E, is called p-convergent to f € E,, in symbols f, Lofif
there exists a constant A > 0 such that p(A(f, — f)) — 0 as n — oo ([1], [7]).
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1.1.4

A set Z in E, will be called p-bounded if for any sequence (f,) in Z and any
sequence of numbers &, — 0, we have &, f, = 0 (see [3]).

If p is an s-convex modular, then a set Z C E, is p-bounded if and only if there
exists a constant r > 0 such that ||f||5 < r for all f € Z.

1.1.5

We say that a modular p satisfies the o-Fatou property if 0 < f,, T f € E implies
p(fn) 1 p(f). We say that a modular p satisfies the o-Lebesgue property if from the
conditions f,, | 0in E and p(\f1) < oo for some A > 0 it follows that p(\f,) | 0.
We say that p satisfies the o-Levi property if 0 < f,, 1 in E and the set {f,, : n € N}
is modularly bounded implies that f,, 1 f in E for some f € E (see [9]).

1.1.6

Let p; be an s;-modular and ps an se-modular. Let Ey be a linear subspace of

E. We say that ps is non weaker than p; on Ejy, in symbols p; < p2 on Ejy, if for
. P2 . . P1

every sequence (f,) in Ey f, = 0 implies f,, = 0.

1.1.7

We say that p-convergence of sequence (f,,) in E, is generated by a linear topology

if there exists a linear topology 7 in E, such that f, Z 0 if and only if f,, & 0
for every sequence (f,) in E,.

1.1.8

It is said that p satisfies the B2-condition in E, if p(f,) — 0 implies p(2f,) — 0
for every sequence (f,,) in E, (see [7]).

1.2 Modular bases.

In this section we introduce a notion of an s-modular base in linear space, which
is a generalization of the notion of a modular base introduced by Le$niewicz in
[5] and [6]. A notion of s-premodular bases in linear lattices was considered by
Lesdniewicz and Orlicz in [4].

1.2.1

Let U be an arbitrary subset of E. By bal.U we denote the set of all functions
f € E such that f = ag, where |a| < 1,9 € U. If bal.U = U, then U is called a
balanced set.
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1.2.2

Let U be an arbitrary nonempty subset of E,

Ls(U)=Aaf+0g: f,geUla|l*+|0I° <1} for UC E,0<s<1.
A non-void family B of subsets of E will be called an s-modular base in E if the
following conditions are satisfied:

(M1) for every two sets Uy, Uy € B there exists U € B such that
FS(U) c Uy NnUs,

(M2) every set U € B is absorbing in E, i.e. for every f € E there
exists a number A # 0 such that Af € U.

If 0 < s1 < s9 <1 and a family B is a ss-modular base in E, then B is also a
s1-modular base.

An s-modular base B = {U,} of absorbing and balanced sets in E such that
Is(Unt1) C Uy, for n € N, is called a sequential s-modular base in E ([5], 1.1). A
1-modular base will be called briefly a modular base.

1.2.3

Let By be an sj-modular base on E and let By be an sg-modular base on E. We
shall say that Bs is non-weaker than By, in symbols B; < B if there exists a
number « # 0 such that for every set U; € B; there exists a set Uy € Bg satisfying
al, C Us.

We say that B; and Bs are equivalent, in symbols B; ~ Bs, if symultaneuosly
By < By and By < By.
1.2.4

([5], 2.1) We say that the base B of all neighbourhoods of the origin is a linear-
topological base if it satisfies the following conditions:

(LT1) for every set Uy € B there exists a set Us € B such that Uy + Uy C Uy,
(LT2) for every set Uy € B there exists a set Us € B such that bal.Us C Uy,
(LT3) for each two sets Uy, U, € B there exists Us € B such that Uz C Uy N Uy,
(LT4) every set U € B is absorbing in E.

If non-void family of sets B satisfies the conditions (LT1)—(LT4), there is a unique
linear topology 7 on F, i.e. (E,7) is a linear-topological space.

Theorem 1.1. If By ~ By and By is a linear topological base, then By is also a
linear topological base ( see [5], 2.5 ).
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1.2.5

Let B be an s-modular base in E. A sequence (f,) in E is called convergent to

f € E with respect to B, in symbols f, 5 f, if there exists a number « # 0 such
that for every U € B there exists a natural number N such that for every n > N
there holds a(f, — f) € U (see [5]).

Theorem 1.2. ([6], 1.3 ). Let By be an s1-modular base and let B2 be a sequential
sg-modular base in E. Relation By < By holds if and only if for every sequence

(fn) in E we have: f, B0 implies [, By,
Theorem 1.3. Let B be an s-modular base in E. Then the family

[es) N
BN ={ U (Z U,): (U,) is a sequence of sets in B}
N=1 n=1

s a linear topological base in E. Moreover, the following conditions are satisfied:
(1) B < B
(2) if By is an arbitrary linear topological base in E such that By < B, then
B < BA.

Proof It suffices to note that the inclusion bal.U C I's(U) holds for any U € B.
The rest follows from ( [5], 4.1 and 4.2 ).

Theorem 1.4. Let B be an s-modular base in E. Then the family of sets of the
form BY = {aU : U € B,«a # 0} is a linear topological base in E. Moreover, the
following conditions are satisfied:

(i) B=<BY
(ii) if By is an arbitrary linear topological base in E such that B < By, then
BY < B;.

Proof Denote by A(A) = {af + 8g: f,g € A, sup(|al,|3]) <1} for AC E.
It suffices to note that the inclusion A(27+AU) C AL, (U) holds for any U € B
and A > 0. The rest follows from ( [5], 3.1 and 3.4 ).

Theorem 1.5. Let B be an s-modular base in E. Then B is a linear topological
base if and only if B" ~ BY.

Proof It follows from Theorem 0.1, 0.3 and 0.4 ( see [5], 3.5, 4.4 ).
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2 Two-modular topology on modular spaces.

Let p be an s-modular on linear space E, £, the modular space of p and Eg a
linear subspace of the space E,. Denote B,(¢) = {f € E : p(f) < €}. Then the
family B, po = {B,(¢) N EJ :e >0} is an s-modular base in EJ.

Moreover, the family B,C),Eg = {B,(27""")NE) : n € N} is a sequential s-modular
base in Eg, equivalent to B, B9 ( [6], 2.2 ). It is seen that f, L. f if and only if
fn — f with respect to the base B, B9 and if and only if f, — f with respect to
the base B;,Eg for a sequence (f,) in E) and f € EY ([6], 2.3). In view of Theorem
0.3 we get:

Theorem 2.1. The family

3

Eo—{U B,(ei) N EY)) :e; > 0}

n= 11:1

constitutes a base of neighbourhoods of O for some linear topology in EO, which we
will denote by ’];AED. Moreover, the following conditions hold:
"o

(1) B,Q,Eg < B, go

(ii) if B is an arbitrary linear topological base in Eg such that B < BP,E27 then
B < B o
By

Theorem 2.2. The topology %AEO is the finest of all linear topologies T on Eg,
e

which satisfy the condition (x) : fp 2.0 implies f,, Zo for every sequence (f)
in E9.
P

Proof Let 7 be a linear topology on E0 which satisfies the condition (x). We
have f, % 0 if and only if f, — 0 with respect to Bc B Hence from Theorem
0.2 we get By < B¢ 5B where Br is a base of nelghbourhoods of 0 for 7. Since
Be e B 0, B9, We get Br < B 0,9 and hence by Theorem 1.1 we get that By <
Bp B Since Br and BQEg are linear-topological bases, we get 7 < ’]; o

In the case of E) = E, the topology 7 ng will be denoted by 7" and called a lower

topology ( or the modular topology ) for a modular p. Moreover, in this case we
will denote modular bases by B, (respectively B)) instead of B, g, (respectively

Blp).
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Now we recall a definition of two-modular convergence on E,NE,- and prove that
we can define a modular p such that the two-modular convergence is equivalent to
the modular convergence with respect to p.

Definition 2.1. Let p and p* be two modulars on E. We say that a sequence
(fn) in E,N Ey« is two-modularly convergent ( y-convergent ) to f € E,NE, if

I 2, f as n— oo and (f,) is p-bounded. We denote this by f, 2 f ( see [8]).

Definition 2.2. We say that a linear functional F' on E, N E,- is vy-linear if
fn 50 and (f,) is p-bounded implies F(f,) — 0.

Definition 2.3. Let p and p* be modulars on E. Assume that modular p is s-
convex. We define a functional p by the formula

o)) if  p(f) <1
p(f){oo if  p(f)>1

It is obvious that the functional p satisfies the conditions (i)—(iii) from 0.1.1, so it
is a modular on E.

Theorem 2.3. If p is an s-convex modular then a sequence (f,) C E, N E,« is
v-convergent to f € E, N E,« if and only if it is p-convergent to f.

Proof Let f, 2, f. Then there exists A > 0 such that p*(\(f, — f)) =

PA(fn—f)) — 0asn — oo, so fy N f. Further, for every &, — 0 we can find
ng € N such that % < 1land p(A(fr,—f)) < oo forn > ng. Then p(A(fr,—f)) <1
for every n > ng and p(e,(fn — f)) < li\%lsp(/\(fn - < % — 0. Hence
P(%Enfn) = p(%&n(fn - f)+ %Enf) < plen(fn = f)) +penf) <
p(en(fn — )+ lenlp(f) — 0

i.e. (fn)is p-bounded. Therefore f, - f.

Assume that f, - f. Since f, N f, there exists Ay > 0 such that p*(A1(fn —
f)) — 0. Since (f, — f) C E,, then there exists a number Ay > 0 such that
p(Aa(fr — f)) < 1. Let A = min(\1, \2). Then we have p(A(fn — f)) = p*(A\(fn —
f)) —o.

Let By(e) ={f € E: p(f) <e}and B,-(e) = {f € E: p*(f) < e} for r > 0 and
€ > 0. Denote B, = {B,(¢) : € > 0}, By« ={B,-(¢) : € > 0} .

We introduce a linear topology on E, N E,- and we will prove that the con-
vergence in this topology is equivalent to the two-modular convergence. Next we
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prove that introduced two-modular topology is equal to some modular topology
(see Theorems 1.4 and 1.5). We also show that this topology is the finest of all
linear topologies 7 on E, N E,- satisfying the condition 7|z = T),+|z, where 7,- is
the topology for which the base of the neighbourhoods of zero is B, and Z is an
arbitrary p-bounded set (see Theorem 1.6).

Theorem 2.4. Let p and p* be two modulars defined on E. Assume that p is
s-convex and p* satisfies the B2 condition. The family By of all sets of the form

(%) UQ_iBy(r) N By (1),

n=1 =1

where {g; : i > 1} is a sequence positive numbers, forms a base of neighbourhoods
of 0 for some linear topology on E, N E,-.

Proof We will show that the conditions (LT1)—(LT4) are satisfied. Let M ({B,- ()}, B,(r))
=Upe (X iB,(r) N By« (g;)), where {B,«(g;)} is a sequence of the sets of B,
and B,(r) € B, be an arbitrary neighbourhood of 0 in By,. Let A € R. Then

AM({Bp-(g:)}, By(r)) = {)‘Z?:1 fii [i € By (Ei)ai_lfi € By(r)} =
{22 Mi s Afi € ABpe(€0), i 'Afi € AB,(r)} = M({AB,- (£i)}, AB,(r)).

Hence we obtain that the sets (x) are balanced. For every function f € E,NE,-
there exists A # 0 such that A\f € B,«(e1)NB,(r), i.e. thesets M ({B,- (&)}, B,(r))
are absorbing. Let M({B,-(¢;)}, B,(r1)) and M({B,-(0;)}, B,(r2)) be arbitrary
neighbourhoods of 0 in By,. Since B, and B, are the modular bases, there
exist numbers 7; and rs such that B,-(n;) C By«(e;) N By« (0;) and B,(rs) C
B,(r1) N B, (r2). Thus we have M({B,- (1)}, By(rs) © M({Bye(e0)}, By(r1)) N
M({Bp(d:)}, Bp(r2))-
Since modular p is s-convex and p* satisfies the condition B2, we can choose
B, (0y) € By and B,(r") € B, such that B« (a;)+ B, (a;) C By«(g;) and B,(r')+
B,(r') C B,(r). We prove that M({B,-(a;)}, B,(r")) + M({B,+ (i)}, B,(1"))
C M({B,- (i)}, Bo(r))-
In fact, if f € M({B,-(a;)}, Bo(r'))+M({B,-(a;)}, By(r')), then f = g+h, where
g=g1+ -+ Ggm, gi € B,,*(ozi),z‘lgi €B,(r"),1<i<mand h=h;+ -+ hy,
where h; € By (a;),i  h; € B,(r'),1 <i <n. For m < n we obtain
f=(g1+h)+(g2+h2) 4+ + (gm + hm) + hangs + -+ + han.
Since B« (o) + B, (a;) C By« (g;) and B, (1")+B,(r") C B,(r), s0 gi+h; € By« (g;)
and i~ '(g; + h;) € By(r) for i=1,...,m and h; € B,+(;),i 'h; € B,(r') for
i=m+1,...,n. From this it follows that
fe M({B,- (i)}, By(r))-
We have proved that there is a unique linear topology 7 on E, N E,- such that
By is the base of the neighbourhoods of zero of .
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Definition 2.4. The topology defined in Theorem 1.4 is called the two-modular
topology on E, N E,« and it is denoted by yw (7, T,+) or shortly yw .

Theorem 2.5. Let p and p* be two modulars defined on E. Assume that p is
s-conver and p* satisfies the B2 condition. The base of neighbourhoods of zero
in the modular topology ’Z;A is equivalent to the base of neighbourhoods zero of

1w (Lo, Tpr)-

Proof Let K = B,(1). Since p is s-convex, for arbitrary set B,(r) € B, there
exists a natural number ny such that K C nB,(r) for n > ng, hence

W{Bp+(engtn) NK}) =
U;z.ozl(BP* (5n0+1) NK+---+ Bp* (5n0+n) N K) -
Unz1(Bor (Eng+1) N (no + 1) By(r) + -+ + Byx (Eng4n) N (o + 1) B,(r)) =
M({By(ci)}, By(r)).
We have showed that for every set M € By, there exists a set W &€ Bg\ such that
W C M, ie. By < Bl/;\.

For every sequence {B,-(g;)} C B,~ there exists a sequence {B,-(;)} C B,- such
that By« (e1) = By« (81) and (k+ 1) "' B+ (Brt1) C By (Enyt1) NN By (Enp iy )
where ny = 1k(k + 1), k € N. Thus we obtain:

M{By-(B)}, K) = UpZi (B (B1) N K + -+ 4 By (Br1) N (k + 1K) C
Uzozl(Bp* (e1) VK + -+ (Bps(enys1) N K + - + Bys (Eﬂk+1) NK)) =
W({B,-(e;) N K}).

We have proved that for arbitrary W e Bé\ there exists the set M € By such that
M CW,ie. BF{’\ < By.

Since 7' ~ yw(7,,7,+), from Theorem 2.5 in [5] we obtain that 7" is a linear
topology on E, N E,-.

Theorem 2.6. Let p and p* be two modulars defined on E. Assume that p is
s-convex and p* satisfies the B2 condition. The two-modular topology vyw is the
finest of all linear topologies T on E, N E,- satisfying the condition 7|z = T,
where Z s arbitrary p-bounded set.

Z 5

Proof Let Z be arbitrary p-bounded set. First we show that yw |z = 7,-|z.
Let € > 0. Since p* satisfies the B2 condition, there exists a number €; > 0 such
that B, (e1) + By-(€1) C By+(¢). Next, there exists a number e, > 0 such that
B+ (g2) + Bp+(e2) C B,+(e1). By induction we obtain a sequence (g,,) such that
B+ (en) + By« () C By (en—1) for all n € N. Hence we obtain that
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By-(e1) + Bye(e2) + -+ + p*(gn)
Bp(e1) + By+(g2) + -+ + By (en) + ( n) C

B, (1) + Bp+(e2) + - -+ Bpe(en—1) + By« (en—1) C -+ C
By (e1) + By (e2) + By+(e2) C By (e )+B (e1) C By-(¢)

for every n and

By« (e1) N By(1) + By-(€2) N2B,(r) + -+ - By« (en) NnB, (1) C
B (e1) + B+ (e2) + -+ By- (en) C B+ (€)-

Thus we obtain that M({Bj+(g;)}, By(r)) C By«(e) i.e. Tpr < yw.

i.e. every neighbourhood of the form (fy +
M({B,-(¢i)}, B,(r))) N Z contains a neighbourhood of the form (fy+ B,-(¢))NZ.
Since the set Z — Z is p-bounded for every M = M ({B,-(£;)}, B,(r)) there exists
m € Nsuch that Z—Z C mB,(r). Let &,,, = € for m € N. Then B,«(e)N(Z—2Z) C
By« (em) N mB,(r) C M. Since for every fy € Z we have (fo + By+(e)) N Z C
fo+By(e)N(Z—Z),50 (fo+By(e))NZ C fo+By-(e)N(Z—-2Z) C (fo+M)NZ.

Assume that 7|z = z. Let B’ be a p-bounded neighbourhood of 0 in 7. Since 7
is a linear topology, there exists a sequence { B}, } such that B] +---+ B/, C B’ for
all n. Since the sets n.B,(r) (1) = Tlnp,(r)- Hence for every
n there exists 7,--neighbourhood of zero B, (¢,,) such that B, (e, )N\nB,(r) C B},
We have

By« (e1) N B,(1) + By« (e2) N 2B, (1) + - - - + By=(en) N B, (1) C

B+ By+---+ B, cB’ ie. M C B
We have proved that if 7|z =

then 7 < vy

Now we will show that the convergence in two-modular topology vy is equiv-
alent with the two-modular convergence (see Theorem 1.8). First we will prove a
fact, which we use in the proof.

Denote:
(1 Bi= {Byr(c0) 1 0 ((nBy(r) + By (20) : &0 > 0},
@ Ba = (B, (20) N () (@B, (1) + Byr(20)) 1 > 0},

where (a,,) is an arbitrary sequence positive numbers such that a,, — 0o asn — oo
and a; < 1.

Theorem 2.7. Let p and p* be two modulars defined on E. Assume that modular
p is s-convex and modular p* satisfies the B2 condition. The bases By i By are
equivalent and the sets of the form (1) and (2) constitute a base of neighbourhoods
of zero of two-modular topology.

Proof Assume that U is an arbitrary set of the form (1). Let (k,) be an
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increasing sequence of natural numbers such that k1 = 1, k, > a,, for all n > 2 and
(0) be a sequence such that the following inclusions hold B, (d) C ﬂkl 'B B+ (ep)
and Bp-(d,) C ﬂ];?ki;l B,«(ep) for every n € N. Since a,B,(r) + B,- ((Sn) C
kpni1—1 %)

ﬂp:“]—ci (pBy(r)+By-(ep)) we get By« (0)N(,=1 (@anBy(r) + Bp=(6n)) C Bp+(g0)N
Mozt (PBo(7) + Bp=(gp)), ire. By < Bo.

We prove that By < B;. Assume that V is an arbitrary set of the form (2).
Let (m,) be an increasing sequence such that a,,, > n for all n € N and

(0n) a sequence of positive numbers such that B,«(dy) C ﬂml 'B B, (gp) and
By (6,) C Npoit™ "B, (g,) for all n € N. Hence we get B,-(d,) + an(r) C
(ot 1(Bp (ep) + apo(r)) and from this it follows that

pP=mn

Bp(00) N(ozy (nBy(r) + By (8,)) C Bp-(g0) N ﬂ;oz1 (apBy(r) + By (ep))-

We will show that the sets of the form (1) and (2) constitute the base of neigh-
bourhoods of zero of two-modular topology vw (7,,7,-). First we will prove that
every set of the form B,- (e0) (1, (n - 2% B,(r) + By« (e,)) contains some neigh-
bourhood M ({B,+(6,)}, B,(r)) in the topology yw, i.e. B2 < By for a, =n-2%.
Let B,-(d1) be an arbitrary set such that B,«(61) + B,+(61) C By« (€0). By the
induction we get a sequence B, (0,,) such that B« (0y) + By« (6r) C By« (0p—1) N
B« (en—1) for all n > 1. Thus we have

By (d1)+ By- (G2)+-- -+ By- (0n) C By- (1) + By- (02)+- -+ By- (6n) + By- (6n) C
By (61) 4 By (62) + -+ + By (0n—1) + By (dn—1) N Bp= (€n—1) C Bp+(81) + By (62) +

4 By (0n—1) + By (6—1) C -+ C By« (01) + By« (1) C Bp- (o).

Hence for every p € N we have B« (8,,) + B+ (On41) + - -+ Bp (6nyp) C By (65) +
B+ (65,) C Bp+(0p—1) N Bpy+(en—1) C By« (en—1) and

M({By-(0n)}, By(r)) =

= Upe1(Bp+ (1) N By(r) + By-(62) N 2B,(r) +

By (0n-1) N (n —1)B,(r) + Bp*( )man( )+

B+ (n1) N (n+1)By(r) + -+ + By (0ntp) N (n+p)B,(r)) C
U;o:1(Bp(T) +2By(r) + -+ (n— 1)By(r) + By (dn)+

By (0n41) + -+ + Bps (Ontp)) C 125 Bp(r) + Bpe(€n-1)

for every n > 1, so M({B,-(0,)}, By(r)) C Mo (n- 25 By(r) + Bp(en—1)), i.e.
By < By .

Now we prove that every neighbourhood of zero M ({B,-(e,)}, B,(r)) contains a
set of the form ()~ (nB,(r) + B,+(d,)), i.e. Bw < By. Let (m,,) be a sequence of
natural numbers such that m,, > n-2% for n € N. Since modular p* satisfies the B2
condition, there exists a sequence (d,) such that B,«(dg) + By« (d0) C By« (€m, ),
B« (0p—1) + Bp=(0p—1) C Bp+(em,), Bp-(0p) C By (dp—1) for p € N. Let f €
By« (00) N1 (Bp«(0) + nBy(r)). Then f € B,«(dy) and for every n € N we



362 Thai J. Math. 6(2008)/ E. Kasior

have f = g, + hy, where g, € nB,(1), hy, € By (0n). Let fi = g1, fn = gn — Gn—1
for n > 1. Hence for every n € N we have

fitfot ot fothn=g1+(92—91)+
+(gn_gnfl)+hn:gn+hn:f~

Since f = gn—1 + hp_1, then hyy_1 = f —gn_1 = fr + hy, so
fn = hn - hn—l S Bp* (6n—1) + Bp* (671)

On the other hand f, = gn — gn—1 € nB,(r)+ (n—1)B,(r) C m, B,(r). From the
definition of the sets B,«(d,) it follows that B« (6n—1) + By (0n) C Bp+(dp—1) +
By« (0n—1) C Bp(€m,,); 80 fn € Bp(em,,) NmpnB,(r).

Since f € E, and modular p is s-convex, there exists ky € N such that f € koB,(r).
From the equality h, = f — g, we get hy, € (ko + n)B,(r), where k¢ is a natural
1

ko — 25
number such that f € koB,(r). If ng > ;7, then my 41 > (no + 1) - 27 >

s —

ko + no. Hence hy,, € (ko + 10)B,y(r) C myg41B,(7r).

On the other hand hy,, € Bp«(ny) C Bp(dny) + Bp(6ny) C Bp(m,, ;). Hence
we have hn, € Bp(€m,, 1) N Mng+1B,(r) and f = fi + fa+ -+ + fo, + hny €
By (em, )1 By (1) + By (€my )2 By (r)++ - 4B (€m,,, ) Wi Bp(r)+Bp= (€m0 )0
Mpg+1B,(r) C M({Bp+(en)}, By(r)). Since f = gn + hy € Bp=(6n) + nB,(r) for
every n € N, so (V2 (By+(6n) + nB,(r)) € M({B,+(en)}, B, (r))-

Since By < By, By < By i By ~ By, so the sets of the form (1) and (2) constitute
the base of the neighbourhoods of zero of the two-modular topology yw .

From Theorem 1.8 in [9] we know that if p satisfies the B2 condition, then f, Lo
if and only if f,, — f with respect to the topology Tp/\ and if and only if f, — f
with respect to the topology 7,.

Theorem 2.8. Let p and p* be two modulars defined on E. Assume that p is
s-convez, p* satisfies the B2 condition and the sets nB,(r) are closed in topology
Ty for all n € N. For an arbitrary sequence (fn) C E,NEy« and f € E,NE,-,

we have f, 2, f and (fn) is p-bounded if and only if f,, — [ with respect to the
two-modular topology yw (7, Tp+).

Proof Let f, — f with respect to the two-modular topology ~vyw . Since
T,- < yw ( see proof of Theorem 1.6), we get f,, — f with respect to the topology
T,-. Since p* satisfies the B2 condition, from Theorem 1.8 in [9] we get that

fn 5 f. It suffices to prove that the sequence (fn) is p-bounded. Assume that the
sequence (f,) is not p-bounded. Since the two-modular topology is linear, we can
assume that f = 0, i.e. f, — 0 with respect to vy . If the sequence (f,) is not
p-bounded, there exists a sequence (k,,) such that fx, ¢ nB,(r). Since all the sets
nB,(r) are closed in topology 7,-, for every n € N there exists a number €, > 0
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such that fi, ¢ nB,(r) + By«(e,). Hence the set U = () (nB,(r) + B,-(en))
n=1

does not contain any element fi, . Since the set U is a neighbourhood of zero in

two-modular topology, we obtain contradiction with the fact that f, — 0 with

respect to . Thus the sequence (f,,) is p-bounded.

Now we assume that f, — f, ie. fo 2 f and (f,) is p-bounded. Let
Z ={fn :n € N}. Since p* satisfies the B2 condition, from Theorem 1.8 in [9] we
get fn, — f with respect to the topology 7,«. Since Z is p-bounded, 7+|z = yw|z,
hence f,, — f with respect vy .

Theorem 2.9. Let p and p* be two modulars defined on E. Assume that p is
s-convez, p* satisfies the B2 condition and the sets nB,(r) are closed in topology
T,+ for alln € N. For a linear functional F' on E, N E,« the following conditions
are equivalent:

(i) F is continuous in the modular topology TﬁA,
(ii) F is y-linear.
(iii) F is continuous in the two-modular topology ~yw .

(iv) For every i > 0 the restriction F|;p, () is continuous in T,

iB,(r)-

Proof (i) < (ii4). This equivalence follows from Theorem 1.5.
(iii) = (iv). Since yw|iB,(r) = Zp~|iB,(r), the functional F|;p () is continuous in
T+ liB, (r)-
(1v) = (#4i). We will show that F' is continuous at 0. Let € > 0. Since the functional
FliB, ) (in(T),’Z;;*hB,,(r)) is continuous, for arbitrary ¢ > 0 there exists ¢; >
) 3 € no
0 such that F(B,-(g;) NiB,(r)) C (—22.?, 22?) Hence F(3.,_,iB,(r) N
n € €
B« (ei)) C Zi:1(7ﬁ7 2i+1) C (=¢,¢),
and we obtain that

F(Uff:l Z?:l iB,(r) N By(g:)) C U;:O:1(F(Z?:1(i3p(r) N By« (e:)))) C

(_57 6)7
so F'is continuous with respect to .

(43) = (i44). If the functional F is v-linear, for every i > 0 the restriction F|;g, ()
is continuous with respect to 7,-|; B, (r)- Hence F' is continuous with respect to
Tw -

(iii) = (ii). Let f, - 0. ¢From Theorem 1.3 f, 2.0 and from Theorem 1.2

TN
fn = 0. Since vy = ’Z;A (Theorem 1.5) and F' is continuous with respect to the
two-modular topology yw, then F(f,) — 0.
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3 Applications to Orlicz spaces.

In this section we will apply theorems 1.8 and 1.9 to the theory of Orlicz spaces.
We will show that these theorems are true only in case when Orlicz functions take
the value 400 for some u > 0, i.e. when L¥ C L.

Assume that (2,%, ) is a o-finite atomless measure space. An Orlicz function

¢ :[0,00) — [0,00) is a non-decreasing, left-continuous, continuous at 0 function,

which is not identically equal to 0. Assume that lim inf(u)/u > 0. The Orlicz
U—0o0

function ¢ determines a functional

my : L0 — [0,00] by the formula m,(f) = fQ o(|f(w)])du.
The Ortlicz space L¥ generated by ¢ is the ideal of LY defined by:
LY ={f e L’ :my,(\f) < oo for some A > 0}
and the space FE¥ of finite elements is defined by:
E? ={f €L’ :my(\f) < oo for every A > 0}.

The functional m, restricted to L¥ is a semimodular, i.e. it satisfies the following
conditions:

1) my(Af) =0for all A > 0 if and only if f =0

2) my(af + Bg) < my(f) + my(g) for the scalars o and § such that o, 3 > 0
anda+ =1
3) my(af) =my(f) for |a] =1

1) 1£1 < || implies my(f) < my(9)-

Recall that the Orlicz function ¢ satisfies the As- condition if there exists a
number K > 0 such that p(2u) < K¢(u) for all u > 0.

It is known that the modular m,, satisfies the o-Levi and the o-Fatou properties
and if the function ¢ satisfies the As-condition, then m, satisfies also the o-
Lebegue property.

Let 1 1 2 be the Orlicz functions. Assume that ¢; is s-convex and o satisfies
the Ay condition. Then the modular m,, is s-convex and m,, satisfies the B2
condition. We know that the functional m defined by the formula

() = {m%m when g, (f) <1

00 when — my, (f) > 1

is a modular on LY. We have created a modular space (L,m). It turns out that
there does not exist an Orlicz function ¢ ( with the assumption that ¢; and ¢
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have only the finite values) such that m = m,,. The space L is not an Orlicz space
except a trivial case when the measure p takes only the values 0 and oo.

Let 1 and ¢ be the Orlicz functions, m, and m,, modulars generated by
them. In the case when the measure p takes only the values 0 and oo, the only
integrable function is f = 0 and the Orlicz space L¥ = {0} for every . In this
case we get that the condition my,, (f) < 1 is satisfied only for f = 0 and then also
My, (f) =0, s0 m(f) =my(f) =0 for every Orlicz function ¢. When f # 0, then
00 = [ e1(f)du > 1, so m(Af) = my(Af) = oo for every A >0, s0 f ¢ L¥.

We shall show that if u has the positive values there does not exist the function
@ such that m(f) = my(f). Assume that such function exists and take an arbitrary
A > 0. Consider the expression my, (Af) = [ w1(Alf])dp as f # 0. Taking
A — 00, from the property of Orlicz function ; we have 1(A|f]) — oo on the
set of positive measure. From Beppo-Levi Theorem [, ¢1(A|f])dp — oo, so this
integral is bigger than 1 for sufficiently large A i.e. A > A\g. From the definition
of my, we get that my(Af) = [, (A f])dp = oo for A > Ag. Hence f ¢ E¥, ie.
E? = {0}. On the other hand take the set A € ¥ such that 0 < u(A) < co and
denote by f a characteristic function of the set A. This is a non-zero function and
for every A > 0 we have my(Af) = [ oAl f))dp = [, o(N)dp = p(A)p(N) < co.
We get that f = x4 € E¥, so we have obtained a contradiction.

It turns out that there exist functions ¢; and @2 such that m = m, (see
Example 2.1) In this case let » > 0 be fixed real number and (g;) a sequence
of positive numbers. Denote By, (¢) = {f € L° : my,(f) < }. Then from
Theorem 1.4 the family (2, (32;2, iBm,, (r) N B, (ci)) constitutes a base of
the neighbourhoods 0 for topology vy on L¥* N L¥2. From Theorem 1.5 we obtain
that the modular topology T“/?\w for which the base of the neighbourhoods of 0 are

sets of the form (J;~ | (37" | By, (i) is equal to the topology yw .

We will prove that for all n € N the sets nB,,, (r) are closed in topology
mez . Since modular m,,, is s-convex and modular m,,, satisfies the B2 condition,
it suffices to show that the set By, (7) is my,-closed. Let f € L1 NL¥2. Assume

that my, (fn) < r for all n € N and f, Tz f. Since my,(fn — f) = 0, fn = f
a.e. and |f,| — |f] a.e. Denote g, = i1<1f |frl. Then 0 < g, T |f| and g, < | [
n<m

for all n € N. Since modular m,,, satisfies the o-Fatou property, we get my,, (f) =
nILH;O My, (gn) < lim nglgo My, (fn) <r/ie f€ Bmm(r)~

Hence from Theorems 1.8 and 1.9 we obtain the following corollaries:

Corollary 3.1. Let @1 and @2 be two Orlicz functions. Assume that o1 is s-convex
and @9 satisfies the Ao condition. For an arbitrary sequence (fn,) C LP*NL#2 and
f €LY N L%, we have: f, Tz f and (fn) is my, -bounded if and only if f,, — f
with respect to two-modular topology yw (Tm.,, s Tm.,, )
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Corollary 3.2. Let ¢ and py be two Orlicz functions. Assume that @1 is s-
convex and s satisfies the Ao condition. For a linear functional F' on L% N L¥#2
the following conditions are equivalent:

(i) F is continuous in the modular topology TW/QW,
(ii) F is y-linear.
(iii) F is continuous in the two-modular topology ~w .

(iv) For every i > 0 the restriction F|iB¢,1(7‘) is continuous in T, |iBm(T).

Example 2.1. Let 2 = R, p be the Lebesgue measure on R. Assume that g is an
arbitrary Orlicz function satisfying the As condition for all v > 0 and the function
1 is defined by the formula

() = 0 for w € 0,1]
o1 oo for u > 1.

Then the modular m is defined by the formula
() = {mw(f) for [[fll <1

00 for ||f]lee > 1.

We will prove that m = m,, where the function ¢ is defined by the formula

) a(u) for w e [0,1]
plu) = {oo for uw>1.
Let [|flloo < 1, ie. [f(w)] < 1 for ae. w € R. Thus m(f) = my,(f) from

the definition of m and my(f) = [, o(|f(W)])dw = [, e2(|f(w)])dw = my,(f) =
m(f). If || flloo > 1, then m(f) = 0o = my,(f).

~— —

It turns out that the function s is not assumed to be convex. In this case the
Orlicz space L¥2 is not locally convex.

Define the Orlicz function ¢ : [0,00) — [0,00) by the formula

u? for u € [0,1]
o(u) = ¢ (u—2n)>+n for uwel2n,2n+1),neN
n for we[2n—1,2n),n € N.

This function is not equivalent to any s-convex Orlicz function, but it satisfies
the Ay condition for all © > 0 and lim inf # > 0.

uUu—00
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Let 1 be a function from Example 2.1 and ¢, the function defined above.

Then there exist nonzero linear and continuous functionals on the space L% N L#¥?
and we obtain the equivalence of the conditions (i) — (iv) in Corollary 2.2.
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