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Abstract Let p > 5 be a prime and oo+ uf3 be a non-square and non-cube unit of the finite commutative

F,m [u]
p
(u?)

which are separated into 2 types, i.e., 8 is a unit and 8 = 0. For each case, we show that

chain ring . In this paper, we study the Hamming distances of all constacyclic codes of length 6p°

Fpm [u]

(u?)
there exists only one maximum distance separable constacyclic code of length 6p® over

over

Fpm [u]

(u?) -
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1. INTRODUCTION

A linear code C over a finite field can detect and correct L%J or fewer errors where
d is the minimum Hamming distance of C in [l]. Therefore, the value d is a significant
value in coding theory. Many researchers are interested in Hamming distances of those
codes (see [2—1]). Normally, we first determine the algebraic structures of codes. After
that, we compute the Hamming distances of codes. After the facts [5] that some good
non-linear codes over Zy are obtained from cyclic codes over Z, (Kerdock and Preparata
codes) via the Gray map, it makes that codes over finite rings are famous. One of good
subclasses of linear codes of length n over a finite commutative ring R is a subclass of
~v-constacyclic codes where ~ is a unit of R. Moreover, those y-constacyclic codes can be
<zk;[f]v> . If the length of a code and the characteristic of R are
not relatively prime, that code is said to be a repeated-root code. Otherwise, it is called
a simple-root code. The repeated-root codes were first studied by Berman [06] in 1967.
Subsequently, the fact that repeated-root codes are optimal in a few cases is provided in
[7, 8]. The optimal code could have two great values of dimension and distance of code.
In this paper, optimal codes are obtained when the maximum distance of codes meet the

viewed to ideals of the ring
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Singleton bound. Maximum distance separable (MDS) code is optimal in the sense that
it has the highest possible detection and correction for given a length and a code.
In [9-11], the algebraic structures of constacyclic codes of lengths p®, 2p® and 3p® over

the finite commutative chain ring F?ZQ[;J | were studied. Furthermore, for each «, 8 €

Fpm [u]

F,~ \ {0}, the Hamming distance of (o + uf3)-constacyclic codes of length p® over e

was computed in [10]. In general, the structures of constacyclic codes of length np® were

also studied in [12, 13]. In 2018, Dinh et. al. [11] gave Hamming distance of the remaining

constacyclic codes of length p® over F’Zzzgu | and introduced Symbol-Pair distance for those

codes. In addition, the Hamming distances of all constacyclic codes of length 2p® over the
same ring were also given by Dinh et. al [15]. Moreover, the singleton bound for linear

codes over Fz’:;[;‘ L is determined to compute MDS constacyclic codes of length 2p®.

Let p > 5 be a prime and o + uf be a non-square and non-cube unit of the finite
commutative chain ring R := F’Z%‘%u]. In this paper, we determine the Hamming distances

of (a + up)-constacyclic codes of length 6p° over R. We separate those results into 2
cases, i.e., # # 0 and § = 0. Furthermore, MDS constacyclic code of length 6p® is only
the ideal (1) of the quotient ring W#M The paper is sorted as follows. In Section
2, we give some results leading to the main results. In Section 3, we study Hamming
distances of (« + uf)-constacyclic codes of length 6p* over R when 8 # 0. Next, we
compute Hamming distances of the remaining constacyclic codes in Section 4. The last
section is conclusion.

2. PRELIMINARIES

In this section, R will denote a finite commutative ring with identity. The local
ring has the unique maximal ideal. For an ideal I of R, it is principal if there exists an
element r € R such that I = (r). The principal ideal ring is a ring which each ideal is
principal. The ring R is said to be a chain ring if the set of all ideals is linearly ordered
under set inclusion. Next, the following three statements are equivalent where R is a finite
commutative ring with identity as follows.

Theorem 2.1. [16] The following conditions are equivalent:

(1) R is a local ring and the mazximal ideal M is principal of R, i.e., M = (r) for
somer € R,

(2) R is a local principal ideal ring,

(3) R is a chain ring with ideals (r'), 0 < i < N(r), where N(r) is the nilpotency
of r, i.e., N(r) is the smallest positive integer such that rN) = 0.

Let F,m be a finite field with characteristic p and carnality p"” where p > 5 is a prime
and m is a positive integer. Let £ be a primitive element of F,m. Then

Fpm = {07§7€27 .. -,§pm_1 = 1}

It is obvious to see that 2|(p™ — 1) because p is an odd prime which implies ¢” — = 1.
Furthermore, the following important property holds.

Theorem 2.2. The following conditions are equivalent:
(1) p™ =1 (mod 3).
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(2) The polynomial x? + vz + ~?* is reducible over Fym where 7y is a unit of Fpm.
(The polynomial x* — yx + ~* is reducible over Fpm where v is a unit of Fpm.)
(3) =3 is a square element of Fym, i.e., there exists § € Fpm such that 6* = —3.

Proof. (1.) = (2.) Suppose that p” =1 (mod 3). So, 3|(p™ — 1). We now consider that

2® =% = (x =) (2 + vz +7°)
(m-1) 2(p™—1) 3(p™M—-1)
=@—-& 3 Y- 3 Y- 3 1)
(™ 2(1)"’1—1)

—1)
=@-NE-¢ 7 NE-¢ & 7).
By unique factorization, we have 22 + v ++? = (z — §(pm371) V) (x — 5%7). This
implies that 22 + vz + +? is reducible over Fpm.
(2.) = (3.) Suppose that 2% + yx + 2 is reducible over F,m. There exists 8 € F,m such
that 82 + 3 +1 = 0. Thus, we have 432 + 43 +4 = 0. We consider that

-3=0-3
=48> +48+4-3
= (28+ 1)

This means that —3 is a square element of Fpm.
(3.) = (1.) Suppose that —3 is a square element of F,m, i.e., there exists 6 € Fpm such
that 6% = —3. Note that

[(—146)27 12+ (-14+68)27 41 =1-20-3)2"2+ (-1+0)27 +1
=(-1-8)2" '+ (-1+68)27 ' +1
=0.

Set 3= (—1+6)27% and then 32+ 3 +1=0. Since 2> — 1 = (x — 1)(2? + x + 1), we
have 32 — 1 = 0. This means that 1 = 3. The order of 3, ord(3), is equal to 1 or 3. If
ord(8) =1,then 0 = 32 +3+1=1+1+1= 3. It is a contradiction. Thus, we get
ord(B) = 3 implying that 3|(p™ — 1). Therefore, we obtain that p™ =1 (mod 3). L]

However, for each § € Fm, there exists d € Fym such that 62" = from [10].

Proposition 2.3. Let § = 5gs be a unit of Fym and n be a positive integer such that
(p,n) =1. Then ¢ is a nth-power element if and only if dy is a nth-power element.

Proof. Suppose that ¢ is a nth-power element. There exists d; € F,m such that 67 = 6.
Since (p,n) = 1, there exist a,b € Z such that na 4+ p*h = 1. We consider that

b0 = 05" = (53)"8" = (530)".
This means that dg is a nth-power element. On the other hand, it is obvious. [

Let a be a non-square and non-cube unit of F,m. There exists oy € Fpm such that

s

o = a. We will show that 2% — ayq is irreducible over Fpm. Assume that 2° — ay is
reducible over Fpm. There exist an irreducible polynomial f(z) and a polynomial g(x)
over Fpm such that f(z)g(z) = 25 — .

Case 1: deg(f(z)) = 1. There exists § € Fpm such that f(8) = 0. Thus, we get
0 = f(B)g(B) = B% — ap. This means that ag = 3°. This is a contradiction.
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Case 2: deg(f(z)) = 2. There exist B, 51,%,71,72,73 € Fpm such that f(z) =
22+ Brx + By and g(x) = 2* + 323 + Yo? + 12 + 0. We consider that

2% — ap = f(2)g(x)
= (2° + Brz + Bo)(z* + 132° + 722° + 712+ Y0)
=a2%+ (y3 + B1)2° + (72 + Bz + Bo)a?
+ (11 + Brya + Bova)z® + (o + Bin + Borz)a®
+ (8170 + Boy1)x + Bovo-

This implies that

¥3+p1=0 (2.1)
Y2+ B1v3+ Bo =0 (2:2)
7+ B2 + Bovs =0 (2.3)
Yo + 8171 + Boyz =0 (2.4)
Bivo + Boyi =0 (2.5)
Bovo = —ao. (2.6)

From Equations (2.1)—(2.4), we have
3=~ (2.7)
Y2 = —fo + B (2.8)
Y1 =2B0B1 — B} (2.9)
Yo = =350 + B1 + 65 (2.10)

Again, Equations (2.5), (2.9) and (2.10), we get

0= 81+ 365 — 48087 = (87 — 3B0) (87 — Bo).

As Equations (2.6) and (2.10), we obtain —ag = —3625% + BoBt + B3.

If B — 38y = 0, then 37 = 36y. We get —ap = —355(350) + Bo(965) + 55 = B5. This
means that ag = —33 = (—8)® which is a contradiction.

If 82 — By = 0, then 57 = By. We have

—ap = —38260 + BoBs + B3 = —53, implying that ag = 33. It is a contradiction.

Case 3: deg(f(z)) = 3. There exist By, S1,52,70,71,72 € Fpm such that f(z) =
23 + Box? + frz + Bo and g(x) = 23 + 222 + 112 + vo. We consider that

2% —ag = f(x)g(x)
= (2° 4 Box® + Brz + Bo)(z” + 122® + Mz + 70)
= 2%+ (2 + B2)2” + (1 + Bz + Bu)a + (Yo + Bav1 + P12 + Bo)z?
+ (B270 + B1m1 + Y072)2” + (Bryo + Bovi)z + Boo-
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u?)
Thus, we have

Y2+ P2=0 (2.11)
Y1+ B2y + 1 =0 (2.12)
Yo + B2y1 + Biv2 + Bo =0 (2.13)
B2vo + By + Boye =0 (2.14)
Bivo + Boy1 =0 (2.15)
Bovo = —xo. (2.16)

From Equations (2.11)—(2.13), we obtain that
Y2 = —P2 (2.17)
N =P+ 53 (2.18)
Yo = 26182 — o — Bs- (2.19)

As Equations (2.14), (2.17)—(2.19), we have
0= B2(26182 — o — B3) + B1(=B1 + B3) + fo(~Pz)
= 20153 — BBz — B3 — BT + 155 — Bobe
= 36155 — 260f2 — B3 — A1 (2:20)
Again, Equations (2.18), (2.19) and (2.15), we get
0= B1(26182 — Bo — B5) + Bo(—P1 + B3)
=262 — 26051 — P13 + Bob3
= —B152(85 — 251) + Bo(B5 — 2p1)
= (83 —281)(Bo — B132)-

This means that 85 —28; = 0 or By — $132 = 0.
If Bo — 5182 = 0, then By = 5152. As Equation (2.20), we have

0=38185 — 24185 — B3 — B = By — B3 + B
By Theorem 2.2, we obtain that 3; exists if and only if 22 — 83z + 33 has a solution if
and only if p™ =1 (mod 3). This implies that p” =1 (mod 3). We consider that

0= — B3 + BT = (B1 +653)(B1 + 61 53),
where § + 61 = —1. If 8; = =82, by Equation (2.10), we have
Yo = 28182 — 182 — 55’ = [1B2 — ﬂg’ = —553 - 53 = (-6 — 1)53-

This means that —ag = 7080 = (=5 —1)83(=3B3) = (6% +6)BS = — S, which contradicts
the property of . Similarly, if 3; = —6~!f32, it is a contradiction.
If B2 — 2B, = 0, then 32 = 23;. As Equation (2.20), we obtain that

0=3-271628% — 2B — B3 — 27255
=(3-271—1-27%)83 — 26/
=B((3-27" —1-27%)33 — Bo),

implying that 82 = 0 or (3-271 —1—-272)85 — By = 0. If B = 0, then 79 = —fp as
Equation (2.10). Thus, we have —ag = Y980 = —f3. Thus, we get ag = 2. This is a
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contradiction. If (3-271 —1—-272)B3 — By = 0, then 48y = (6 —4 — 1)B3 = [5. From
Equation (2.10), we get vo = 2(27183)82 — 35 — B3 = —f35. Therefore, we obtain that
ag = —Y0Bo = B327285 = 27248 which is a contradiction.

For the cases deg(f(z)) = 4 and deg(f(z)) = 5, it is straightforward. Summarizing
the result, we obtain the following proposition.

Proposition 2.4. Let o be a non-square and non-cube unit of Fpm. Then the irreducible

S
6 —ap)?P" where o = a.

factorization of %" — o over Fpm is given as 27" — a = (x

Next, we give facts of the algebraic coding theory. A code C of length n over R is a
nonempty subset of R". For an R-submodule C of R", it is a linear code of length n over
R and each element of C is called a codeword of C. The number of codewords of C is
denoted by N.(C'). For a unit v of R, a linear code C' is called a y-constacyclic code if
(Yen—1,C0,C15...,Cn_2) € C, for each (co,c1,...,cn—1) € C (y-constacyclic shift). For
specific cases, it is called a cyclic code when v = 1 and it is called a negacyclic code when
v=—1.

Each codeword a = (ag, a1, ..., an—1) is transformed to be its polynomial representation

as a(r) = ag + a1x + -+ + a,_12" ! and, then a code C' is viewed as the set of all poly-
R[z]

(z™—7)

the y-constacyclic shift of a. Therefore, each linear code C of length n is a y-constacyclic

nomials representations of its codewords. Thus, in the ring , za(x) corresponds to

code over R if and only if C' is an ideal of the ring <Ep;[f}7> by [1].

For a n-tuple a = (ag,a1,...,a,—1) € R", the Hamming weight of a is the number of
nonzero components of a, denoted by WTx(a). The number of different components in
two elements a, b € R™ is said to be their Hamming distance, denoted by disty(a, b). For
a nonzero linear code C, the Hamming distance and Hamming weight of C' is defined as
disty(C) = min{WTg(x) : x # 0,x € C'}. The zero code has Hamming distance 0.

Now, Hamming distance of some repeated-root d-constacyclic codes of length np® over
F,m is provided as follows.

Theorem 2.5. [17] Let 6 € Fpm \ {0}. Suppose that ™ + ¢ is irreducible over Fpm

where —553 = 0. Then d-constacyclic codes of length np® over Fpm are of the form
C[j] = ((x™ + 80)!), where 0 < j < p*. Then

1, if j =0,
2, if1<j<pt,
142, iflp> P+ 1 <5< (I+1Dp*t, wherel € {1,2,...,p— 2},

distg(Clj]) = S (v +1)p*,  ifp* —p* "+ (v = 1)p* "1 +1<j<p* —p*F
+up* k=t where v € {1,2,...,p— 1} and
kef{l,2,...,s—1}

0, if 3 =p*

Let R denote F?:zgu l. Then the set R consists all polynomials of degree less than 2

with indeterminate w. It is close under usual polynomial addition but its multiplication
is polynomial multiplication modulo w?. It is a routine to obtain that R is a chain ring
with the maximal ideal (u) and a + ub is a unit of R if and only if a is a unit of Fpm, for
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any a,b € Fpm. For each polynomial f(z) of degree n over R, it can be expressed as

flz) = z”: a;x’ + uzn: biz',
i=0 i=0

where 7" a;z" and Y .- bz’ are polynomials over Fpm.
In 2020, Dinh et. al. [15] studied Hamming distance of all constacyclic codes of length
2p® over R and gave the Singleton Bound for linear codes over R as follows:

Theorem 2.6. [15] (Singleton Bound) Let C be a linear code of length n over R with
Hamming distance disty (C). Then, the Singleton bound is given by

NC<C) < me(n—distH(C)+1) )

A linear code C of length n over R is said to be a mazimum distance separable code if
NC(C) — p2m(n—distH(C)+1).

In this work, we investigate the structure of Hamming distance of (a4 u)-constacyclic
codes of length 6p® over R where o + uf is a non-square and non-cube unit of R. This
means that each (a4 u/3)-constacyclic code is an ideal of m We separate the
result into 2 cases, i.e., 8 # 0 and § = 0. First of all, we determine the structure of
Hamming distance of all (« + uf)-constacyclic codes of such length where o and 8 are
units of Fpm.

3. HAMMING DISTANCE OF (a + uf3)-CONSTACYCLIC CODES OF LENGTH
6p® OVER R

First of all, R4 g denotes the quotient ring <m6p572[z] Let ag be an element

, —(atup))”
of Fym such that o = a. Since 8 is a unit, we obtain that u = B~'(2%" — a) =
B~ (2% — ap)?". In R p, we have 2% — aq is a nilpotent element with index 2p*. By
Proposition 2.4 and a result in [13, Proposition 3.1], the following lemma is obtained.

Lemma 3.1. The non-zero polynomial ag + a1x + asx? 4 azx® + agx® + asz® is invertible
in Rq,p where a; € Fpm fori=0,1,...,5.

Let f(x) be an arbitrary element in R, g. Then f(z) can be (uniquely) written as

p°—1
flx) = Z (api + a1;® + azx® + az;ix® + ay vt + a52°) (2% — ap)’
=0
p°—1
+u Z (bOz + bix + bQiCEQ + bgil‘g + b4iZE4 + b5i175)(176 — 010)1, (31)
1=0

where a;; and b;; are elements of F,m» for i« = 0,1,...,p° =1 and j = 0,1,...,5. We
consider that

s

p°—1
fl@) = (aoi + auz + azia® + agiz® + aga* + azi2”) (2® — )’
=0
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p°—1
bos b bos 2 bas 3 bas 4 be. 5 6 %
+u (Oz+ 13T + 02, + 03; 27 + 0450~ + 05, )(.I Oéo)
=0
_ 2 3 4
= ap,0 + aq 0L + as 0L + a3,0T + Q4,07 + a5,0T
p°—1
2 3 4 5 6 i—1
a: —ap) E (ag; + a1z + agiz® + az;x”® + agx™ + as;x”)(x° — ap)®

5

p*—1
+ 87 (2% — ap)?” Z (boi + b1z + bo;x? + bziax® + byx? + bsiz®) (2° — o)’
z:O

3 4 5 6
=ag,0 +aio0r+ a2,ol" + az02° + as,02” + as 02’ + (2° — ap)g(x),

where g(z) = f 1 TN agi + a1 + anx? 4 agia® + agzt + a5 7%) (28 — ag) + S (26 —
ag)P LS _1(b0¢ + b1 + boiw? + by 4 by xt + bs;2°) (2% — a)?. Hence, we obtain that
f(z) is invertible in R, g if and only if ag o+ a1,07 + az,02? + a3 02> + as 02* + a5,02° # 0.
This implies that the set of all non-invertible elements of R, g is (#% — ap). Therefore,
Ra.p is a local ring with the unique maximal ideal (2% — ap). By Proposition 2.1, the

following theorem is obtained as:

Theorem 3.2. Let a+uf3 a non-square and non-cube unit of R and ozgs =a. Then Ry
is a chain ring whose ideals {(x®—ag)?), forj € {0,1,...,2p*}. Each (a+ufB)-constacyclic
code of length 6p° over R is of the form (% — ag)?) C R, for j € {0,1,...,2p%}.
Moreover, the number of codewords of {(z® — ag)?) is equal to po™(2P" =),

Now, we need to determine the Hamming distance of each a + ufS-constacyclic code of
length 6p° over R.

Theorem 3.3. Let notation be as Theorem 3.2. Then the Hamming distance of C' =
(25 — a)?) is given as

1, if 0 <j <p,
2, ifp*+1<j<p*+pt
142, ifpf+Ip P+ 1< <p*+ (I +1)p* 1,

where l € {1,2,...,p — 2},

(wv+10pk  if2p —p P+ (=D 1< < 2p° —po
+up*~F=1 where v € {1,2,...,p— 1} and
ke{l,2,...s—1}

0, ifj = 2p°.

Proof. Tt is obvious that distg({(25 — ap)?)) = 1 and distg({(x® — ap)?"")) = 0. We

remain the case 1 < j < 2p® — 1 and separate the integer 7 into 2 cases, i.e., 1 < j < p°

and p° +1 <75 <2p°—1.
Case 1: 1 < j < p®. We consider that u = 71 (25 — a)?" = f71(2% — ao) T2 —

o)’ € {(z5 — ap)?). As WTx(u) = 1, we obtain that distg(((2® — ag)?)) =

)

Case 2: p°+1 < j < 2p®—1. Note that u = 871 (25— ag)?". Let f(x) be an arbitrary

element in ((z® — ap)?). Then f(z) can be expressed as

d’iStH(C) =

p®—1
f@) = u(z® — ag)’ ™" Z (a0; + arix + azix® + a3z’ + agiz’ + az2°) (2 — ap)’,
i=0



Fp:;)u] 9

Hamming distances of constacyclic codes of length 6p® over

where ag;, a1, a2, as;, as; and as; € Fpm. Note that 1 < j —p® < p® — 1. C[l] denotes an

ideal with the generator (2% —ag)! of %. Thus, each element f(x) can be identified

as an element in uC[j — p°], implying that disty ({(z® — ap)?)) = disty(C[j — p°]). As
Theorem 2.5, disty (C[l]) is given, and then disty ({(x® — ap)’)) is also obtained. "

In the remaining result of this section, we identify the maximum distance separable
(o 4+ uf)-constacyclic codes of length 6p® over R.

Theorem 3.4. Let notation be as Theorem 3.2 and C = {(z5 — a)?) for 0 < j < 2p®.
Then, the only mazimum distance separable (o + uf)-constacyclic code of length 6p® over
R is Raﬁ.

Proof. Note that N.(C) = pS™(?»"=3) We divide this proof into 5 cases as the value
distg (C) in Theorem 3.3.

Case 1: j € {0,1,...,p°}. We obtain that d(C) = 1. Thus, C is MDS code if
pbm@rT=i) = p2m(6p"—1+1) — p12mp”  This implies that 2p® — j = 2p®, i.e., j = 0.

Case 2: j € {p°+ 1,p°+2,...,p° + p*~'}. Note that disty(C) is equal to 2. We
consider that ps™m(P"=7) = N, (C) = p?™ (0P =2+1) — p12mp"=2m e get, 12mp® — 6mi =
12mp® — 2m, and then j = % It is impossible.

Case 3: j € {p*+Ip* 1 +1,p°+Ip* 1 +2,dots, p*+(I+1)p* 1}, where | € {1,2,...,p—
2}. In this case, we have disty(C) = | + 2. We consider that pt™2r"=1) = N.(C) =
p2m(6p°—(1+2)+1) — p12mp"—2ml=2m Thjg implies that 12mp® — 6mi = 12mp® — 2ml — 2m,
ie., i = HTl Thus, we obtain that % <ji< ”3;1 but minimum value j is p* + p*~! + 1.
It is impossible.

Case 4: j€ {2 —p* F+(v—1Dp*F 141,20 —p*F+(v—1)p*F 142 ... 2p°—
P F + vp*~*=1} where v € {1,2,...,p— 1} and k € {1,2,...,5 — 1}. By Theorem
3.3, the Hamming distance of C' is (v + 1)pF. We consider pt™(r"~i) = N,(C) =
p2m(6p" —(v+1)p +1) — 12mp” —2mrp* —2mp"+2m  This means that 12mp® — 6mj = 12mp* —

k k k k
2mup® — 2mp* 4 2m, and then j = %19—1‘ However, %”_1 is not in the interval
[st —p R (v —1Dps 1, 2p% — psTF 4 Vpsfkfl}. It is impossible.

Case 5: j = 2p°. We get disty(C') = 0. We consider that 1 = N,(C) = p?™(6p"=0+1) —
p?m 60" +1)  This means that 6p® + 1 = 0. It is impossible.

Hence, there is only the quotient ring R, g which is a MDS code. [

4. HAMMING DISTANCE OF a-CONSTACYCLIC CODES OF LENGTH 6p® OVER
R

In this section, we denote the quotient ring %

by R.. By the same method
in [9-12], the following results are obtained.

Theorem 4.1. Let notation be as Proposition 2.4. Then the quotient ring R is a local
ring with the mazimal ideal (x° — ap,u) but it is not a chain ring. Moreover, ideals of
R, a-constacyclic codes of length 6p° over R, are listed as follows:
(1) (trivial ideals) (0) and (1),
(2) (principal ideals with nonmonic polynomial generators) (u(z% — ag)?), where
0<j<p’—1,
(8) (principal ideals with monic polynomial generators)
(25 — ap)? + u(2® — ag)th(z)), where 1 < j < p* — 1,0 <t < i and either h(x)
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is 0 or h(z) is a unit which can be represented as h(z) = Y %_ _1(h0i + hyx +
h2i$2 + h37;$3 + h4iCL'4 + h57;$5)(l'6 - Cko)i, with h()i, hh', th, hgz, h417 h5i € Fpm and
h00+h10$+h20$ +h30£L' +h40x +h50$ #0
(4) (nonprincipal ideals) <(x —ap)? +u(x — ag)th(z), u(zb — ag)®), with h(z) as
in Type 3 where 1 < 7 <p*—1,0<t<j, w<T andT is the smallest positive
integer such that u(z% — ag)T € (2% — ap)? + u(a® — ag)h(x)). Moreover, T = j,
if h(x) =0, otherwise T = min{j,p* — j + t}.
Proposition 4.2. Let notation be as Theorem 4.1. Let C be an a-constacyclic code of
length 6p° over R. Then the number of codewords of C is obtained as follows.
(1) If C = (0), then N.(C) = 1.
C = (1), then N,(C) = p'?m",
(8) C = (u(xz® — ap)’?) where j € {0,1,...,p° — 1}, then N (C) = pSm¥* =),
C (25 — ap)? + u(2® — ag)th(z)), where j € {1,2,...,p° — 1},t €

{0,1,...,5 — 1}, then
p 2 =0 if h(x) = 0,
N(C) = p2m@" =) if h(z) #0 and j € {1,2,..., | 25},
pomE = if h(x) £ 0 and j € {[EFH], [ +1,.,p° — 1.

(5) If C = ((2® — ap)? +u(x® — ag)th(x), u(x® — ag)¥) where j € {1,2,...,p° -1},
te{0,1,....5—1} and w <T — 1, then

N.(C) = pimEP =i=w) yhere w < {]’_ ) . Zf i) =0
min{p® —j +t,5}, if h(z) £0.

Next, we determine the Hamming distances of a-constacyclic codes of length 6p® over
R. For each codeword r = (rg,r1,...,7n—1) in R™, it can be viewed as a polyno-
mial r(z) given as r(z) = a(x) + ub(x), where a(z) = Z;:ol a;xt b(z) = Z?;ol bixt €
F,m[z] and 7, = a; + ub; € R. Two polynomials a(z) and b(z) corresponds words
a = (ag,ai,...,ap-1) and b = (bg,b1,...,b,—1) in Fj. Thus, r; = 0 if and only if
a; = b; =0, and then

WTy(c(x)) > max{WTy(a(z)), Wy (b(zx))}. (4.1)

In Type 1, the Hamming distances of (0 ( ) and (1) are equal to 0 and 1, respectively. For
C= (u(x6 —ap)’) in Type 2, 0 < j < p* —1, each codeword of C' is an element multiplied

6 Fpm [z]
(2P —a)

by u in C[j] where C[j] is an ideal with the generator (z
disty (C) = dist (C[j]))-

Theorem 4.3. Let notation be as Theorem 4.1. If C = {(u(x® — ag)?) where j €
{0,1,...,p° — 1}, then

— ap)’ of Hence,

1, 'Lf.] =0,

2, if1<j<p1,

142, flp~t+1<j <+ p!
disty (C) = where | € {1,2,...,p— 2},

(+1)ph, i —p (= DRl 41 <G < —ph
+vp*~F=L where v{1,2,...,p — 1} and
ke{l,2,...,s—1}.
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u?)

For your convenience, an ideal with the generator (z° — )’ of By [Ei 7 is denoted by

C[j] or {(z5 — ap)? )F m, where 0 < j < p®. Now, we determine the Hammlng distances
of all constacyclic codes in Type 3 as follows:

Theorem 4.4. Let notation be as Theorem 4.1. If C = {(z® — ap)? + u(25 — ap)th(z))
where j € {1,2,...,p* =1} and t € {0,1,...,5 — 1}, then

2, flr<j<p,

[+2, iflp* P +1<ji<(I+1)p*t
where | € {1,2,...,p — 2},

w+1p*, i —p (v -pTF 1< <pt—ph
+up* =k where v € {1,2,...,p — 1} and
ke{l,2,...,s—1}.

d’iStH(C) =

Proof. Since u(z% — ag)? € C, we have disty (C) < disty((u(z® — ap)?)) = disty (C[j])-
Let f(x) € C. Then, there exist fi(x), fo(z) € Fpm[x] such that

f(x) = (Ai(z) + uf2(2)) ((2° — a)’ + u(z® — ag)'h(z))
= fi(2)(@® — ag)’ + ur(x),

where 7(z) = fo(z) (2% — )’ + f1(2)(25 — ag)?h(z) Thus, by inequality 4.1, we have

)
WTy(f(2)) > max{WTx(fi(x)(z" — ao)’), W (r(z))}
(

> max{WTx(fi(x)(2° = a0)?), WTa (fo(z)(2° — a)’)}
> distg(C[j])-

Hence, it implies that disty (C) = disty(C[j]). L]

Example 4.5. Given p = 5,s = 1 and m = 2, then Fa5 := % and 230 —w =

(2% — (4w + 1))5. Let C = ((2® — (4w + 1))*) be a w-constacyclic code of length 30 over
Fa5 + uF25. Each codeword ¢(x) in C'is expressed as

c(z) = (25— (4w +1))* ((ao+ a1z +asz”® +aza® +agxt) + (b + by + o + bz + b41:4)u),

where a;,b; € Fpm, i = 0,1,2,3,4. Thus, the number of codewords of C is (25?)°. By
Theorem 4.4, the Hamming distance of C' is equal to 5. Thus, we get p2™(n—distn(C)+1) —
54(30-5+1) — 5104 By Singleton Bound, we obtain N.(C) = 520 < 5104 = p2mn—dista (C)+1)
implying that C' is not a maximum distance separable code.

Theorem 4.6. Let notation be as Theorem 4.1. If C = {(2®—ag)? +u(xb—ag)th(z), u(zb—
ag)?) where j € {1,2,...,p° =1}, t€{0,1,...,j— 1} and w <T — 1, then

2, ifl1<w<pH,
[+2, iflp ' +1<w< (I+1)p> L, wherel €1,2,...,p—2
distp(C) = q (w+1)p" ifp* —p"F+ (v —-1p F ' +1<w<p* —p*F
+up* k=1 where v € {1,2,...,p — 1} and
ke{l,2,.,s—1}.
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Proof. Since u(z% — ag)¥ € C, we have disty (C) < distg({u(x® — ap)®)) = dist g (Clw]).
Let ¢(x) € C. There exist f1(z) + ufa(z), g1(z) + uga(z) € R[z] such that

c(x) = (f(@) +ufo(r)) ((2° = ao)’ +u(z® — ao)'h(z))
+ (91 () +uga(x))u(a® — ag)”
= f3(2)(2® — ao)” + ur(z),

where f3(z) = f1(2)(2® — ap)i™ and r(z) = f1(z)(2® — ag)th(z) + f2(x)(2® — ap)i +
g91(x) (25 — ag)*. Note that

r(z) = fi(z)(2® — ao)'h(z) + f2(2)(z° — a0)’ + g1(x)(2° — ag)”
= fi(@)h(z)(z° = a0)" + 71 (2)(2° — @),
where r1(z) = fa(2)(2° — @)’ ™ + g1(z). By Inequality 4.1, we obtain that
WT(c(z)) 2 max{WTe (fs(x)(2® — ao)*), W (r(z))}
> max{W T (fs(2)(z° — ao)*), Wy (ri(x)(z° — ao)”)}
> disty (Clw]).
Thus, disty(C) > disty(Clw]), implying that disty (C) = disty(Clw]). ]

The rest of this section to determine of MDS a-constacyclic codes of length 6p°® over

_ Fym[u]
R =Tl

Theorem 4.7. Let notation be as Theorem 4.1. Then, the only maximum distance
separable a-constacyclic code of length 6p® over R is R.

Proof. Type 1: If C = (0), then disty(C) = 0. We consider that 1 = N.(C) =
p?m(6P"=0+1) " This means that 6p® +1 = 0. It is impossible. If C' = (1), then disty (C) =
1. For C is a MDS code, we have N.(C) = p'2m?" = p?m(6r*=1+1)  Thus, C = (1) is a
MDS code.

Type 2: Let C = (u(z% — ap)?) be an a-constacyclic code of length 6p® over R where
j€{0,1,...,p° —1}. If j = 0, then distg(C) = 1. We consider that p™"" = N.(C) =
p?m(6p"—141) — p12mp" which is a contradiction. If j € {1,2,...,p°" '}, then disty (C) =
2. For C is MDS, we have pf™(#" =7 = N (C) = p?>™(6P"=2+1)  Thus, we get j = —3’”;7“
which is impossible. If j € {Ip*~1+1,lp*~*+2,...,(I+1)p* 1} wherel € {1,2,...,p—2},
then distgy(C) = [+ 1. We consider that po™(® b0 = = N,(C) = p?™(Ep"=(4+D+1) - This
implies that j = 3p3 L. It is impossible. if j € {p* —p* % + (v — D)p*F~1 4+ 1,p5 —
p R+ (v —Dp*Ft 2. p° — p*F 4 uptF 1Y where v € {1,2,...,p — 1} and
k€ {1,2,...,5 — 1}, then disty(C) = (v + 1)p¥. Assume that C is a MDS code. We
have pdm(®’=1) = N, (C) = p?m(6p"=(+1p"+1) and then j = —w. It is a
contradiction.

Type 3: Let C = ((2% — ap)? + u(2% — ag)th(z)) where j € {1,2,...,p° — 1} and
t € {0,1,...,7 — 1}. In the case h(z) = 0, we have N.(C) = p'?™( =) Assume
that C is MDS. Thus, we get p'2"® 1) = N (C) = p?™(6p"~distu(C)+1) " implying that
Jj= %. If j € {1,2,...,p° '}, then disty(C) = 2. This means that j = %
It is impossible. If j € {Ip*~ ' + 1,Ip*~ L +2,..., (I + 1)p*~1} for | € {1,2,...,p — 2},
then j = % < ]33;2 which is a contradiction. If j € {p* — p*~* + (v — 1)ps=F-1 +
Lps—p* P+ w—1Dp*F1+2 ... p*—p*F+up=F1} such that v € {1,2,...,p— 1}
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)

and k € {1,2,...,s — 1}, then j = (”Hépk_l < ps:;l. It is impossible. In the case
h(z) # 0 and j € {1,2,..., |25 ]}, we have N.(C) = p*?"(#° =7, As the above case, it
is impossible. For the remaining case h(z) # 0 and j € {[%1, [%1 +1,...,p° — 1},
we have N.(C) = p®™(®" =t We consider that p®®"—t) = N,(C) = p?m(6p" —distu (C)+1)
implying that t = —MBH(CM which is a contradiction.

Type 4: Let C = ((25—ap)? +u(x®—ag)h(z), u(z® —ag)¥) where j € {1,2,...,p°—1},
t €{0,1,...,5 -1} and w < T — 1. Then N,(C) = pSm(»"=i=«)  Assume that C is
MDS. We get pfm(r"=i=«) = N (C) = p?"(6p"~distu(O)+1) " Thus, we have 35 + 3w =
distg(C) — 1 and consider

3w=disty(C)—1-3j < distyg(C) —1— 3w.

This means that w < Therefore, it follows from Type 3, and then it is
impossible. Hence, R,, is only MDS code. ]

disty (C)—1
T

5. CONCLUSION

Let o + uf be a non-square and non-cube unit of R = F’ZZLQ[;J }. The Hamming

distances of all (« + uf)-constacyclic codes of length 6p° over R can be obtained from
Hamming distances of a-constacyclic codes of length 6p® over F,». Furthermore, the

MDS (« + uf)-constacyclic codes of length 6p* over R is only m (both 8 #0

and 8 = 0). However, the case a4 u/3 is a square or cube unit, it is still an open problem
for the future work.
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