Thai Journal of Mathematics

Special Issue (2022): Annual Meeting in Mathematics 2021

Pages 1 - 14

http://thaijmath.in.cmu.ac.th

Hamming Distances of Constacyclic Codes of Length

$$6p^s$$
 over $\frac{\mathbb{F}_{p^m}[u]}{\langle u^2 \rangle}$

Jirayu Phuto and Chakkrid Klin-eam*

Department of Mathematics, Faculty of Science Naresuan University, Phitsanulok 65000, Thailand e-mail: jirayup60@email.nu.ac.th (J. Phuto); chakkridk@nu.ac.th (C. Klin-eam)

Abstract Let $p \geq 5$ be a prime and $\alpha + u\beta$ be a non-square and non-cube unit of the finite commutative chain ring $\frac{\mathbb{F}_{p^m}[u]}{\langle u^2 \rangle}$. In this paper, we study the Hamming distances of all constacyclic codes of length $6p^s$ over $\frac{\mathbb{F}_{p^m}[u]}{\langle u^2 \rangle}$ which are separated into 2 types, i.e., β is a unit and $\beta = 0$. For each case, we show that there exists only one maximum distance separable constacyclic code of length $6p^s$ over $\frac{\mathbb{F}_{p^m}[u]}{\langle u^2 \rangle}$.

MSC: 94B05; 13A99

Keywords: chain rings; hamming distances; singleton bound; repeated-root codes.

1. Introduction

A linear code C over a finite field can detect and correct $\lfloor \frac{d-1}{2} \rfloor$ or fewer errors where d is the minimum Hamming distance of C in [1]. Therefore, the value d is a significant value in coding theory. Many researchers are interested in Hamming distances of those codes (see [2-4]). Normally, we first determine the algebraic structures of codes. After that, we compute the Hamming distances of codes. After the facts [5] that some good non-linear codes over \mathbb{Z}_2 are obtained from cyclic codes over \mathbb{Z}_4 (Kerdock and Preparata codes) via the Gray map, it makes that codes over finite rings are famous. One of good subclasses of linear codes of length n over a finite commutative ring R is a subclass of γ -constacyclic codes where γ is a unit of R. Moreover, those γ -constacyclic codes can be viewed to ideals of the ring $\frac{R[x]}{\langle x^n - \gamma \rangle}$. If the length of a code and the characteristic of R are not relatively prime, that code is said to be a repeated-root code. Otherwise, it is called a simple-root code. The repeated-root codes were first studied by Berman [6] in 1967. Subsequently, the fact that repeated-root codes are optimal in a few cases is provided in [7, 8]. The optimal code could have two great values of dimension and distance of code. In this paper, optimal codes are obtained when the maximum distance of codes meet the

^{*}Corresponding author.

Singleton bound. Maximum distance separable (MDS) code is optimal in the sense that it has the highest possible detection and correction for given a length and a code.

In [9–11], the algebraic structures of constacyclic codes of lengths $p^s, 2p^s$ and $3p^s$ over the finite commutative chain ring $\frac{\mathbb{F}_{p^m}[u]}{\langle u^2 \rangle}$ were studied. Furthermore, for each $\alpha, \beta \in \mathbb{F}_{p^m} \setminus \{0\}$, the Hamming distance of $(\alpha + u\beta)$ -constacyclic codes of length p^s over $\frac{\mathbb{F}_{p^m}[u]}{\langle u^2 \rangle}$ was computed in [10]. In general, the structures of constacyclic codes of length p^s were also studied in [12, 13]. In 2018, Dinh et. al. [14] gave Hamming distance of the remaining constacyclic codes of length p^s over $\frac{\mathbb{F}_{p^m}[u]}{\langle u^2 \rangle}$ and introduced Symbol-Pair distance for those codes. In addition, the Hamming distances of all constacyclic codes of length $2p^s$ over the same ring were also given by Dinh et. al [15]. Moreover, the singleton bound for linear codes over $\frac{\mathbb{F}_{p^m}[u]}{\langle u^2 \rangle}$ is determined to compute MDS constacyclic codes of length $2p^s$.

Let $p \geq 5$ be a prime and $\alpha + u\beta$ be a non-square and non-cube unit of the finite commutative chain ring $\mathcal{R} := \frac{\mathbb{F}_{p^m}[u]}{\langle u^2 \rangle}$. In this paper, we determine the Hamming distances of $(\alpha + u\beta)$ -constacyclic codes of length $6p^s$ over \mathcal{R} . We separate those results into 2 cases, i.e., $\beta \neq 0$ and $\beta = 0$. Furthermore, MDS constacyclic code of length $6p^s$ is only the ideal $\langle 1 \rangle$ of the quotient ring $\frac{\mathcal{R}[x]}{\langle x^{6p^s} - (\alpha + u\beta) \rangle}$. The paper is sorted as follows. In Section 2, we give some results leading to the main results. In Section 3, we study Hamming distances of $(\alpha + u\beta)$ -constacyclic codes of length $6p^s$ over \mathcal{R} when $\beta \neq 0$. Next, we compute Hamming distances of the remaining constacyclic codes in Section 4. The last section is conclusion.

2. Preliminaries

In this section, R will denote a finite commutative ring with identity. The *local* ring has the unique maximal ideal. For an ideal I of R, it is principal if there exists an element $r \in \mathbb{R}$ such that $I = \langle r \rangle$. The principal ideal ring is a ring which each ideal is principal. The ring R is said to be a chain ring if the set of all ideals is linearly ordered under set inclusion. Next, the following three statements are equivalent where R is a finite commutative ring with identity as follows.

Theorem 2.1. [16] The following conditions are equivalent:

- (1) R is a local ring and the maximal ideal M is principal of R, i.e., $M = \langle r \rangle$ for some $r \in \mathbb{R}$,
- (2) R is a local principal ideal ring,
- (3) R is a chain ring with ideals $\langle r^i \rangle$, $0 \le i \le N(r)$, where N(r) is the nilpotency of r, i.e., N(r) is the smallest positive integer such that $r^{N(r)} = 0$.

Let \mathbb{F}_{p^m} be a finite field with characteristic p and carnality p^m where $p \geq 5$ is a prime and m is a positive integer. Let ξ be a primitive element of \mathbb{F}_{p^m} . Then

$$\mathbb{F}_{p^m} = \{0, \xi, \xi^2, \dots, \xi^{p^m - 1} = 1\}.$$

It is obvious to see that $2|(p^m-1)$ because p is an odd prime which implies $\xi^{\frac{p^m-1}{2}}=-1$. Furthermore, the following important property holds.

Theorem 2.2. The following conditions are equivalent:

(1)
$$p^m \equiv 1 \pmod{3}$$
.

- (2) The polynomial $x^2 + \gamma x + \gamma^2$ is reducible over \mathbb{F}_{p^m} where γ is a unit of \mathbb{F}_{p^m} . (The polynomial $x^2 \gamma x + \gamma^2$ is reducible over \mathbb{F}_{p^m} where γ is a unit of \mathbb{F}_{p^m} .)
- (3) -3 is a square element of \mathbb{F}_{p^m} , i.e., there exists $\delta \in \mathbb{F}_{p^m}$ such that $\delta^2 = -3$.

Proof. (1.) \Rightarrow (2.) Suppose that $p^m \equiv 1 \pmod{3}$. So, $3|(p^m-1)$. We now consider that

$$\begin{split} x^3 - \gamma^3 &= (x - \gamma)(x^2 + \gamma x + \gamma^2) \\ &= (x - \xi^{\frac{(p^m - 1)}{3}} \gamma)(x - \xi^{\frac{2(p^m - 1)}{3}} \gamma)(x - \xi^{\frac{3(p^m - 1)}{3}} \gamma) \\ &= (x - \gamma)(x - \xi^{\frac{(p^m - 1)}{3}} \gamma)(x - \xi^{\frac{2(p^m - 1)}{3}} \gamma). \end{split}$$

By unique factorization, we have $x^2 + \gamma x + \gamma^2 = (x - \xi^{\frac{(p^m - 1)}{3}} \gamma)(x - \xi^{\frac{2(p^m - 1)}{3}} \gamma)$. This implies that $x^2 + \gamma x + \gamma^2$ is reducible over \mathbb{F}_{p^m} .

implies that $x^2 + \gamma x + \gamma^2$ is reducible over \mathbb{F}_{p^m} . (2.) \Rightarrow (3.) Suppose that $x^2 + \gamma x + \gamma^2$ is reducible over \mathbb{F}_{p^m} . There exists $\beta \in \mathbb{F}_{p^m}$ such that $\beta^2 + \beta + 1 = 0$. Thus, we have $4\beta^2 + 4\beta + 4 = 0$. We consider that

$$-3 = 0 - 3$$
$$= 4\beta^{2} + 4\beta + 4 - 3$$
$$= (2\beta + 1)^{2}.$$

This means that -3 is a square element of \mathbb{F}_{p^m} .

(3.) \Rightarrow (1.) Suppose that -3 is a square element of \mathbb{F}_{p^m} , i.e., there exists $\delta \in \mathbb{F}_{p^m}$ such that $\delta^2 = -3$. Note that

$$[(-1+\delta)2^{-1}]^2 + (-1+\delta)2^{-1} + 1 = (1-2\delta-3)2^{-2} + (-1+\delta)2^{-1} + 1$$
$$= (-1-\delta)2^{-1} + (-1+\delta)2^{-1} + 1$$
$$= 0$$

Set $\beta = (-1+\delta)2^{-1}$, and then $\beta^2 + \beta + 1 = 0$. Since $x^3 - 1 = (x-1)(x^2 + x + 1)$, we have $\beta^3 - 1 = 0$. This means that $1 = \beta^3$. The order of β , $ord(\beta)$, is equal to 1 or 3. If $ord(\beta) = 1$, then $0 = \beta^2 + \beta + 1 = 1 + 1 + 1 = 3$. It is a contradiction. Thus, we get $ord(\beta) = 3$ implying that $3|(p^m - 1)$. Therefore, we obtain that $p^m \equiv 1 \pmod{3}$.

However, for each $\delta \in \mathbb{F}_{p^m}$, there exists $\delta_0 \in \mathbb{F}_{p^m}$ such that $\delta_0^{p^s} = \delta$ from [10].

Proposition 2.3. Let $\delta = \delta_0^{p^s}$ be a unit of \mathbb{F}_{p^m} and n be a positive integer such that (p,n)=1. Then δ is a nth-power element if and only if δ_0 is a nth-power element.

Proof. Suppose that δ is a *n*th-power element. There exists $\delta_1 \in \mathbb{F}_{p^m}$ such that $\delta_1^n = \delta$. Since (p, n) = 1, there exist $a, b \in \mathbb{Z}$ such that $na + p^s b = 1$. We consider that

$$\delta_0 = \delta_0^{na+p^sb} = (\delta_0^a)^n \delta^b = (\delta_0^a \delta_1^b)^n.$$

This means that δ_0 is a *n*th-power element. On the other hand, it is obvious.

Let α be a non-square and non-cube unit of \mathbb{F}_{p^m} . There exists $\alpha_0 \in \mathbb{F}_{p^m}$ such that $\alpha_0^{p^s} = \alpha$. We will show that $x^6 - \alpha_0$ is irreducible over \mathbb{F}_{p^m} . Assume that $x^6 - \alpha_0$ is reducible over \mathbb{F}_{p^m} . There exist an irreducible polynomial f(x) and a polynomial g(x) over \mathbb{F}_{p^m} such that $f(x)g(x) = x^6 - \alpha_0$.

Case 1: $\deg(f(x)) = 1$. There exists $\beta \in \mathbb{F}_{p^m}$ such that $f(\beta) = 0$. Thus, we get $0 = f(\beta)g(\beta) = \beta^6 - \alpha_0$. This means that $\alpha_0 = \beta^6$. This is a contradiction.

Case 2: $\deg(f(x)) = 2$. There exist $\beta_0, \beta_1, \gamma_0, \gamma_1, \gamma_2, \gamma_3 \in \mathbb{F}_{p^m}$ such that $f(x) = x^2 + \beta_1 x + \beta_0$ and $g(x) = x^4 + \gamma_3 x^3 + \gamma_2 x^2 + \gamma_1 x + \gamma_0$. We consider that

$$x^{6} - \alpha_{0} = f(x)g(x)$$

$$= (x^{2} + \beta_{1}x + \beta_{0})(x^{4} + \gamma_{3}x^{3} + \gamma_{2}x^{2} + \gamma_{1}x + \gamma_{0})$$

$$= x^{6} + (\gamma_{3} + \beta_{1})x^{5} + (\gamma_{2} + \beta_{1}\gamma_{3} + \beta_{0})x^{4}$$

$$+ (\gamma_{1} + \beta_{1}\gamma_{2} + \beta_{0}\gamma_{3})x^{3} + (\gamma_{0} + \beta_{1}\gamma_{1} + \beta_{0}\gamma_{2})x^{2}$$

$$+ (\beta_{1}\gamma_{0} + \beta_{0}\gamma_{1})x + \beta_{0}\gamma_{0}.$$

This implies that

$$\gamma_3 + \beta_1 = 0 \tag{2.1}$$

$$\gamma_2 + \beta_1 \gamma_3 + \beta_0 = 0 \tag{2.2}$$

$$\gamma_1 + \beta_1 \gamma_2 + \beta_0 \gamma_3 = 0 \tag{2.3}$$

$$\gamma_0 + \beta_1 \gamma_1 + \beta_0 \gamma_2 = 0 \tag{2.4}$$

$$\beta_1 \gamma_0 + \beta_0 \gamma_1 = 0 \tag{2.5}$$

$$\beta_0 \gamma_0 = -\alpha_0. \tag{2.6}$$

From Equations (2.1)-(2.4), we have

$$\gamma_3 = -\beta_1 \tag{2.7}$$

$$\gamma_2 = -\beta_0 + \beta_1^2 \tag{2.8}$$

$$\gamma_1 = 2\beta_0 \beta_1 - \beta_1^3 \tag{2.9}$$

$$\gamma_0 = -3\beta_0 \beta_1^2 + \beta_1^4 + \beta_0^2. \tag{2.10}$$

Again, Equations (2.5), (2.9) and (2.10), we get

$$0 = \beta_1^4 + 3\beta_0^2 - 4\beta_0\beta_1^2 = (\beta_1^2 - 3\beta_0)(\beta_1^2 - \beta_0).$$

As Equations (2.6) and (2.10), we obtain $-\alpha_0 = -3\beta_0^2\beta_1^2 + \beta_0\beta_1^4 + \beta_0^3$. If $\beta_1^2 - 3\beta_0 = 0$, then $\beta_1^2 = 3\beta_0$. We get $-\alpha_0 = -3\beta_0^2(3\beta_0) + \beta_0(9\beta_0^2) + \beta_0^3 = \beta_0^3$. This means that $\alpha_0 = -\beta_0^3 = (-\beta_0)^3$ which is a contradiction.

If
$$\beta_1^2 - \beta_0 = 0$$
, then $\beta_1^2 = \beta_0$. We have

 $-\alpha_0 = -3\beta_0^2\beta_0 + \beta_0\beta_0^2 + \beta_0^3 = -\beta_0^3, \text{ implying that } \alpha_0 = \beta_0^3. \text{ It is a contradiction.}$ $\mathbf{Case 3: } \deg(f(x)) = 3. \text{ There exist } \beta_0, \beta_1, \beta_2, \gamma_0, \gamma_1, \gamma_2 \in \mathbb{F}_{p^m} \text{ such that } f(x) = x^3 + \beta_2 x^2 + \beta_1 x + \beta_0 \text{ and } g(x) = x^3 + \gamma_2 x^2 + \gamma_1 x + \gamma_0. \text{ We consider that}$

$$x^{6} - \alpha_{0} = f(x)g(x)$$

$$= (x^{3} + \beta_{2}x^{2} + \beta_{1}x + \beta_{0})(x^{3} + \gamma_{2}x^{2} + \gamma_{1}x + \gamma_{0})$$

$$= x^{6} + (\gamma_{2} + \beta_{2})x^{5} + (\gamma_{1} + \beta_{2}\gamma_{2} + \beta_{1})x^{4} + (\gamma_{0} + \beta_{2}\gamma_{1} + \beta_{1}\gamma_{2} + \beta_{0})x^{3}$$

$$+ (\beta_{2}\gamma_{0} + \beta_{1}\gamma_{1} + \gamma_{0}\gamma_{2})x^{2} + (\beta_{1}\gamma_{0} + \beta_{0}\gamma_{1})x + \beta_{0}\gamma_{0}.$$

Thus, we have

$$\gamma_2 + \beta_2 = 0 \tag{2.11}$$

$$\gamma_1 + \beta_2 \gamma_2 + \beta_1 = 0 \tag{2.12}$$

$$\gamma_0 + \beta_2 \gamma_1 + \beta_1 \gamma_2 + \beta_0 = 0 \tag{2.13}$$

$$\beta_2 \gamma_0 + \beta_1 \gamma_1 + \beta_0 \gamma_2 = 0 \tag{2.14}$$

$$\beta_1 \gamma_0 + \beta_0 \gamma_1 = 0 \tag{2.15}$$

$$\beta_0 \gamma_0 = -\alpha_0. \tag{2.16}$$

From Equations (2.11)-(2.13), we obtain that

$$\gamma_2 = -\beta_2 \tag{2.17}$$

$$\gamma_1 = -\beta_1 + \beta_2^2 \tag{2.18}$$

$$\gamma_0 = 2\beta_1 \beta_2 - \beta_0 - \beta_2^3. \tag{2.19}$$

As Equations (2.14), (2.17)-(2.19), we have

$$0 = \beta_2 (2\beta_1 \beta_2 - \beta_0 - \beta_2^3) + \beta_1 (-\beta_1 + \beta_2^2) + \beta_0 (-\beta_2)$$

$$= 2\beta_1 \beta_2^2 - \beta_0 \beta_2 - \beta_2^4 - \beta_1^2 + \beta_1 \beta_2^2 - \beta_0 \beta_2$$

$$= 3\beta_1 \beta_2^2 - 2\beta_0 \beta_2 - \beta_2^4 - \beta_1^2.$$
(2.20)

Again, Equations (2.18), (2.19) and (2.15), we get

$$0 = \beta_1 (2\beta_1 \beta_2 - \beta_0 - \beta_2^3) + \beta_0 (-\beta_1 + \beta_2^2)$$

$$= 2\beta_1^2 \beta_2 - 2\beta_0 \beta_1 - \beta_1 \beta_2^3 + \beta_0 \beta_2^2$$

$$= -\beta_1 \beta_2 (\beta_2^2 - 2\beta_1) + \beta_0 (\beta_2^2 - 2\beta_1)$$

$$= (\beta_2^2 - 2\beta_1)(\beta_0 - \beta_1 \beta_2).$$

This means that $\beta_2^2 - 2\beta_1 = 0$ or $\beta_0 - \beta_1\beta_2 = 0$.

If $\beta_0 - \beta_1 \beta_2 = 0$, then $\beta_0 = \beta_1 \beta_2$. As Equation (2.20), we have

$$0 = 3\beta_1\beta_2^2 - 2\beta_1\beta_2^2 - \beta_2^4 - \beta_1^2 = \beta_2^4 - \beta_1\beta_2^2 + \beta_1^2.$$

By Theorem 2.2, we obtain that β_1 exists if and only if $x^2 - \beta_2^2 x + \beta_2^4$ has a solution if and only if $p^m \equiv 1 \pmod{3}$. This implies that $p^m \equiv 1 \pmod{3}$. We consider that

$$0 = \beta_2^4 - \beta_1 \beta_2^2 + \beta_1^2 = (\beta_1 + \delta \beta_2^2)(\beta_1 + \delta^{-1} \beta_2^2),$$

where $\delta + \delta^{-1} = -1$. If $\beta_1 = -\delta \beta_2^2$, by Equation (2.10), we have

$$\gamma_0 = 2\beta_1\beta_2 - \beta_1\beta_2 - \beta_2^3 = \beta_1\beta_2 - \beta_2^3 = -\delta\beta_2^3 - \beta_2^3 = (-\delta - 1)\beta_2^3$$

This means that $-\alpha_0 = \gamma_0 \beta_0 = (-\delta - 1)\beta_2^3(-\delta \beta_2^3) = (\delta^2 + \delta)\beta_2^6 = -\beta_2^6$, which contradicts the property of α_0 . Similarly, if $\beta_1 = -\delta^{-1}\beta_2^2$, it is a contradiction. If $\beta_2^2 - 2\beta_1 = 0$, then $\beta_2^2 = 2\beta_1$. As Equation (2.20), we obtain that

$$0 = 3 \cdot 2^{-1} \beta_2^2 \beta_2^2 - 2\beta_0 \beta_2 - \beta_2^4 - 2^{-2} \beta_2^4$$

= $(3 \cdot 2^{-1} - 1 - 2^{-2}) \beta_2^4 - 2\beta_0 \beta_2$
= $\beta_2 ((3 \cdot 2^{-1} - 1 - 2^{-2}) \beta_2^3 - \beta_0),$

implying that $\beta_2 = 0$ or $(3 \cdot 2^{-1} - 1 - 2^{-2})\beta_2^3 - \beta_0 = 0$. If $\beta_2 = 0$, then $\gamma_0 = -\beta_0$ as Equation (2.10). Thus, we have $-\alpha_0 = \gamma_0 \beta_0 = -\beta_0^2$. Thus, we get $\alpha_0 = \beta_0^2$. This is a

contradiction. If $(3 \cdot 2^{-1} - 1 - 2^{-2})\beta_2^3 - \beta_0 = 0$, then $4\beta_0 = (6 - 4 - 1)\beta_2^3 = \beta_2^3$. From Equation (2.10), we get $\gamma_0 = 2(2^{-1}\beta_2^2)\beta_2 - \beta_2^3 - \beta_2^3 = -\beta_2^3$. Therefore, we obtain that $\alpha_0 = -\gamma_0\beta_0 = \beta_2^3 2^{-2}\beta_2^3 = 2^{-2}\beta_2^6$ which is a contradiction.

For the cases deg(f(x)) = 4 and deg(f(x)) = 5, it is straightforward. Summarizing the result, we obtain the following proposition.

Proposition 2.4. Let α be a non-square and non-cube unit of \mathbb{F}_{p^m} . Then the irreducible factorization of $x^{6p^s} - \alpha$ over \mathbb{F}_{p^m} is given as $x^{6p^s} - \alpha = (x^6 - \alpha_0)^{p^s}$ where $\alpha_0^{p^s} = \alpha$.

Next, we give facts of the algebraic coding theory. A code C of length n over R is a nonempty subset of R^n . For an R-submodule C of R^n , it is a linear code of length n over R and each element of C is called a codeword of C. The number of codewords of C is denoted by $N_c(C)$. For a unit γ of R, a linear code C is called a γ -constacyclic code if $(\gamma c_{n-1}, c_0, c_1, \ldots, c_{n-2}) \in C$, for each $(c_0, c_1, \ldots, c_{n-1}) \in C$ (γ -constacyclic shift). For specific cases, it is called a cyclic code when $\gamma = 1$ and it is called a negacyclic code when $\gamma = -1$.

Each codeword $\mathbf{a}=(a_0,a_1,...,a_{n-1})$ is transformed to be its polynomial representation as $a(x)=a_0+a_1x+\cdots+a_{n-1}x^{n-1}$ and, then a code C is viewed as the set of all polynomials representations of its codewords. Thus, in the ring $\frac{\mathbb{R}[x]}{\langle x^n-\gamma\rangle}$, xa(x) corresponds to the γ -constacyclic shift of \mathbf{a} . Therefore, each linear code C of length n is a γ -constacyclic code over \mathbb{R} if and only if C is an ideal of the ring $\frac{\mathbb{R}[x]}{\langle x^n-\gamma\rangle}$ by [1].

For a *n*-tuple $\mathbf{a} = (a_0, a_1, \dots, a_{n-1}) \in \mathbb{R}^n$, the Hamming weight of \mathbf{a} is the number of nonzero components of \mathbf{a} , denoted by $WT_H(\mathbf{a})$. The number of different components in two elements $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ is said to be their Hamming distance, denoted by $dist_H(\mathbf{a}, \mathbf{b})$. For a nonzero linear code C, the Hamming distance and Hamming weight of C is defined as $dist_H(C) = \min\{WT_H(\mathbf{x}) : \mathbf{x} \neq \mathbf{0}, \mathbf{x} \in C\}$. The zero code has Hamming distance 0.

Now, Hamming distance of some repeated-root δ -constacyclic codes of length np^s over \mathbb{F}_{p^m} is provided as follows.

Theorem 2.5. [17] Let $\delta \in \mathbb{F}_{p^m} \setminus \{0\}$. Suppose that $x^n + \delta_0$ is irreducible over \mathbb{F}_{p^m} where $-\delta_0^{p^s} = \delta$. Then δ -constacyclic codes of length np^s over \mathbb{F}_{p^m} are of the form $C[j] = \langle (x^n + \delta_0)^l \rangle$, where $0 \leq j \leq p^s$. Then

$$dist_{H}(C[j]) = \begin{cases} 1, & \text{if } j = 0, \\ 2, & \text{if } 1 \leq j \leq p^{s-1}, \\ l+2, & \text{if } lp^{s-1} + 1 \leq j \leq (l+1)p^{s-1}, \text{ where } l \in \{1, 2, \dots, p-2\}, \\ (\nu+1)p^{k}, & \text{if } p^{s} - p^{s-k} + (\nu-1)p^{s-k-1} + 1 \leq j \leq p^{s} - p^{s-k} \\ & + \nu p^{s-k-1} \text{ where } \nu \in \{1, 2, \dots, p-1\} \text{ and } \\ & k \in \{1, 2, \dots, s-1\}, \\ 0, & \text{if } j = p^{s}. \end{cases}$$

Let \mathcal{R} denote $\frac{\mathbb{F}_{p^m}[u]}{\langle u^2 \rangle}$. Then the set \mathcal{R} consists all polynomials of degree less than 2 with indeterminate u. It is close under usual polynomial addition but its multiplication is polynomial multiplication modulo u^2 . It is a routine to obtain that \mathcal{R} is a chain ring with the maximal ideal $\langle u \rangle$ and a + ub is a unit of \mathcal{R} if and only if a is a unit of \mathbb{F}_{p^m} , for

any $a, b \in \mathbb{F}_{p^m}$. For each polynomial f(x) of degree n over \mathcal{R} , it can be expressed as

$$f(x) = \sum_{i=0}^{n} a_i x^i + u \sum_{i=0}^{n} b_i x^i,$$

where $\sum_{i=0}^{n} a_i x^i$ and $\sum_{i=0}^{n} b_i x^i$ are polynomials over \mathbb{F}_{p^m} .

In 2020, Dinh et. al. [15] studied Hamming distance of all constacyclic codes of length $2p^s$ over \mathcal{R} and gave the Singleton Bound for linear codes over \mathcal{R} as follows:

Theorem 2.6. [15] (Singleton Bound) Let C be a linear code of length n over \mathcal{R} with Hamming distance $dist_H(C)$. Then, the Singleton bound is given by

$$N_c(C) \le p^{2m(n-dist_H(C)+1)}$$
.

A linear code C of length n over \mathcal{R} is said to be a maximum distance separable code if $N_c(C) = p^{2m(n-dist_H(C)+1)}$.

In this work, we investigate the structure of Hamming distance of $(\alpha + u\beta)$ -constacyclic codes of length $6p^s$ over \mathcal{R} where $\alpha + u\beta$ is a non-square and non-cube unit of \mathcal{R} . This means that each $(\alpha + u\beta)$ -constacyclic code is an ideal of $\frac{\mathcal{R}[x]}{\langle x^{6p^s} - (\alpha + u\beta) \rangle}$. We separate the result into 2 cases, i.e., $\beta \neq 0$ and $\beta = 0$. First of all, we determine the structure of Hamming distance of all $(\alpha + u\beta)$ -constacyclic codes of such length where α and β are units of \mathbb{F}_{p^m} .

3. Hamming distance of $(\alpha + u\beta)$ -constacyclic codes of length $6p^s$ over $\mathcal R$

First of all, $\mathcal{R}_{\alpha,\beta}$ denotes the quotient ring $\frac{\mathcal{R}[x]}{\langle x^{6p^s} - (\alpha + u\beta) \rangle}$. Let α_0 be an element of \mathbb{F}_{p^m} such that $\alpha_0^{p^s} = \alpha$. Since β is a unit, we obtain that $u = \beta^{-1}(x^{6p^s} - \alpha) = \beta^{-1}(x^6 - \alpha_0)^{p^s}$. In $\mathcal{R}_{\alpha,\beta}$, we have $x^6 - \alpha_0$ is a nilpotent element with index $2p^s$. By Proposition 2.4 and a result in [13, Proposition 3.1], the following lemma is obtained.

Lemma 3.1. The non-zero polynomial $a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$ is invertible in $\mathcal{R}_{\alpha,\beta}$ where $a_i \in \mathbb{F}_{p^m}$ for $i = 0, 1, \ldots, 5$.

Let f(x) be an arbitrary element in $\mathcal{R}_{\alpha,\beta}$. Then f(x) can be (uniquely) written as

$$f(x) = \sum_{i=0}^{p^{s}-1} (a_{0i} + a_{1i}x + a_{2i}x^{2} + a_{3i}x^{3} + a_{4i}x^{4} + a_{5i}x^{5})(x^{6} - \alpha_{0})^{i}$$

$$+ u \sum_{i=0}^{p^{s}-1} (b_{0i} + b_{1i}x + b_{2i}x^{2} + b_{3i}x^{3} + b_{4i}x^{4} + b_{5i}x^{5})(x^{6} - \alpha_{0})^{i},$$
(3.1)

where a_{ji} and b_{ji} are elements of \mathbb{F}_{p^m} for $i=0,1,\ldots,p^s-1$ and $j=0,1,\ldots,5$. We consider that

$$f(x) = \sum_{i=0}^{p^s-1} (a_{0i} + a_{1i}x + a_{2i}x^2 + a_{3i}x^3 + a_{4i}x^4 + a_{5i}x^5)(x^6 - \alpha_0)^i$$

$$+ u \sum_{i=0}^{p^{s}-1} (b_{0i} + b_{1i}x + b_{2i}x^{2} + b_{3i}x^{3} + b_{4i}x^{4} + b_{5i}x^{5})(x^{6} - \alpha_{0})^{i}$$

$$= a_{0,0} + a_{1,0}x + a_{2,0}x^{2} + a_{3,0}x^{3} + a_{4,0}x^{4} + a_{5,0}x^{5}$$

$$+ (x^{6} - \alpha_{0}) \sum_{i=1}^{p^{s}-1} (a_{0i} + a_{1i}x + a_{2i}x^{2} + a_{3i}x^{3} + a_{4i}x^{4} + a_{5i}x^{5})(x^{6} - \alpha_{0})^{i-1}$$

$$+ \beta^{-1}(x^{6} - \alpha_{0})^{p^{s}} \sum_{i=0}^{p^{s}-1} (b_{0i} + b_{1i}x + b_{2i}x^{2} + b_{3i}x^{3} + b_{4i}x^{4} + b_{5i}x^{5})(x^{6} - \alpha_{0})^{i}$$

$$= a_{0,0} + a_{1,0}x + a_{2,0}x^{2} + a_{3,0}x^{3} + a_{4,0}x^{4} + a_{5,0}x^{5} + (x^{6} - \alpha_{0})g(x),$$

where $g(x) = \sum_{i=1}^{p^s-1} (a_{0i} + a_{1i}x + a_{2i}x^2 + a_{3i}x^3 + a_{4i}x^4 + a_{5i}x^5)(x^6 - \alpha_0)^{i-1} + \beta^{-1}(x^6 - \alpha_0)^{p^s-1} \sum_{i=0}^{p^s-1} (b_{0i} + b_{1i}x + b_{2i}x^2 + b_{3i}x^3 + b_{4i}x^4 + b_{5i}x^5)(x^6 - \alpha_0)^i$. Hence, we obtain that f(x) is invertible in $\mathcal{R}_{\alpha,\beta}$ if and only if $a_{0,0} + a_{1,0}x + a_{2,0}x^2 + a_{3,0}x^3 + a_{4,0}x^4 + a_{5,0}x^5 \neq 0$. This implies that the set of all non-invertible elements of $\mathcal{R}_{\alpha,\beta}$ is $\langle x^6 - \alpha_0 \rangle$. Therefore, $\mathcal{R}_{\alpha,\beta}$ is a local ring with the unique maximal ideal $\langle x^6 - \alpha_0 \rangle$. By Proposition 2.1, the following theorem is obtained as:

Theorem 3.2. Let $\alpha + u\beta$ a non-square and non-cube unit of \mathcal{R} and $\alpha_0^{p^s} = \alpha$. Then $\mathcal{R}_{\alpha,\beta}$ is a chain ring whose ideals $\langle (x^6 - \alpha_0)^j \rangle$, for $j \in \{0, 1, \dots, 2p^s\}$. Each $(\alpha + u\beta)$ -constacyclic code of length $6p^s$ over \mathcal{R} is of the form $\langle (x^6 - \alpha_0)^j \rangle \subseteq \mathcal{R}_{\alpha,\beta}$, for $j \in \{0, 1, \dots, 2p^s\}$. Moreover, the number of codewords of $\langle (x^6 - \alpha_0)^j \rangle$ is equal to $p^{6m(2p^s - j)}$.

Now, we need to determine the Hamming distance of each $\alpha + u\beta$ -constacyclic code of length $6p^s$ over \mathcal{R} .

Theorem 3.3. Let notation be as Theorem 3.2. Then the Hamming distance of $C = \langle (x^6 - \alpha_0)^j \rangle$ is given as

$$dist_{H}(C) = \begin{cases} 1, & if \ 0 \leq j \leq p^{s}, \\ 2, & if \ p^{s}+1 \leq j \leq p^{s}+p^{s-1}, \\ l+2, & if \ p^{s}+lp^{s-1}+1 \leq j \leq p^{s}+(l+1)p^{s-1}, \\ & where \ l \in \{1,2,\ldots,p-2\}, \\ (\nu+1)p^{k}, & if \ 2p^{s}-p^{s-k}+(\nu-1)p^{s-k-1}+1 \leq j \leq 2p^{s}-p^{s-k} \\ & +\nu p^{s-k-1}, & where \ \nu \in \{1,2,\ldots,p-1\} \ and \\ & k \in \{1,2,\ldots,s-1\}, \\ 0, & if \ j=2p^{s}. \end{cases}$$

Proof. It is obvious that $dist_H(\langle (x^6 - \alpha_0)^0 \rangle) = 1$ and $dist_H(\langle (x^6 - \alpha_0)^{2p^s} \rangle) = 0$. We remain the case $1 \le j \le 2p^s - 1$ and separate the integer i into 2 cases, i.e., $1 \le j \le p^s$ and $p^s + 1 \le j \le 2p^s - 1$.

Case 1: $1 \le j \le p^s$. We consider that $u = \beta^{-1}(x^6 - \alpha_0)^{p^s} = \beta^{-1}(x^6 - \alpha_0)^{p^s - j}(x^6 - \alpha_0)^j \in \langle (x^6 - \alpha_0)^j \rangle$. As $WT_H(u) = 1$, we obtain that $dist_H(\langle (x^6 - \alpha_0)^j \rangle) = 1$.

Case 2: $p^s + 1 \le j \le 2p^s - 1$. Note that $u = \beta^{-1}(x^6 - \alpha_0)^{p^s}$. Let f(x) be an arbitrary element in $\langle (x^6 - \alpha_0)^j \rangle$. Then f(x) can be expressed as

$$f(x) = u(x^6 - \alpha_0)^{j - p^s} \sum_{i=0}^{p^s - 1} (a_{0i} + a_{1i}x + a_{2i}x^2 + a_{3i}x^3 + a_{4i}x^4 + a_{5i}x^5)(x^6 - \alpha_0)^i,$$

where $a_{0i}, a_{1i}, a_{2i}, a_{3i}, a_{4i}$ and $a_{5i} \in \mathbb{F}_{p^m}$. Note that $1 \leq j - p^s \leq p^s - 1$. C[l] denotes an ideal with the generator $(x^6 - \alpha_0)^l$ of $\frac{\mathbb{F}_{p^m}[x]}{\langle x^{6p^s} - \alpha \rangle}$. Thus, each element f(x) can be identified as an element in $uC[j - p^s]$, implying that $dist_H(\langle (x^6 - \alpha_0)^j \rangle) = dist_H(C[j - p^s])$. As Theorem 2.5, $dist_H(C[l])$ is given, and then $dist_H(\langle (x^6 - \alpha_0)^j \rangle)$ is also obtained.

In the remaining result of this section, we identify the maximum distance separable $(\alpha + u\beta)$ -constacyclic codes of length $6p^s$ over \mathcal{R} .

Theorem 3.4. Let notation be as Theorem 3.2 and $C = \langle (x^6 - \alpha_0)^j \rangle$ for $0 \le j \le 2p^s$. Then, the only maximum distance separable $(\alpha + u\beta)$ -constacyclic code of length $6p^s$ over \mathcal{R} is $\mathcal{R}_{\alpha,\beta}$.

Proof. Note that $N_c(C) = p^{6m(2p^s - j)}$. We divide this proof into 5 cases as the value $dist_H(C)$ in Theorem 3.3.

Case 1: $j \in \{0,1,\ldots,p^s\}$. We obtain that d(C)=1. Thus, C is MDS code if $p^{6m(2p^s-j)}=p^{2m(6p^s-1+1)}=p^{12mp^s}$. This implies that $2p^s-j=2p^s$, i.e., j=0.

Case 2: $j \in \{p^s + 1, p^s + 2, \dots, p^s + p^{s-1}\}$. Note that $dist_H(C)$ is equal to 2. We consider that $p^{6m(2p^s-j)} = N_c(C) = p^{2m(6p^s-2+1)} = p^{12mp^s-2m}$. We get $12mp^s - 6mi = 12mp^s - 2m$, and then $j = \frac{1}{3}$. It is impossible.

Case 3: $j \in \{p^s + lp^{s-1} + 1, p^s + lp^{s-1} + 2, dots, p^s + (l+1)p^{s-1}\}$, where $l \in \{1, 2, ..., p-2\}$. In this case, we have $dist_H(C) = l+2$. We consider that $p^{6m(2p^s-j)} = N_c(C) = p^{2m(6p^s - (l+2)+1)} = p^{12mp^s - 2ml - 2m}$. This implies that $12mp^s - 6mi = 12mp^s - 2ml - 2m$, i.e., $i = \frac{l+1}{3}$. Thus, we obtain that $\frac{2}{3} \le j \le \frac{p-1}{3}$ but minimum value j is $p^s + p^{s-1} + 1$. It is impossible.

Case 4: $j \in \{2p^s - p^{s-k} + (\nu - 1)p^{s-k-1} + 1, 2p^s - p^{s-k} + (\nu - 1)p^{s-k-1} + 2, \dots, 2p^s - p^{s-k} + \nu p^{s-k-1}\}$, where $\nu \in \{1, 2, \dots, p-1\}$ and $k \in \{1, 2, \dots, s-1\}$. By Theorem 3.3, the Hamming distance of C is $(\nu + 1)p^k$. We consider $p^{6m(2p^s - j)} = N_c(C) = p^{2m(6p^s - (\nu + 1)p^k + 1)} = p^{12mp^s - 2m\nu p^k - 2mp^k + 2m}$. This means that $12mp^s - 6mj = 12mp^s - 2m\nu p^k - 2mp^k + 2m$, and then $j = \frac{\nu p^k + p^k - 1}{3}$. However, $\frac{\nu p^k + p^k - 1}{3}$ is not in the interval $[2p^s - p^{s-k} + (\nu - 1)p^{s-k-1} + 1, 2p^s - p^{s-k} + \nu p^{s-k-1}]$. It is impossible.

Case 5: $j = 2p^s$. We get $dist_H(C) = 0$. We consider that $1 = N_c(C) = p^{2m(6p^s - 0 + 1)} = p^{2m(6p^s + 1)}$. This means that $6p^s + 1 = 0$. It is impossible.

Hence, there is only the quotient ring $\mathcal{R}_{\alpha,\beta}$ which is a MDS code.

4. Hamming distance of α -constacyclic codes of length $6p^s$ over ${\mathcal R}$

In this section, we denote the quotient ring $\frac{\mathcal{R}[x]}{\langle x^{6p^s} - \alpha \rangle}$ by \mathcal{R}_{α} . By the same method in [9–12], the following results are obtained.

Theorem 4.1. Let notation be as Proposition 2.4. Then the quotient ring \mathcal{R}_{α} is a local ring with the maximal ideal $\langle x^6 - \alpha_0, u \rangle$ but it is not a chain ring. Moreover, ideals of \mathcal{R}_{α} , α -constacyclic codes of length $6p^s$ over \mathcal{R} , are listed as follows:

- (1) (trivial ideals) $\langle 0 \rangle$ and $\langle 1 \rangle$,
- (2) (principal ideals with nonmonic polynomial generators) $\langle u(x^6 \alpha_0)^j \rangle$, where $0 \le j \le p^s 1$,
- (3) (principal ideals with monic polynomial generators) $\langle (x^6 \alpha_0)^j + u(x^6 \alpha_0)^t h(x) \rangle$, where $1 \leq j \leq p^s 1, 0 \leq t < i$ and either h(x)

is 0 or h(x) is a unit which can be represented as $h(x) = \sum_{i=0}^{p^s-1} (h_{0i} + h_{1i}x + h_{0i}x)$ $h_{2i}x^2 + h_{3i}x^3 + h_{4i}x^4 + h_{5i}x^5)(x^6 - \alpha_0)^i$, with h_{0i} , h_{1i} , h_{2i} , h_{3i} , h_{4i} , $h_{5i} \in \mathbb{F}_{p^m}$ and $h_{0,0} + h_{1,0}x + h_{2,0}x^2 + h_{3,0}x^3 + h_{4,0}x^4 + h_{5,0}x^5 \neq 0$.

(4) (nonprincipal ideals) $\langle (x^6 - \alpha_0)^j + u(x^6 - \alpha_0)^t h(x), u(x^6 - \alpha_0)^\omega \rangle$, with h(x) as in Type 3 where $1 \le j \le p^s - 1$, $0 \le t < j$, $\omega < T$ and T is the smallest positive integer such that $u(x^6 - \alpha_0)^T \in \langle (x^6 - \alpha_0)^j + u(x^6 - \alpha_0)h(x) \rangle$. Moreover, T = j, if h(x) = 0, otherwise $T = \min\{j, p^s - j + t\}$.

Proposition 4.2. Let notation be as Theorem 4.1. Let C be an α -constacyclic code of length $6p^s$ over \mathcal{R} . Then the number of codewords of C is obtained as follows.

- (1) If $C = \langle 0 \rangle$, then $N_c(C) = 1$.
- (2) If $C = \langle 1 \rangle$, then $N_c(C) = p^{12mp^s}$.
- (3) $C = \langle u(x^6 \alpha_0)^j \rangle$ where $j \in \{0, 1, \dots, p^s 1\}$, then $N_c(C) = p^{6m(p^s j)}$. (4) If $C = \langle (x^6 \alpha_0)^j + u(x^6 \alpha_0)^t h(x) \rangle$, where $j \in \{1, 2, \dots, p^s 1\}$, $t \in \{1, 2, \dots, p^s 1\}$, $t \in \{1, 2, \dots, p^s 1\}$.

$$N_c(C) = \begin{cases} p^{12m(p^s - j)}, & \text{if } h(x) = 0, \\ p^{12m(p^s - j)}, & \text{if } h(x) \neq 0 \text{ and } j \in \{1, 2, \dots, \lfloor \frac{p^s + t}{2} \rfloor\}, \\ p^{6m(p^s - t)}, & \text{if } h(x) \neq 0 \text{ and } j \in \{\lceil \frac{p^s + t}{2} \rceil, \lceil \frac{p^s + t}{2} \rceil + 1, \dots, p^s - 1\}. \end{cases}$$

(5) If $C = \langle (x^6 - \alpha_0)^j + u(x^6 - \alpha_0)^t h(x), u(x^6 - \alpha_0)^\omega \rangle$ where $j \in \{1, 2, \dots, p^s - 1\}$, $t \in \{0, 1, \dots, j - 1\}$ and $\omega \leq T - 1$, then

$$N_c(C) = p^{6m(2p^s - j - \omega)} \text{ where } \omega < \begin{cases} j, & \text{if } h(x) = 0, \\ \min\{p^s - j + t, j\}, & \text{if } h(x) \neq 0. \end{cases}$$

Next, we determine the Hamming distances of α -constacyclic codes of length $6p^s$ over \mathcal{R} . For each codeword $\mathbf{r}=(r_0,r_1,\ldots,r_{n-1})$ in \mathcal{R}^n , it can be viewed as a polynomial r(x) given as r(x)=a(x)+ub(x), where $a(x)=\sum_{i=0}^{n-1}a_ix^i,b(x)=\sum_{i=0}^{n-1}b_ix^i\in \mathcal{R}$ $\mathbb{F}_{p^m}[x]$ and $r_i = a_i + ub_i \in \mathcal{R}$. Two polynomials a(x) and b(x) corresponds words ${\bf a} = (a_0, a_1, \dots, a_{n-1})$ and ${\bf b} = (b_0, b_1, \dots, b_{n-1})$ in ${\mathbb F}_{n^m}^n$. Thus, $r_i = 0$ if and only if $a_i = b_i = 0$, and then

$$WT_H(c(x)) > \max\{WT_H(a(x)), WT_H(b(x))\}.$$
 (4.1)

In Type 1, the Hamming distances of $\langle 0 \rangle$ and $\langle 1 \rangle$ are equal to 0 and 1, respectively. For $C = \langle u(x^6 - \alpha_0)^j \rangle$ in Type 2, $0 \le j \le p^s - 1$, each codeword of C is an element multiplied by u in C[j] where C[j] is an ideal with the generator $(x^6 - \alpha_0)^j$ of $\frac{\mathbb{F}_{p^m}[x]}{\langle x^6p^8 - \alpha \rangle}$. Hence, $dist_H(C) = dist_H(C[j])$.

Theorem 4.3. Let notation be as Theorem 4.1. If $C = \langle u(x^6 - \alpha_0)^j \rangle$ where $j \in$ $\{0, 1, \dots, p^s - 1\}, then$

$$dist_{H}(C) = \begin{cases} 1, & \text{if } j = 0, \\ 2, & \text{if } 1 \leq j \leq p^{s-1}, \\ l+2, & \text{if } lp^{s-1} + 1 \leq j \leq (l+1)p^{s-1}, \\ & \text{where } l \in \{1, 2, \dots, p-2\}, \\ (\nu+1)p^{k}, & \text{if } p^{s} - p^{s-k} + (\nu-1)p^{s-k-1} + 1 \leq j \leq p^{s} - p^{s-k} \\ & + \nu p^{s-k-1}, & \text{where } \nu\{1, 2, \dots, p-1\} \text{ and } \\ & k \in \{1, 2, \dots, s-1\}. \end{cases}$$

For your convenience, an ideal with the generator $(x^6 - \alpha_0)^j$ of $\frac{\mathbb{F}_{p^m}[x]}{\langle x^{6p^s} - \alpha \rangle}$ is denoted by C[j] or $\langle (x^6 - \alpha_0)^j \rangle_{\mathbb{F}_{p^m}}$, where $0 \leq j \leq p^s$. Now, we determine the Hamming distances of all constacyclic codes in Type 3 as follows:

Theorem 4.4. Let notation be as Theorem 4.1. If $C = \langle (x^6 - \alpha_0)^j + u(x^6 - \alpha_0)^t h(x) \rangle$ where $j \in \{1, 2, ..., p^s - 1\}$ and $t \in \{0, 1, ..., j - 1\}$, then

$$dist_{H}(C) = \begin{cases} 2, & if \ 1 \leq j \leq p^{s-1}, \\ l+2, & if \ lp^{s-1}+1 \leq j \leq (l+1)p^{s-1}, \\ & where \ l \in \{1,2,\ldots,p-2\}, \\ (\nu+1)p^{k}, & if \ p^{s}-p^{s-k}+(\nu-1)p^{s-k-1}+1 \leq j \leq p^{s}-p^{s-k} \\ & +\nu p^{s-k-1}, \ where \ \nu \in \{1,2,\ldots,p-1\} \ and \\ & k \in \{1,2,\ldots,s-1\}. \end{cases}$$

Proof. Since $u(x^6 - \alpha_0)^j \in C$, we have $dist_H(C) \leq dist_H(\langle u(x^6 - \alpha_0)^i \rangle) = dist_H(C[j])$. Let $f(x) \in C$. Then, there exist $f_1(x), f_2(x) \in \mathbb{F}_{p^m}[x]$ such that

$$f(x) = (f_1(x) + uf_2(x))((x^6 - \alpha_0)^j + u(x^6 - \alpha_0)^t h(x))$$

= $f_1(x)(x^6 - \alpha_0)^j + ur(x),$

where $r(x) = f_2(x)(x^6 - \alpha_0)^j + f_1(x)(x^6 - \alpha_0)^t h(x)$ Thus, by inequality 4.1, we have

$$WT_{H}(f(x)) \geq \max\{WT_{H}(f_{1}(x)(x^{6} - \alpha_{0})^{j}), WT_{H}(r(x))\}$$

$$\geq \max\{WT_{H}(f_{1}(x)(x^{6} - \alpha_{0})^{j}), WT_{H}(f_{2}(x)(x^{6} - \alpha_{0})^{j})\}$$

$$\geq dist_{H}(C[j]).$$

Hence, it implies that $dist_H(C) = dist_H(C[j])$.

Example 4.5. Given p = 5, s = 1 and m = 2, then $\mathbb{F}_{25} := \frac{\mathbb{Z}_5[w]}{\langle w^2 + 4w + 2 \rangle}$ and $x^{30} - w = (x^6 - (4w + 1))^5$. Let $C = \langle (x^6 - (4w + 1))^4 \rangle$ be a w-constacyclic code of length 30 over $\mathbb{F}_{25} + u\mathbb{F}_{25}$. Each codeword c(x) in C is expressed as

$$c(x) = (x^6 - (4w + 1))^4 ((a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4) + (b_0 + b_1x + b_2x^2 + b_3x^3 + b_4x^4)u),$$

where $a_i, b_i \in \mathbb{F}_{p^m}$, i = 0, 1, 2, 3, 4. Thus, the number of codewords of C is $(25^2)^5$. By Theorem 4.4, the Hamming distance of C is equal to 5. Thus, we get $p^{2m(n-dist_H(C)+1)} = 5^{4(30-5+1)} = 5^{104}$. By Singleton Bound, we obtain $N_c(C) = 5^{20} < 5^{104} = p^{2m(n-dist_H(C)+1)}$, implying that C is not a maximum distance separable code.

Theorem 4.6. Let notation be as Theorem 4.1. If $C = \langle (x^6 - \alpha_0)^j + u(x^6 - \alpha_0)^t h(x), u(x^6 - \alpha_0)^\omega \rangle$ where $j \in \{1, 2, \dots, p^s - 1\}, t \in \{0, 1, \dots, j - 1\}$ and $\omega \leq T - 1$, then

$$dist_{H}(C) = \begin{cases} 2, & if \ 1 \leq \omega \leq p^{s-1}, \\ l+2, & if \ lp^{s-1}+1 \leq \omega \leq (l+1)p^{s-1}, \ where \ l \in 1, 2, \dots, p-2, \\ (\nu+1)p^{k}, & if \ p^{s}-p^{s-k}+(\nu-1)p^{s-k-1}+1 \leq \omega \leq p^{s}-p^{s-k} \\ & +\nu p^{s-k-1}, \ where \ \nu \in \{1, 2, \dots, p-1\} \ and \\ & k \in \{1, 2, \dots, s-1\}. \end{cases}$$

Proof. Since $u(x^6 - \alpha_0)^{\omega} \in C$, we have $dist_H(C) \leq dist_H(\langle u(x^6 - \alpha_0)^{\omega} \rangle) = dist_H(C[\omega])$. Let $c(x) \in C$. There exist $f_1(x) + uf_2(x), g_1(x) + ug_2(x) \in \mathcal{R}[x]$ such that

$$c(x) = (f_1(x) + uf_2(x))((x^6 - \alpha_0)^j + u(x^6 - \alpha_0)^t h(x))$$
$$+ (g_1(x) + ug_2(x))u(x^6 - \alpha_0)^{\omega}$$
$$= f_3(x)(x^6 - \alpha_0)^{\omega} + ur(x),$$

where $f_3(x) = f_1(x)(x^6 - \alpha_0)^{j-\omega}$ and $r(x) = f_1(x)(x^6 - \alpha_0)^t h(x) + f_2(x)(x^6 - \alpha_0)^j + g_1(x)(x^6 - \alpha_0)^\omega$. Note that

$$r(x) = f_1(x)(x^6 - \alpha_0)^t h(x) + f_2(x)(x^6 - \alpha_0)^j + g_1(x)(x^6 - \alpha_0)^\omega$$

= $f_1(x)h(x)(x^6 - \alpha_0)^t + r_1(x)(x^6 - \alpha_0)^\omega$,

where $r_1(x) = f_2(x)(x^6 - \alpha_0)^{j-\omega} + g_1(x)$. By Inequality 4.1, we obtain that

$$WT_{H}(c(x)) \geq \max\{WT_{H}(f_{3}(x)(x^{6} - \alpha_{0})^{\omega}), WT_{H}(r(x))\}$$

$$\geq \max\{WT_{H}(f_{3}(x)(x^{6} - \alpha_{0})^{\omega}), WT_{H}(r_{1}(x)(x^{6} - \alpha_{0})^{\omega})\}$$

$$\geq dist_{H}(C[\omega]).$$

Thus, $dist_H(C) \geq dist_H(C[\omega])$, implying that $dist_H(C) = dist_H(C[\omega])$.

The rest of this section to determine of MDS α -constacyclic codes of length $6p^s$ over $\mathcal{R} = \frac{\mathbb{F}_{p^m}[u]}{\langle u^2 \rangle}$.

Theorem 4.7. Let notation be as Theorem 4.1. Then, the only maximum distance separable α -constacyclic code of length $6p^s$ over \mathcal{R} is \mathcal{R}_{α} .

Proof. **Type 1:** If $C = \langle 0 \rangle$, then $dist_H(C) = 0$. We consider that $1 = N_c(C) = p^{2m(6p^s - 0 + 1)}$. This means that $6p^s + 1 = 0$. It is impossible. If $C = \langle 1 \rangle$, then $dist_H(C) = 1$. For C is a MDS code, we have $N_c(C) = p^{12mp^s} = p^{2m(6p^s - 1 + 1)}$. Thus, $C = \langle 1 \rangle$ is a MDS code.

Type 2: Let $C = \langle u(x^6 - \alpha_0)^j \rangle$ be an α-constacyclic code of length $6p^s$ over \mathcal{R} where $j \in \{0, 1, \dots, p^s - 1\}$. If j = 0, then $dist_H(C) = 1$. We consider that $p^{6mp^s} = N_c(C) = p^{2m(6p^s - 1 + 1)} = p^{12mp^s}$ which is a contradiction. If $j \in \{1, 2, \dots, p^{s-1}\}$, then $dist_H(C) = 2$. For C is MDS, we have $p^{6m(p^s - j)} = N_c(C) = p^{2m(6p^s - 2 + 1)}$. Thus, we get $j = -\frac{3p^s + 1}{3}$ which is impossible. If $j \in \{lp^{s-1} + 1, lp^{s-1} + 2, \dots, (l+1)p^{s-1}\}$ where $l \in \{1, 2, \dots, p-2\}$, then $dist_H(C) = l + 1$. We consider that $p^{6m(p^s - j)} = N_c(C) = p^{2m(6p^s - (l+1) + 1)}$. This implies that $j = -\frac{3p^s - l}{3}$. It is impossible. if $j \in \{p^s - p^{s-k} + (\nu - 1)p^{s-k-1} + 1, p^s - p^{s-k} + (\nu - 1)p^{s-k-1} + 2, \dots, p^s - p^{s-k} + \nu p^{s-k-1}\}$ where $\nu \in \{1, 2, \dots, p-1\}$ and $k \in \{1, 2, \dots, s-1\}$, then $dist_H(C) = (\nu + 1)p^k$. Assume that C is a MDS code. We have $p^{6m(p^s - j)} = N_c(C) = p^{2m(6p^s - (\nu + 1)p^k + 1)}$, and then $j = -\frac{3mp^s - (\nu + 1)p^k + 1}{3}$. It is a contradiction.

Type 3: Let $C = \langle (x^6 - \alpha_0)^j + u(x^6 - \alpha_0)^t h(x) \rangle$ where $j \in \{1, 2, \dots, p^s - 1\}$ and $t \in \{0, 1, \dots, j - 1\}$. In the case h(x) = 0, we have $N_c(C) = p^{12m(p^s - j)}$. Assume that C is MDS. Thus, we get $p^{12m(p^s - j)} = N_c(C) = p^{2m(6p^s - dist_H(C) + 1)}$, implying that $j = \frac{dist_H(C) - 1}{6}$. If $j \in \{1, 2, \dots, p^{s-1}\}$, then $dist_H(C) = 2$. This means that $j = \frac{1}{3}$. It is impossible. If $j \in \{lp^{s-1} + 1, lp^{s-1} + 2, \dots, (l+1)p^{s-1}\}$ for $l \in \{1, 2, \dots, p - 2\}$, then $j = \frac{l+1}{3} \le \frac{p-2}{3}$ which is a contradiction. If $j \in \{p^s - p^{s-k} + (\nu - 1)p^{s-k-1} + 1, p^s - p^{s-k} + (\nu - 1)p^{s-k-1} + 2, \dots, p^s - p^{s-k} + \nu p^{s-k-1}\}$ such that $\nu \in \{1, 2, \dots, p - 1\}$

and $k \in \{1, 2, \dots, s-1\}$, then $j = \frac{(\nu+1)p^k-1}{3} \le \frac{p^s-1}{3}$. It is impossible. In the case $h(x) \neq 0$ and $j \in \{1, 2, \dots, \lfloor \frac{p^s+t}{2} \rfloor \}$, we have $N_c(C) = p^{12m(p^s-j)}$. As the above case, it is impossible. For the remaining case $h(x) \neq 0$ and $j \in \{\lceil \frac{p^s + t}{2} \rceil, \lceil \frac{p^s + t}{2} \rceil + 1, \dots, p^s - 1\}$, we have $N_c(C) = p^{6m(p^s - t)}$. We consider that $p^{6m(p^s - t)} = N_c(C) = p^{2m(6p^s - dist_H(C) + 1)}$, implying that $t = -\frac{6p^s - dist_H(C) + 1}{3}$ which is a contradiction.

Type 4: Let $C = \langle (x^6 - \alpha_0)^j + u(x^6 - \alpha_0)^t h(x), u(x^6 - \alpha_0)^\omega \rangle$ where $j \in \{1, 2, \dots, p^s - 1\}$, $t \in \{0, 1, \dots, j - 1\}$ and $\omega \leq T - 1$. Then $N_c(C) = p^{6m(2p^s - j - \omega)}$. Assume that C is MDS. We get $p^{6m(2p^s - j - \omega)} = N_c(C) = p^{2m(6p^s - dist_H(C) + 1)}$. Thus, we have $3j + 3\omega = 1$.

 $dist_H(C) - 1$ and consider

$$3\omega = dist_H(C) - 1 - 3j < dist_H(C) - 1 - 3\omega.$$

This means that $\omega < \frac{dist_H(C)-1}{6}$. Therefore, it follows from Type 3, and then it is impossible. Hence, \mathcal{R}_{α} is only MDS code.

5. Conclusion

Let $\alpha + u\beta$ be a non-square and non-cube unit of $\mathcal{R} = \frac{\mathbb{F}_{p^m}[u]}{\langle u^2 \rangle}$. The Hamming distances of all $(\alpha + u\beta)$ -constacyclic codes of length $6p^s$ over \mathcal{R} can be obtained from Hamming distances of α -constacyclic codes of length $6p^s$ over \mathbb{F}_{p^m} . Furthermore, the MDS $(\alpha + u\beta)$ -constacyclic codes of length $6p^s$ over \mathcal{R} is only $\frac{\mathcal{R}[x]}{\langle x^6p^s - (\alpha + u\beta)\rangle}$ (both $\beta \neq 0$ and $\beta = 0$). However, the case $\alpha + u\beta$ is a square or cube unit, it is still an open problem for the future work.

ACKNOWLEDGEMENTS

This project is funded by National Research Council of Thailand (Grant No. NRCT5-RSA63011-05).

References

- [1] W. C. Huffman, V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.
- [2] D. I. N. G. Jian, L. I. Hongju, The Hamming distances of a class of p-ary negacyclic codes, Chin. J. Electron. 27(1) (2018) 46-51.
- [3] N. T. Bac, Hamming distances of repeated-root constacyclic codes of prime power lengths over $\mathbb{F}_{5^m} + u\mathbb{F}_{5^m}$, Southeast Asian J. Soc. Sci. 6(1) (2018) 10-16.
- [4] X. Liu, S. Zhu, The distributions of distances of $(1+\lambda u)$ -constacyclic codes of length p^s over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m} + \cdots + u^{k-1}\mathbb{F}_{p^m}$, J. Univ. Sci. Technol. China. 11 (2012).
- [5] A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane, P. Solé, The Z₄-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inf. Theory. 40 (1994) 301–319.
- [6] S.D. Berman, Semisimple cyclic and Abelian codes. II, Kibernetika (Kiev) 3 (1967) 21–30 (in Russian); translated as Cybernetics 3 (1967) 17–23.
- [7] G. Castagnoli, J. L. Massey, P. A. Schoeller, N. von Seemann, On repeated-root cyclic codes, IEEE Trans. Inf. Theory. 37 (1991) 337–342.
- [8] J. H. van Lint, Repeated-root cyclic codes, IEEE Trans. Inf. Theory. 37 (1991) 343– 345.

- [9] B. Chen, H. Q. Dinh, H. Liu, L. Wang, Constacyclic codes of length $2p^s$ over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, Finite Fields Appl. 37 (2016) 108-130.
- [10] H. Q. Dinh, Constacyclic codes of length p^s over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, J. Algebra. 324(5) (2010) 940-950.
- [11] J. Phuto, C. Klin-Eam, Explicit constructions of cyclic and negacyclic codes of length $3p^s$ over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, Discrete Math Algorithms Appl. 12(05) (2020) 2050063.
- [12] Y. Cao, Y. Cao, H. Q. Dinh, F. W. Fu, J. Gao, S. Sriboonchitta, Constacyclic codes of length np^s over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, Adv. Math. Commun. 12(2) (2018) 231-262.
- [13] W. Zhao, X. Tang, Z. Gu, All $\alpha + u\beta$ -constacyclic codes of length np^s over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, Finite Fields Appl. 50 (2018) 1-16.
- [14] H. Q. Dinh, B. T. Nguyen, A. K. Singh, S. Sriboonchitta, Hamming and Symbol-Pair Distances of Repeated-Root Constacyclic Codes of Prime Power Lengths Over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, IEEE Commun. Lett. 22(12) (2018) 2400-2403.
- [15] H. Q. Dinh, A. Gaur, I. Gupta, A. K. Singh, M. K. Singh, R. Tansuchat, Hamming distance of repeated-root constacyclic codes of length $2p^s$ over $\mathbb{F}_{p^m} + u\mathbb{F}_{p^m}$, Appl. Algebra Eng. Commun. Comput. 31 (2020) 291-305.
- [16] H. Q. Dinh, S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inf. Theory. 50(8) (2004) 1728-1744.
- [17] S. R. López-Permouth, H. Özadam, F. Özbuda, S. Szabo, Polycyclic codes over Galois rings with applications to repeated-root constacyclic codes, Finite Fields Appl. 19(1) (2013) 16-38.