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Abstract This work considers a model-order reduction (MOR) for Fisher’s equation, which is generally

used to describe many physical systems, such as chemical reactions, flame propagation, neurophysiology,

nuclear reactors, and tissue engineering. Due to the nonlinearity in this type of system, solving the

resulting discretized model for accurate solution could be time-consuming as the dimension gets large.

Model-order reduction can be applied to improve the process of solving this large discretized model. In

this work, a projection-based method called Proper Orthogonal Decomposition (POD) will be used first

to project the state variables of the system on a low dimensional subspace, which will result in the de-

crease of unknowns in the systems. However, the computational complexity of the discretized nonlinear

term still depends on the original large dimension. Discrete Empirical Interpolation Method (DEIM) is

therefore used to eliminate this inefficiency. This POD-DEIM approach is applied on Fisher’s equation

with discontinuous initial conditions. An apriori error bound is derived for the approximations from

POD-DEIM reduced system for the semi-implicit numerical scheme. The usefulness of this approach is

illustrated through the parametric study of the varying boundary conditions. This work also investigates

the effect of adding the snapshot difference quotients to construct basis sets used in POD and POD-

DEIM reduced systems. The numerical results show that this POD-DEIM can substantially decrease the

computational time while providing accurate numerical solution.
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1. Introduction

The goal for applying model order reduction is to construct reduced system with small
dimension and guarantee that it still maintains the accuracy when compared to the orig-
inal full-order model. Since many nonlinear partial differential equations in practical
applications are often required to use high dimensional discretized system for obtaining

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright c© 2021 by TJM. All rights reserved.



1730 Thai J. Math. Vol. 19 (2021) /S. Rungpitaxmana and S. Chaturantabut

accurate numerical solutions, the simulation can be extremely long. This motivates us to
apply model reduction techniques to decrease the computational complexity.

Model reduction techniques such as Proper Orthogonal Decomposition (POD) [9, 30,
42, 44], Galerkin POD [17, 38, 52] , Petrov-Galerkin POD [22, 36, 74], Balanced Trunca-
tion [27, 41, 48, 53, 78], Balanced POD [61, 66], Transfer Function Interpolation [19, 24, 57]
and Piecewise Tangential Interpolation [75] can be used to find a low-order model which
approximates the high-dimensional full-order model. These techniques are projection-
based reduction approaches. So far, the model reduction techniques are important in
many applications such as the analysis of network modeling [34, 76], biochemical reac-
tion networks [51, 55], and flow dynamics [10, 11]. This work will initially focus on one
of the most commonly used model reduction approaches, called the Proper Orthogonal
Decomposition (POD) technique.

Proper Orthogonal Decomposition (POD), also known as principal component analysis,
the Karhunen-Lòeve expansion, Hotelling transform, or singular value decomposition, is
one of the most popular basis selection methods for nonlinear models that provides low
dimensional estimate of high dimensional subspace by extracting the main characteristics
from the system of interest. The low-order approximation is obtained by projecting the
full-order system onto a set of basis functions computed from empirical data. POD can
give a set of basis, called POD basis, by using Singular Value Decomposition (SVD). POD
constructs a low-dimensional basis that minimizes error in 2−norm for a given fixed rank
of basis. POD has been first used by J. L. Lumley in the turbulence flow [44]. It was used
in the incomplete (gappy) data for compressible external aerodynamic problem [9]. POD
has been successfully used in many works, such as in the analysis of turbulent flows [8], the
analysis the complex flow phenomenon in a horizontal chemical vapor deposition reactor
[46], modeling nonlinear flows with deforming meshes [26], particle image velocimetry
wall-gradient measurements flow field [49]. Moreover, POD is extended by combining with
balanced realization theory in the application of two-dimensional airfoil [71]. The model
reduction approach that uses POD basis with the Galerkin projection is very efficient and
accurate for linear dynamical systems. However, this approach may not be able to reduce
the simulation time for solving nonlinear problems because the computational complexity
of nonlinear term still depend on the large dimension of the original systems. Therefore,
additional nonlinear model reduction approaches have to be considered.

There are some existing model reduction techniques for nonlinear systems, such as
Empirical Interpolation Method (EIM) [7], Trajectory Piecewise-Linear [56, 69], Missing
Point Estimation [67], Discrete Empirical Interpolation Method (DEIM) [1, 13, 14]. We
will mainly focus on Discrete Empirical Interpolation Method (DEIM), since it can reduce
the computational complexity of general nonlinear terms.

Discrete Empirical Interpolation Method (DEIM) [14] can be considered as an improve-
ment of the POD algorithm. It estimates nonlinear term by finding projection basis from
POD and selecting the interpolation indices by a greedy algorithm. The aim of DEIM
is to select the interpolation indices by trying to minimize the error heuristically. It has
been used in many applications, such as non-linear miscible viscous fingering in porous
media [15] 1-D FitzHugh-Nagumo equations[13], morphological structure spiking neurons
[37], non-linear miscible viscous fingering in a 2-D porous medium [15], 2-D shallow-water
equations [18], Navier-Stokes equations [1], four-dimensional variational data assimilation
[64], three-dimensional nonlinear aeroelasticity model [23], electrical, thermal, and micro-
electromechanical models [32].
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Fisher’s equation, also known as Fisher-Kolmogorov-Petrowskii-Piscounov equation,
Fisher-Kolmogorov equation, or Fisher-KPP equation (FKPP), is a nonlinear parabolic
PDE. It is one of the simplest classical reaction diffusion equations and it is useful such
as in physical, chemical reaction processes, heat and mass transfer [77], biological phe-
nomena, optics, and combustion. Fisher’s equation has been studied in many fields such
as first suggested by R.A.Fisher in propagation of a gene within a population [25]. It was
solved numerically by pseudospectral method [50] and finite volume method. However, so
far, there is no existing work that applies MOR on Fisher’s equation to reduce complexity
during the simulation together with providing an apriori error analysis. This work focuses
on applying model order reduction technique combining POD and DEIM on the finite
difference discretization of the Fisher’s equation, as well as deriving an error bound for
the corresponding reduced-order solutions.

The accuracy of the POD-Galerkin approach has been studied in a number of previous
works, such as the error analysis for POD model reduction of Navier-Stokes equations
[31, 70], error estimate for tropical pacific ocean reduced gravity model [45], error of
semidiscretized FitzHugh-Nagumo system [65], wave-like equations [12], error equilibra-
tion for linear and semilinear parabolic PDE, error of nonlinear parabolic PDE [35, 39],
optical diffusion tomography [5]. The stability of the reduced order system is also an
important aspect in numerical analysis. This work extends the error analysis in [16] and
derives an a-priori error bound for the POD-DEIM approximations obtained from the
semi-implicit numerical scheme used for solving Fisher’s equation.

This work is organized as follows. In Section 2, model reduction techniques used in this
work are introduced. These techniques are Proper Orthogonal Decomposition (POD) and
Discrete Empirical Interpolation Method (DEIM) approximation. Then, an error bound
for the solutions from POD-DEIM approach is derived in Section 3. Section 4 provides
more details on Fisher’s equation, as well as its discretization. Section 5 investigates the
numerical application of POD-DEIM method on Fisher’s eqation. The effect of adding
snapshot difference equations in the process of constructing POD basis is studied. The
efficiency of POD-DEIM approach is illustrated through the parametric study of varying
boundary conditions. Finally, Section 6 gives the conclusions and possible extension of
this work.

2. Preliminary

This section considers two model reduction techniques for nonlinear ordinary differen-
tial equations (ODEs). The model reduction techniques or model order reduction aims to
reduce the number of unknowns and not to reduce the order of the derivatives. A com-
mon technique used in dimension reduction is Proper Orthogonal Decomposition (POD)
combined with Galerkin projection. For nonlinear problems, this technique can reduced
only dimensions of linear term, because POD cannot reduce the complexity of nonlinear
term. Therefore, we apply POD approximation with Discrete Empirical Interpolation
Method (DEIM), which can reduce the complexity of nonlinear term so that it does not
depend on the large dimensions of full-order system.

The goal of model reduction techniques used in this work is to decrease the dimension
of the discretized systems from nonlinear partial differential equations (PDEs). These
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discretized system is in the form of nonlinear ordinary differential equations (ODEs) in
the following form

d

dt
y(t) = Ay(t) + F(y(t)), (2.1)

where y(t) = [y1(t), . . . ,yn(t)]T ∈ Rn is the state variable iwith initial condition y(0) =
y0 ∈ Rn, t is time, A ∈ Rn×n is a constant matrix, and F is a nonlinear vector-valued
function evaluated at y(t) componentwise. This type of system often arises from the
discretization of nonlinear PDEs. The dimension n, which is the number of unknowns of
this system, is generally required to be very large to improve the accuracy. We call (2.1)
as original full-order system or full-order system of dimension n, which will be costly to
compute in pratice. We can reduce the computational complexity and simulation time
by using the following methods.

2.1. Projection-Based Model Order Reduction

Projection-based method can construct a reduced-order system by projecting (2.1)
onto a low dimensional subspace. Let Vk ∈ Rn×k be a matrix whose columns form a
set of an orthonormal basis of dimension k, where k < n. Then, we can approximate the
state variable y(t) in the space spanned by the columns of Vk in the form of (2.2)

y(t) ≈ Vkỹ(t), (2.2)

where ỹ(t) ∈ Rk. By substituting (2.2) into (2.1), we obtain the following reduced system
with k unknows in ỹ(t).

d

dt
Vkỹ(t) = AVkỹ(t) + F(Vkỹ(t)), (2.3)

with initial condition

Vkỹ(0) = y0. (2.4)

Then, applying the Galerkin projection which will give the smallest error of the residual
in the direction of span{Vk}. The POD reduced system is of the form:

VT
k

d

dt
Vkỹ(t) = VT

k AVkỹ(t) + VT
k F(Vkỹ(t)), (2.5)

and the initial condition (2.4) of the POD reduced system becomes

VT
k Vkỹ(0) = VT

k y0. (2.6)

Since VT
k Vk = Ik, (2.3) and (2.4) can be written as

d

dt
ỹ(t) = VT

k AVk︸ ︷︷ ︸
Ã

ỹ(t) + VT
k F(Vkỹ(t)), (2.7)

ỹ(0) = VT
k y0, (2.8)

where Ã = VT
k AVk ∈ Rk×k can be precomputed because it does not depend on time

and (2.7) is called POD reduced system. In this setting, Vk can be obtained from any
orthogonal basis. However, to get a good approximation from this reduced system, we
will consider the basis constructed by Proper Orthogonal Decomposition (POD) which
will be described in Section 2.2.
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2.2. Proper Orthogonal Decomposition (POD)

This section considers the procedure of POD. In 1937, John Lumley initially proposed
POD in the context of inhomogeneous structure turbulent flows [44] and stochastic tools
in turbulence (1970) [43]. POD is also known by other names, for example, Karhunen-
Love decomposition (KLD), Principal Component Analysis (PCA), or Singular Value
Decomposition (SVD). POD has been used in many applications, e.g. [8, 30, 39, 40, 60,
72]. We will next consider construct a low dimensional by using POD with the Galerkin
projection.

POD Basis

The aim of POD is to construct a set of global basis functions by extracting basis that
describes the main dynamics from the system of interest, which can be obtained by the
singular value decomposition (SVD) of solutions or snapshots:Y ∈ Rn×ns . The singular
value decomposition of a rectangular matrix Y ∈ Rn×ns is given by the following theorem.

Theorem 2.1 (Singular value decomposition,[28]). Let Y = [y1, . . . ,yns ] ∈ Rn×ns be
a snapshot matrix of rank r with yi ∼= y(ti), ti ∈ I, i = 1, . . . , ns. Then there exists a
decomposition of the form

Y = Û

σ1 0
. . .

0 σr

ZT = ÛΣZT (2.9)

where Û ∈ Rn×r and Z ∈ Rns×r are orthogonal matrices and Σ = diag(σ1, . . . , σr) ∈
Rr×r. The columns in Û = [u1, . . . ,un] are called the (left) singular vectors of Y and for
the singular values σi it holds: σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Proof. The formal derivation can, for example, be found in [28].

Notice that, for the SVD of Y = ÛΣZT , the following diagonalization holds

YYT = (ÛΣZT )(ÛΣZT )T = ÛΣ2ÛT , (2.10)

and therfore, the columns of Û are eigenvectors of the matrix YYT with corresponding
eigenvalues λi = σ2

i > 0, i = 1, . . . , r. The calculation of POD basis can be done by using
the following steps.

Algorithm 1 Algorithm for constructing POD basis

• INPUT : Snapshot vectors {yj}nsj=1 ⊂ Rn

• OUTPUT : POD basis matrix Vk ∈ Rn×k
1. Create snapshot matrix : Y = [y1, . . . ,yns ] ∈ Rn×nsand let r = rank(Y)
2. Compute SVD: Y = VΣWT and choose dimension k ≤ r
3. POD basis of rank k : Vk = [v1, . . . ,vk] = V(:, 1 : k)

From POD basis Algorithm 1, we first create the snapshots which are the solutions in
the different time steps. Then, we find POD basis Vk from the snapshots by using SVD
or POD. Likewise, in the case of nonlinear term, we find POD basis from Algorithm 1.



1734 Thai J. Math. Vol. 19 (2021) /S. Rungpitaxmana and S. Chaturantabut

One of the most important properties of POD is that it can construct an approximation
that minimizes the error in 2−norm for a given fixed basis rank. More details on this will
be discussed next in Section 2.3.

2.3. POD Error

We have presented the computation for a POD basis by using SVD. Alternately, it
can be shown that the POD basis matrix Vk is the solution to the following optimization
problem (2.13)

Theorem 2.2 (POD basis,[68]). Let Y ∈ Rn×ns be a snapshot matrix Y = [y1, . . . ,yns ]

with rank r ≤ min{n, ns}. Further, let Y = ÛΣZT be the singular value decomposition

of Y with orthogonal matrices Û = [u1, . . . ,un] and Ẑ = [z1, . . . , zns ] as in (2.9). Then,
for any ` ∈ {1, . . . , r} the solution to the optimization problem

max
ϕi,...,ϕ`

∑̀
i=1

ns∑
j=1

‖〈yj , ϕi〉‖2 (2.11)

s.t. 〈ϕi, ϕj〉 = ϕTi , ϕj = δi,j =

{
1, if i 6= j

0, if i = j
, for 1 ≤ i, j ≤ ` (2.12)

is given by the left singular vectors {ui}`i=1. The set of vectors ϕ1, . . . , ϕ` are called
the POD basis of rank `. Here, δi,j denotes the Kronecker delta.

Proof. The proof is given in [[68], p. 5-6]

Moreover, the optimization problem (2.13) will have minimum error when the POD
basis approximation yj ∼= VkV

T
k yj is used for j = 1, . . . , ns. This error is given by

ns∑
j=1

‖yj −VkV
T
k yj‖22 =

r∑
`=k+1

σ2
` , (2.13)

which is the sum of the neglected singular values σk+1, ..., σr from SVD of Y = [y1, ...,yns ].
We can proof by the method of low-rank approximation which can be found in [59].

Although we use POD to reduce the number of unknowns of the full-order system
and POD can reduce the large dimension of linear term, it cannot reduce computational
complexity for nonlinear term, which may still depend on the full dimension such as
when computing the term VT

k F(Vkỹ(t)) from (2.7). For this reason, we will combine
POD aprroximation with Discrete Empirical Interpolation Method (DEIM), which will
be described in Section 2.4.

2.4. Discrete Empirical Interpolation Method (DEIM)

This section considers the nonlinear term VT
k F(Vkỹ(t)) in (2.7). Notice that the

computational complexity for evaluating this term still depends on the full dimension
n. To eliminate this dependence, we combine POD approximation with the Discrete
Empirical Interpolation method (DEIM), which is recently proposed in [6, 14]. DEIM
has been used in many applications [1, 13, 15, 18, 37] discussed earlier. We first consider
VT
k F(Vkỹ(t)) in the form

F(Vkỹ(t)) = f(t) (2.14)
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and

N(t) = VT
k F(Vkỹ(t)). (2.15)

Estimate (2.14) by projecting f(t) onto subspace span{U} of the form

f(t) ≈ Uc(t) (2.16)

where U = [u1, . . . ,um] ∈ Rn×m is the projection basis with m � n. The basis matrix
U can be found by using SVD of [F(y1), . . . ,F(yns)],yi

∼= y(ti). Then we can calculate
c(t) from the following interpolation method. First, consider matrix

P = [e℘1
, . . . , e℘m ] ∈ Rn×m (2.17)

where e℘i = [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn is the ℘i-th column of the identity matrix In ∈
Rn×n, for i = 1, . . . ,m, for selecting m rows of U. Then assume that PTU is nonsingular
and solve for c(t) from

PT f(t) = (PTU)c(t) (2.18)

so,

c(t) = (PTU)−1PT f(t). (2.19)

Finally, the approximation is given by

F(VkỸ(t)) = f(t) ≈ Uc(t) = U(PTU)−1 PTF(Vkỹ(t))︸ ︷︷ ︸
m×1

. (2.20)

In the case when the nonlinear function F is componentwise, we have

F(VkỸ(t)) = f(t) ≈ Uc(t) = U(PTU)−1 F(PTVkỹ(t))︸ ︷︷ ︸
m×1

. (2.21)

Discrete Empirical Interpolation Method (DEIM) estimates nonlinear term by finding
projection basis from POD and selecting the interpolation indices by a greedy algorithm
The interpolated indices ℘1, . . . , ℘m, can be obtained form the following DEIM algorithm
[6].

Algorithm 2 DEIM

• INPUT : {u`}m`=1 ⊂ Rn linearly independent
• OUTPUT : ~℘ = [℘1, . . . , ℘m]T ∈ Rm

1. [|ρ|, ℘1] = max{|u1|}
2. V̄ = [v̄1], P̄ = [e℘1 ], ~℘ = [℘1]
3. for ` = 2 : m do

Solve (PTU)c = PTu`;
r = u` −Uc
[|ρ|, ℘j ] = max{|r|}

U← [U u`],P← [P e℘` ], ~℘←
[
~℘
℘`

]
end for

The aim of DEIM algorithm is to select the interpolation indices so that the approx-
imation has smallest error r = u` − Uc in each interation `. The procedure of DEIM
Algorithm 2 is as follows: First, we start with a basis of rank m, which can be obtained
by using POD of nonlinear term. Then, select the index of a component in the first basis
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vector u1 with the largest absolute value. Next, we select the other indices so that we
have minimum residual error r = u` −Uc in each step.

2.5. DEIM Error

The general form of DEIM approximation is summarized in Definition 2.3 and the
corresponding error of DEIM proposed in [14] is shown in Theorem 2.4. The extension of
this error bound of to the state-space error estimate can be found in [16]. We will extend
this error analysis in the next section.

Definition 2.3 (DEIM approximation, [14]). Let f : D 7→ Rn be a nonlinear vector-
valued function with D ⊂ Rd for some positive integer d. Let {u`}m`=1 ⊂ Rn be a linearly
independent set for ` ∈ {1, . . . ,m}. For t ∈ D , the DEIM approximation of order m for
f(t) in the space spanned by {u`}m`=1 is given by

f̂(t) = U(PTU)−1PT f(t), (2.22)

where U = [u1, . . . ,um] ∈ Rn×m and P = [e℘1
, . . . , e℘m ] ∈ Rn×m, with {℘1, . . . , ℘m}

being the output from Algorithm 2 with the input basis {ui}mi=1.

Theorem 2.4 (Error bound of DEIM approximation, [14]). Let f ∈ Rn be arbitrary
vector. Let {u`}m`=1 ⊂ Rn be a given orthonormal set of vectors. From Definition 3.1,

the DEIM approximation of order m ≤ n for f in the space spanned by {u`}m`=1 is f̂ =
U(PTU)−1PT f , where U = [u1, . . . ,um] ∈ Rn×m and P = [e℘1 , . . . , e℘m ] ∈ Rn×m, with
{℘1, . . . , ℘m} being the output from Algorithm 2.2 with the input basis {ui}mi=1. An error

bound for f̂ is then given by

‖f − f̂‖2 ≤ CE∗(f), (2.23)

where

C = ‖(PTU)−1‖2 and E∗(f) = ‖(I−UUT )f‖2 (2.24)

is the error of the best 2-norm approximation for F from the space Range(U).

The constant C is bounded [16] by

C ≤ (1 +
√

2n)m−1

‖eT℘1
U1‖2

= (1 +
√

2n)m−1‖u1‖−1
∞ . (2.25)

Note that Theorem 2.4 gives the error bound for the approximation obtained by DEIM
algorithm 2, but the proof established that the choice of the DEIM indices algorithm 2
minimizes ‖(PTU)−1‖2. Therefore, the approximation error is minimized in each iteration
of Algorithm 2. This work compares the theoretical error bounds in Theorem 2.4 in [[14],
lemma 3.2] with the exact error in Section 5.

Let f̃(t) be the interpolation apprximation of f(t) in the form

f̃(t) = Uc(t) = Pf(t), (2.26)

where projection P = U(PTU)−1PT . Therefore, N(t) = VT
k F(Vkỹ(t)) in (2.15) can be

written in the form

N(t) ≈ VT
k U(PTU)−1︸ ︷︷ ︸

precomputed:k×m

PTF(Vkỹ(t))︸ ︷︷ ︸
m×1

(2.27)
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and in the caes that F is componentwise, we have

N(t) ≈ VT
k U(PTU)−1︸ ︷︷ ︸

precomputed:k×m

F(PTVkỹ(t))︸ ︷︷ ︸
m×1

(2.28)

where VT
k U(PTU)−1 can be precomputed because there is no dependence on t. The

resulting reduced system is given by

d

dt
ỹ(t) = Ãỹ(t) + EF℘(ỹ(t)) (2.29)

where Ã = VT
k AVk ∈ Rk×k,E = VT

k U(PTU)−1 ∈ Rk×m,F℘(ỹ(t)) = PTF(Vkỹ(t)) ∈
Rm×1, and Ã and E can be precomputed without the dependence on t.

Therefore, computing the nonlinear term in equation (2.29) has no dependence on n
and this system is called POD-DEIM reduced system. Notice that this computational
efficiency requires two parts in the approximation:

1. POD basis U which can be obtained by using POD of F = [F(y(t1)), ...,F(y(tnt))].
2. Interpolate indices for selecting m rows by DEIM Algorithm 2.

3. State-Space Error Estimate for POD-DEIM Reduced System
in Semi-Implicit Discretized Setting

For POD reduced systems, the state-space error bounds of can be found in [59]. This
work extends the derivation in [[16], Section 4.2] to the discretized system from semi-
implicit Euler numerical scheme for POD-DEIM reduced systems. Consider the following
full-order and reduced-order systems:

d

dt
y = Ay + g(t) + F(y(t)), y(0) = y0 (3.1)

and
d

dt
ỹ = Ãỹ + g̃(t) + F̃(ỹ(t)), ỹ(0) = VT

k y0, (3.2)

where Ã = VT
k AVk, g̃(t) = VT

k Jg(t), F̃(ỹ(t)) = VT
k PF(Vkỹ), J = W(JTW)−1JT ,

P = U(PTU)−1PT , (3.1) is the full-order system, and (3.2) is the POD-DEIM reduced
system. Here, we discretized the system by using the semi-implicit Euler method for
the full-order system, the POD-DEIM reduced system in the form: for Y0 = y0 and
Ỹ0 = VT

k y0,

Yj+1 − Yj
∆t

= AYj+1 + g(tj) + F(Yj), (3.3)

Ỹj+1 − Ỹj
∆t

= ÃỸj+1 + g̃(tj) + F̃(Ỹj), (3.4)

for j = 0, 1, . . . , nt, where nt = T
∆t is the number of time steps with time steps ∆t.

Let M [F] = sup
u6=v

〈
u−v,F(u)−F(v)

〉∥∥u−v∥∥2 be the least upper bound (lub) logarithmic Lipschitz

constant with respect to the inner product 〈·, ·〉, 〈u,v〉 = uTv, and ‖u‖ =
√
〈u,u〉. The

approximation of y(tj+1) and ỹ(tj+1) are Yj+1 and Ỹj+1, respectively. Therefore, the
error is

Ej+1 = Yj+1 −VkỸj+1, (3.5)
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where Yj+1 is the solution of full system and Ỹj+1 is the solution of the POD-DEIM
reduced system in (3.3) for j + 1 = 1, . . . , nt.

We can write

Ej+1 = Yj+1 −VkV
T
k Yj+1︸ ︷︷ ︸

ρj+1

+ VkV
T
k Yj+1 −VkỸj+1︸ ︷︷ ︸

θj+1

(3.6)

Ej+1 = ρj+1 + θj+1 (3.7)

where ρj+1 = Yj+1 − VkV
T
k Yj+1, θj+1 = VkV

T
k Yj+1 − VkỸj+1. Since ρTj+1θj+1 = 0,

‖Ej+1‖22 = ‖ρj+1‖22 + ‖θj+1‖22. Let ‖θ̃j+1‖ = VT
k ‖θj+1‖.

From θj+1 = VkV
T
k Yj+1 − VkỸj+1, we have θj+1 = Vkθ̃j+1 and it can be shown that

θ̃j+1 = VT
k θj+1. That is,

θ̃j+1 = VT
k (VkV

T
k Yj+1 −VkỸj+1) = VT

k Yj+1 − Ỹj+1, (3.8)

and therefore, for all j = 0, 1, ...., nt,

θ̃j = VT
k Yj − Ỹj , (3.9)

for VT
k Vk = I. Using (3.9) with (3.1) and (3.2) gives

θ̃j+1 − θ̃j =
[
VT
k Yj+1 − Ỹj+1

]
−
[
VT
k Yj − Ỹj

]
θ̃j+1 − θ̃j

∆t
= VT

k

(Yj+1 − Yj
∆t

)
−
( Ỹj+1 − Ỹj

∆t

)
= VT

k

[
AY j+1 + g(tj) + F(Y j)

]
−
[
ÃỸ j+1 + g̃(tj) + F̃(Ỹ j)

]
.

Consider

VT
k

(Yj+1 − Yj
∆t

)
=ÃVT

k Yj+1 + g̃(tj) + F̃(VT
k Yj)

+ VT
k

[
AYj+1 + g(tj) + F(Yj)

]
−
[
ÃVT

k Yj+1 + g̃(tj) + F̃(VT
k Yj)

]
︸ ︷︷ ︸

R̃j+1

=ÃVT
k Yj+1 + g̃(tj) + F̃(VT

k Yj) + R̃j+1.

Therefore,

θ̃j+1 − θ̃j
∆t

= ÃVT
k Yj+1+g̃(tj)+F̃(VT

k Yj)−
[
ÃỸj+1+g̃(tj)+F̃(Ỹj)

]
+R̃j+1. (3.10)

Since ‖θ̃j+1‖2 = 〈θj+1, θj+1〉, then
‖θ̃j+1‖

∆t =
〈θ̃j+1,θ̃j+1〉
∆t‖θ̃j+1‖

and from the CauchySchwarz inequality, we have 〈θ̃j+1, θ̃j〉 ≤ ‖θ̃j+1‖‖θ̃j‖.
That is,

‖θ̃j‖
∆t
≥ 〈θ̃j+1, θ̃j〉

∆t‖θ̃j+1‖
. (3.11)
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Therefore,

‖θ̃j+1‖ − ‖θ̃j‖
∆t

≤ 1

∆t

[ 〈θ̃j+1, θ̃j+1〉
‖θ̃j+1‖

− 〈θ̃j+1, θ̃j〉
‖θ̃j+1‖

]
=

1

‖θ̃j+1‖

〈
θ̃j+1,

θ̃j+1 − θ̃j
∆t

〉
=

1

‖θ̃j+1‖

〈
θ̃j+1, ÃVT

k Yj+1 + g̃(tj) + F̃(VT
k Yj)−

[
ÃỸj+1 + g̃(tj) + F̃(Ỹj)

]
+ R̃j+1

〉
=

1

‖θ̃j+1‖

〈
θ̃j+1, ÃVT

k Yj+1 + g̃(tj) + F̃(VT
k Yj)−

[
ÃỸj+1 + g̃(tj) + F̃(Ỹj)

]〉
+

1

‖θ̃j+1‖

〈
θ̃j+1, R̃j+1

〉
.

From [[16], Section 4], by defining M [F] = sup
u6=v

〈
u−v,F(u)−F(v)

〉∥∥u−v∥∥2 , and using u = VT
k Yj+1

and v = Ỹj+1, we have

1

‖θ̃j+1‖

〈
θ̃j+1, ÃVT

k Yj+1 − ÃỸj+1

〉
+

1

‖θ̃j+1‖

〈
θ̃j+1, F̃(VT

k Yj)− F̃(Ỹj)
〉

≤M [Ã]
‖θ̃j+1‖2

‖θ̃j+1‖
+
‖θ̃j+1‖
‖θ̃j+1‖

‖F̃(VT
k Yj)− F̃(Ỹj)‖. (3.12)

The Lipschitz continuity of F implies ‖F̃(VT
k Yj)− F̃(Ỹj)‖ ≤ Lf ‖VT

k Yj − Ỹj‖︸ ︷︷ ︸
‖θ̃j‖

, so that

1

‖θ̃j+1‖

〈
θ̃j+1, ÃVT

k Yj+1 − ÃỸj+1

〉
+

1

‖θ̃j+1‖

〈
θ̃j+1, F̃(VT

k Yj)− F̃(Ỹj)
〉

≤M [Ã]‖θ̃j+1‖+ Lf‖θ̃j‖ (3.13)

and

1

‖θ̃j+1‖

〈
θ̃j+1, R̃j+1

〉
≤ 1

‖θ̃j+1‖
‖θ̃j+1‖‖R̃j+1‖ = ‖R̃j+1‖. (3.14)

Therefore,

‖θ̃j+1‖ − ‖θ̃j‖
∆t

≤M [Ã]‖θ̃j+1‖+ Lf‖θ̃j‖+ ‖R̃j+1‖. (3.15)

From θj+1 = Vkθ̃j+1, we have ‖θj+1‖ =
√

(Vkθ̃j+1)T (Vkθ̃j+1) = ‖θ̃j+1‖ and
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‖θ̃j+1‖ − ‖θ̃j‖
∆t

≤M [Ã]‖θ̃j+1‖+ Lf‖θ̃j‖+ ‖R̃j+1‖

‖θ̃j+1‖ − ‖θ̃j‖ ≤ ∆tM [Ã]‖θ̃j+1‖+ ∆tLf‖θ̃j‖+ ∆t‖R̃j+1‖

‖θ̃j+1‖ −∆tM [Ã]‖θ̃j+1‖ ≤ ‖θ̃j‖+ ∆tLf‖θ̃j‖+ ∆t‖R̃j+1‖(
1−∆tM [Ã]

)
‖θ̃j+1‖ ≤

(
1 + ∆tLf

)
‖θ̃j‖+ ∆t‖R̃j+1‖

‖θ̃j+1‖ ≤
1

1−∆tM [Ã]

[(
1 + ∆tLf

)
‖θ̃j‖+ ∆t‖R̃j+1‖

]
,

or

‖θ̃j+1‖ ≤ ζ
(
ζ̂‖θ̃j‖+ ∆t‖R̃j+1‖

)
, (3.16)

where ζ = 1
1−∆tM [Ã]

and ζ̂ = 1 + ∆tLf . Note that θ0 = 0, since

θ0 = VkV
T
k Y0 −VkỸ0 = Vk

[
VT
k Y0 − Ỹ0︸ ︷︷ ︸
VT
k Y0=Ỹ0

]
= 0.

Therefore, from (3.16),

‖θ̃j‖ ≤ ζ
(
ζ̂‖θ̃j−1‖+∆t‖R̃j‖

)
≤ ζj‖θ0‖+∆t

j∑
`=1

ζ`ζ̂`−1‖R̃j−`+1‖ ≤ ∆t
(
qi

j∑
`=1

‖R̃`‖2
)1/2

,

where qj =
∑j
`=1 ζ

2`ζ̂2(`−1).

The term ‖R̃`‖ will be written as a sum of differences that can be estimated using the
neglected singular values.

R̃` = VT
k

[
AY` + g(t`) + F(Y`)

]
−
[
ÃVT

k Y` + g̃(t`) + F̃(VT
k Y`)

]
= VT

k

[
AY` + g(t`) + F(Y`)

]
−
[
ÃVT

k Y` + g̃(t`) + VT
k PF(VkV

T
k Y`)

]
= VT

k

[
AY` + g(t`) + F(Y`)

]
−VT

k PF(Y`) + VT
k PF(Y`)

−
[
ÃVT

k Y` + g̃(t`) + VT
k PF(VkV

T
k Y`)

]
= VT

k

[
AY` + g(t`)

]
−
[
ÃVT

k Y` + g̃(t`)
]

+VT
k

[
F(Y`)− PF(Y`)︸ ︷︷ ︸

F̂

]
+ VT

k P
[
F(Y`)− F(VkV

T
k Y`)

]
=

[
VT
k AY` −VT

k AVkV
T
k Y`

]
+ VT

k

[
g(t`)− Jg(t`)

]
+ VT

k

[
F(Y`)− PF(Y`)

]
+VT

k P
[
F(Y`)− F(VkV

T
k Y`)

]
= VT

k A
(
Y` −VkV

T
k Y`

)
+ VT

k

[
g(t`)− Jg(t`)

]
+ VT

k

(
F(Y`)− F̂

)
+VT

k P
[
F(Y`)− F(VkV

T
k Y`)

]
.
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Since z` = (I−WWT )g(t`) and w` = (I−UUT )F(Y`) from Theorem 2.4, we have

R̃` = VT
kA
(
Y` −VkV

T
k Y`

)
+ VT

k (I− J)z` + VT
k (I− P)w` + VT

k P
[
F(Y`)− F(VkV

T
k Y`)

]
.(3.17)

The Lipschitz continuity of F implies ‖F(Y`) − F(VkV
T
k Y`)‖ ≤ Lf‖Y` − VkV

T
k Y`‖ =

Lf‖ρ`‖, so that the norm associated with an inner product satisfies the triangle inequality

‖R̃`‖ ≤ γ‖ρ`‖+ ω‖z`‖+ β‖w`‖+ α‖ρ`‖ = (γ + α)‖ρ`‖+ ω‖z`‖+ β‖w`‖, (3.18)

where γ = ‖VT
k A‖, ω = ‖VT

k (I − J)‖, α = ‖VT
k P‖Lf , β = ‖VT

k (I − P)‖. From (3.16),
since θ0 = 0. Then, for j = 0, . . . , nt,

‖θj‖2 ≤ (∆t)2qj

( j∑
`=1

‖R̃`‖2
)
≤ (∆t)2āM ((γ + α)2Ēy + ω2Ēg + β2Ēf ),

where āM = 2qj and Ēy =
∑j
`=1 ‖ρ`‖2, Ēg =

∑j
`=1 ‖z`‖2, Ēf =

∑j
`=1 ‖w`‖2, defined by

Ēy =

nt∑
j=0

‖Yj −VkV
T
k Yj‖2, Ēf =

nt∑
j=0

‖Fj −UUTFj‖2, Ēg =

nt∑
j=0

‖gj −WWT gj‖2 (3.19)

where f(t) = F(y(t)), Fj = F(Yj), gj = g(tj), Vk is the POD basis of the snapshot set
for y(t), U is the POD basis of nonlinear snapshots f(t) = F(y(t)), and W is the POD
basis of nonlinear snapshots g(t).

Finally, using
∑nt
`=0 ‖E`‖2 =

∑nt
`=0 ‖ρ`‖2 +

∑nt
`=0 ‖θ`‖2 gives

nt∑
j=0

‖Yj −VkỸj‖2 =

nt∑
`=0

‖E`‖2 ≤ C̄(Ēy + Ēf + Ēg), (3.20)

where C̄ = max{1 + āM∆t(γ + α)2T, āM∆tβ2T, āM∆tω2T} and for T = nt∆t.
Therefore the norm of the error ‖Ej‖ is bounded on [0, T ], that is ‖E`‖2 = ‖ρ`‖2+‖θ`‖2

gives the error bound
∑nt
j=0 ‖Yj −VkỸj‖2 ≤ C̄

(
Ēy + Ēf + Ēg

)
, which is summarized in the

following theorem.

Theorem 3.1 (Error bound: Convergence of POD-DEIM reduced system). Let y(t) be
the solution of the full-order system (3.1) and ỹ(t) be the solution of the POD-DEIM
reduced system (3.2), for t ∈ [0, T ]. Let Yj be the solutions of the dizcretized systems of

(3.1) and Ỹj be the solutions of the dizcretized systems of (3.2) by using semi-implicit

Euler, ∆t = T
nt

. Let M [Ã] = sup
u6=v

〈
u−v,Ã(u)−Ã(v)

〉∥∥u−v∥∥2 , u = VT
k Yj, and v = Ỹj be the

logarithmic Lipschitz constant of Ã and assume that A in (3.1) is Lipschitz continuous
and F(y(t)) in (3.1) is Lipschitz continuous with Lipschitz constant Lf as ‖F(y)j −
F(y)j+1‖ ≤ Lf‖yj − yj+1‖. Then

nt∑
j=0

‖Yj −VkỸj‖2 ≤ C̄
(
Ēy + Ēf + Ēg

)
, (3.21)
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where

C̄ := max{1 + āM∆t(γ + α)2T, āM∆tβ2T, āM∆tω2T}, (3.22)

γ := ‖VT
k A‖, ω := ‖VT

k (I− J)‖, α := ‖VT
k P‖Lf , β := ‖VT

k (I− P)‖ (3.23)

āM := 2qj = 2

j∑
`=1

ζ2`ζ̂2(`−1), ζ :=
1

1−∆tM [Ã]
, ζ̂ := 1 + ∆tLf , (3.24)

and Ēy, Ēf , Ēg are defined in (3.19).

Remark 3.2. When Vk, U, W are POD basis matrices of snapshot sets {Yj}, {Fj}, {gj},
respectively, then, Ēy =

∑r
`=k+1 λ`, Ēf =

∑rs
`=m+1 s`, Ēg =

∑rν
`=q+1 ν` where {λ`}r`=1,

{s`}rs`=1, and {ν`}rν`=1 are eigenvalues of Y Y T , FFT , and ggT , respectively.

In addition to the state space error estimate for POD-DEIM reduced system, there is
an a-posteriori error estimate for POD-DEIM reduced system which can be found in the
work by D. Wirtz, D. C. Sorensen and B. Haasdonk [73].

In the next section, we will show the application of POD-DEIM model reduction
through Fisher’s equation.

4. Applications of Model Reduction on Fisher’s equation

This work uses Fisher’s equation as the main model problem for nonlinear partial differ-
ential equation (PDE). Here, we will describe how to use the model reduction techniques
via POD and DEIM for Fisher’s equation. Fisher’s equation can be written in the form:

∂y

∂t
= αy(1− y) +D

∂2y

∂x2
, (4.1)

where D is the diffusion coefficient (positive), α is the reactive factor (positive), t is time,
x is the spatial location and y = y(x, t) is the state variable (e.g., population density,
particles of chemicals, of a bacteria colony, population of organisms) at location x and
time t. The term αy(1− y) is also called logistic growth. In 1937, equation (4.1) was first
proposed by Fisher [2] as a model for the spread of an advantageous gene in a population,
and in the same year Kolmogoroff, Petrovsky and Piscounoff [3] also proposed the same
equation of the form (4.1). As a result, (4.1) is called Fisher’s equation, Fisher-KPP
equation, or also known as the diffusional logistic equation which is the simplest equation
with diffusion, growth and self-regulation of a species.

4.1. Non-Dimensionalization for Fisher’s Equation

We can rescale the variables as in [47, 62]. Let t∗ = αt, x∗ = x( αD )1/2. We use the
variables t∗ and x∗ to nondimensionalize the equation (4.1). Note that

x =

(
D

α

)1/2

x∗, t =
1

α
t∗. (4.2)
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By substituting (4.2) into each part of (4.1), we have

∂y

∂t
= α

∂y

∂t∗
, (4.3)

∂y

∂x
=
( α
D

)1/2 ∂y

∂x∗
, (4.4)

∂2y

∂x2
=

∂

∂x

(
∂y

∂x

)
=

∂

∂x

[( α
D

)1/2 ∂y

∂x∗

]
=
( α
D

)1/2 ∂

∂x∗

[( α
D

)1/2 ∂y

∂x∗

]
=
α

D

∂2y

∂x∗2
. (4.5)

Substituting the above forms of ∂y
∂t , ∂2y

∂x2 , and ∂2y
∂x2 into (4.1) gives

α
∂y

∂t∗
= αy(1− y) +D

( α
D

) ∂2y

∂x∗2
(4.6)

After simplifying the above equation and dropping the superscript star notation, we have

∂y

∂t
= y(1− y) +

∂2y

∂x2
. (4.7)

Fisher’s equation was numerically solved by various methods such as pseudospectral
method [50], finite volume method, the Sinc collocation method [4], the propagation prop-
erties of nonnegative and bounded solutions [63], a moving mesh method in cylindrical
coordinates [54], and fully discrete finite element approximations [29]. Fisher’s equation
was also studied in 2D setting [58] and its critical wave speed has been investigated in
[20]. Here, we consider initial value problem in the form of

∂y

∂t
= y(1− y) +

∂2y

∂x2
(4.8)

with x ∈ [−25, 50], t ∈ [0, 15], boundary condition y(−25, t) = 1, y(50, t) = 0 and initial

condition y(x, 0) =


1 ;x < −10
1
4 ; 10 < x < 20

0 ; otherwise

.

Notice that initial condition has the discontinuities at −10, 10, and 20. The initial and
boundary conditions are obtained from [21].

4.2. Time Discretization

By using finite difference (FD) discetization, we have

dyi
dt

= yi(1− yi) +
yi+1 − 2yi + yi−1

(∆x)2
(4.9)

which can be written in the matrix form as in (2.1) in Section 2 as

d

dt
y(t) = Ay + g(t) + F(y(t)) (4.10)

where A is a constant matrix from FD discretization and g(t) is a vector-valued function
defined on a variable t ∈ R, or a constant vector obtained from the boundary conditions.
When the model problem and the initial condition given in this section are used, we have
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A = 1
(∆x)2


−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
0 1 −2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −2

 ∈ Rn×n, g(t) = 1
(∆x)2


1
0
...
0

 ∈ Rn×1.

F(y(t)) is the nonlinear function:

F(y(t)) =

y1(t)
...

yn(t)

 . ∗

1

...
1

−
y1(t)

...
yn(t)


 ∈ Rn×1.

Noticed that the general form of ODE (2.1) has only one nonlinear term F(y(t)) but
our model problem (4.10) has also the term g(t), which comes from the inhomogeneous
boundary conditions.

We solve ODE full-order system (4.10) by semi-implicit Euler method, by using the
following time discretization

yj+1
i − yji

∆t
= Ayj+1

i + g(t) + F(yji (t)) (4.11)

or

yj+1
i = (I−∆tA)−1[yji + ∆tg(t) + ∆tF(yji (t))] (4.12)

where F(y(t)) = y.∗(1−y), and the notation “ .* ” denotes the componentwise evaluation.

4.3. Model Reduction for Fisher’s Equation

The projection basis or POD basis Vk of the dimension k, k � n for reduced system
is constructed by using steps from Algorithm 1. As done in Section 2, we substitute (2.2)
into (2.1) and applying the Galerkin projection. The POD reduced system is of the form:

d

dt
ỹ(t) = VT

k AVk︸ ︷︷ ︸
Ã

ỹ(t) + VT
k g(t) + VT

k F(Vkỹ(t)), (4.13)

where Ã = VT
k AVk ∈ Rk×k can be precomputed because it does not depend on time

variable t. Then we solve POD reduced system for (4.13) by the semi-implicit Euler
method.

yj+1
i − yji

∆t
= Ãyj+1

i + VT
k g(t) + VT

k F(Vky
j
i (t)) (4.14)

or

yj+1
i = (Ik −∆tÃ)−1[yji + ∆tVT

k g(t) + ∆tVT
k F(Vky

j
i (t))]. (4.15)

As described in Section 2, computing POD reduced system still depends on n. Hence
we combine POD with DEIM as in section 2.4 and Algorithm 2. We compute projection
basis U from F = [F(y(t1)), . . . ,F(y(tnt))]. Note that the function g(t) in this section is
a constant vector and therefore VT

k g(t) can be precomputed. However, it is possible that
g(t) depends on the variable t, which could require us to compute VT

k g(t) every time step
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t. Therefore, we will also present here a DEIM approximation for VT
k g(t) as in the case

of VT
k F(Vk

˜y(t)). The function g(t), is first approximated in the form

g(t) ≈Wd(t) (4.16)

where W = [w1, . . . ,wq] ∈ Rn×q is the projection basis,d(t) ∈ Rq×1 is the coefficient vec-
tor with q � n. Note that, above estimates (4.16) by projecting g(t) subspace span{W}.
The basis matrix W can be found by using SVD of [g(t1), . . . ,g(tns)] and he coefficient
vetor d(t) ∈ Rq×1. Then we can calculate d(t) from the following interpolation method.
Consider the matrix

J = [e℘1 , . . . , e℘q ] ∈ Rn×q (4.17)

where ℘j = [0, . . . , 0, 1, 0, . . . , 0]T ∈ Rn is the ℘j-th column of the identity matrix In ∈
Rn×n, for j = 1, . . . , q by selecting q rows for W. Then assume that JTW is nonsingular
and solve for d(t) from

JTg(t) = (JTW)−1d(t). (4.18)

That is,

d(t) = (JTW)−1JTg(t). (4.19)

Lastly, the approximation is given by

g(t) ≈Wd(t) = W(JTW)−1 JTg(t)︸ ︷︷ ︸
q×1

. (4.20)

Note that, multiplying JT (4.18) is equivalent to extracting the q rows corresponding to
the interpolation indices ℘1, . . . , ℘q from Algorithm 2. After that, we let g̃(t) to be the
interpolation approximation of g(t) in the form

g̃(t) = Wd(t) = Jg(t), (4.21)

where J = W(JTW)−1JT is a projection. Therefore, VT
k g(t) in (4.13) can be written in

the form

VT
k g(t) ≈ VT

k W(JTW)−1︸ ︷︷ ︸
precomputed:k×q

JTg(t)︸ ︷︷ ︸
q×1

(4.22)

where VT
k W(JTW)−1 can be precomputed because there is no dependence on t. The

resulting reduced system, which has no dependence on n is given by

d

dt
ỹ(t) = Ãỹ(t) + Hg℘(t) + EF℘(ỹ(t)) (4.23)

where Ã = VT
k AVk ∈ Rk×k,H = VT

k W(JTW)−1 ∈ Rk×q,g℘(t) = VT
k g(t) ∈ Rq×1,E =

VT
k U(PTU)−1 ∈ Rk×m,F℘(ỹ(t)) = PTF(Vkỹ(t)) ∈ Rm×1 and Ã,H, and E can be

precomputed no depend on t. The corresponding semi-implicit discretization is given by

yj+1
i − yji

∆t
= Ãyj+1

i + HJTg(t) + EF℘(Vky
j
i (t)) (4.24)

or

yj+1
i = (Ik −∆tÃ)−1[yji + ∆tHJTg(t) + ∆tEF℘(Vky

j
i (t))]. (4.25)

The next section shows some numerical results form applying this POD-DEIM ap-
proach on Fisher’s equation.
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5. Numerical Results

This section demonstrates the numerical results of Fisher’s equation by using MAT-
LAB in computation. There are three applications considered in this section. The first
numerical experiment applies POD and DEIM to directly construct a reduced system
with the same setting as the original full-order system. The second numerical test in-
vestigates the effect of basis used for constructing reduced systems by considering “POD
basis with snapshot difference quotients” as suggested in [33]. The last experiment il-
lustrates the usefulness of the POD-DEIM approach for Fisher’s equation with various
boundary conditions.

5.1. Application 1 : the POD and POD-DEIM Reduced System

for Fisher’s Equation

In this numerical experiment, we present the applcation of POD and DEIM reduced
system for Fisher’s equation with the same parameter and the same boundary conditions.
Finite difference discretization with semi-implicit scheme is used to obtain numerical
results. Figure 1 is the numerical solution of the original FD system of Fisher’s equation
with dimension 500. We use 500 solutions or snapshots to construct reduced basis by using
SVD or POD. Figure 2 shows the singular values of the 500 solution snapshots of y(t)
and F(y(t)) which can be obtained simultaneously from the full-order FD discretization
of the Fisher’s equation. We can then construct POD reduced system from this basis.
Figure 3 is the numerical solution of the POD reduced system of the Fisher’s equation
with different POD dimensions.

Figure 4 is the numerical solution of the POD-DEIM reduced system of the Fisher’s
equation with different POD and DEIM dimensions. Notice that solutions from both
POD and POD-DEIM reduced systems look the same as the solution of full-order system
in Figure 1. The errors of POD and POD-DEIM reduced system and simulation time are
shown in Table 1.

Figure 1. [Application 1] Numerical solution of the original FD system
(dim 500) of Fisher’s equation.
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(a) The singular values of y(t).
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(b) The singular values of F(y(t)).

Figure 2. [Application 1] The singular values of the 500 snapshots so-
lution of y(t) and F(y(t)) from the full order FD discretization of the
Fisher’s equation.

(a) POD dim = 40. (b) POD dim = 30.

(c) POD dim = 26. (d) POD dim = 20.

Figure 3. [Application 1] Solution of POD reduced system of Fisher’s
equation with different POD and DEIM dimensions.
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(a) POD dim = 40, DEIM dim = 40. (b) POD dim = 30, DEIM dim = 30.

(c) POD dim = 25, DEIM dim = 25. (d) POD dim = 25, DEIM dim = 25.

Figure 4. [Application 1] Solution of the POD-DEIM reduced system
of Fisher’s equation with different POD and DEIM dimensions.

Dimension Error (Average) CPU Time (sec) Ratio CPU Time
Full 500 (FD) − 6.0730 1
POD 40 5.0719× 10−16 6.0730× 10−1 1/10
POD 30 5.0606× 10−10 5.4889× 10−1 1/11
POD 26 1.0355× 10−6 4.0487× 10−1 1/15
POD 20 2.3550× 10−4 2.8938× 10−1 1/21
POD 40/DEIM 40 5.8264× 10−16 2.0243× 10−1 1/30
POD 30/DEIM 30 8.2261× 10−10 1.9251× 10−1 1/32
POD 25/DEIM 25 1.4419× 10−9 1.5183× 10−1 1/40
POD 20/DEIM 20 9.8284× 10−3 1.3496× 10−1 1/45

Table 1. [Application 1] CPU time (and its corresponding ratio) of
the full system, POD reduced system, and POD-DEIM reduced system;
Average error of solutions.

Table 1 shows the accuracy via the average error of the solutions of POD and POD-
DEIM reduced systems. Notice that the errors of POD reduced system with POD di-
mensions 20, which is approximately O(10−4) are less than the error of POD-DEIM
reduced system with POD dimensions 20 and DEIM dimensions 20, which is approxi-
mately O(10−3). The simulation time of POD reduced system decreases by a factor of
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approximately 32 and CPU time of the POD-DEIM reduced system decreases by a factor
of approximately 45. Obviously, the POD-DEIM reduced system spends less time than
the POD reduced system. This can be explained by the fact that the DEIM approxima-
tion can efficiently approximate the nonlinear term as shown in Section 2. Figure 5 is the
DEIM points where we plot the first 30 interpolation points and the first 10 points are
labelled as P1, P2, . . . , P10. Figure 6 and 7 show POD basis vectors of the snapshots of
linear and nonlinear term from (4.10). Figure 8 shows errors for DEIM reduced system
which are the exact errors, error bounds in Theorem 2.4, and used max(F(y)) combine
with Theorem 2.4.
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Figure 5. [Application 1] The first 30 points in the discretized spatial
domain selected by the DEIM algorithm (the first 10 points are labelled
by P1, P2, . . . , P10).
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(b) POD basis #2.
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(c) POD basis #3.
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(d) POD basis #5.

x-30 -20 -10 0 10 20 30 40 50

-0.2

0

0.2

0.4

0.6

0.8

1
POD basis (# = 8)

(e) POD basis #8.
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(f) POD basis #10.

Figure 6. [Application 1] The POD basis vectors of the snapshots from (4.10).
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(d) POD basis (nonlinear)
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(e) POD basis (nonlinear)
#8.
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Figure 7. [Application 1] The POD basis vectors of the snapshots of
nonlinear term from (4.10).
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Figure 8. [Application 1] Average errors, error bounds, and approxi-
mate error bounds.

In the next section, we will use different snapshot sets to construct the POD basis. In
particular, Section 5.2 will use additional “POD basis with snapshot difference quotients”
to construct reduced systems.

5.2. Application 2 : POD Basis with Snapshot Difference Quotients

for Fisher’s Equation

In the second numerical experiment, we use the snapshots Y = [y1, . . . ,yns ] from non-
linear original system with additional finite difference of the adjacent snapshots as done
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in [33]
[
Y, Ŷ

]
, Ŷ =

[
y2−y1

∆t , . . . ,
yns−yns−1

∆t

]
∈ Rn×ns−1. We will refer to these snapshots(

yj+1−yj
∆t

)
, j = 1, 2, . . . , ns as the “POD basis with snapshot difference quotients.” A

similar approach is used for the snapshots of nonlinear term to construct POD basis for
DEIM approximation. Then these basis sets are used to construct POD and POD-DEIM
reduced systems.

Figure 9. [Application 2] Numerical solution of the original FD system
(dim 500) of Fisher’s equation.

Figure 9 shows the numerical solution of Fisher’s equation with dimension 500. We
use 500 snapshots to find POD basis as explained in Algorithm 1. The singular values
of the 500 solutions snapshots of y(t) and F(y(t)) are shown in Figure 10(a). The decay
of these plots suggests that using 60 basis vectors is enough to capture the dynamics of
the collected snapshots. However, when 999 solution snapshots of y(t) and F(y(t)) are
used to construct POD basis, the decay of singular values in Figure 10(b) suggests that
we should use approximately 120 basis vectors to capture all features of the full-order
system.
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(a) The singular values of the 500
snapshots.
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(b) The singular values of the 999
snapshots.

Figure 10. [Application 2] The singular values of the number snapshots
of y(t) and F(y(t)) from the difference POD basis of the Fisher’s equa-
tion.
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(a) POD dim = 40. (b) POD dim = 30. (c) POD dim = 26.

Figure 11. [Application 2] Solution of POD reduced system for Fisher’s
equation with different POD and DEIM dimensions by using the 999
snapshot solutions of the original FD system with POD basis with snap-
shot difference quotients.

(a) POD dim = 40. (b) POD dim = 30. (c) POD dim = 26.

Figure 12. [Application 2] Solution of POD reduced system for Fisher’s
equation with different POD and DEIM dimensions by using the 500
snapshot solutions of the original FD system.

Figure 11 illustrates the numerical solutions of the POD reduced systems with the
POD basis constructed from snapshot difference quotients of the Fisher’s equation. No-
tice that they are similar to the solution of POD reduced system for Fisher’s equation
with original POD basis in Figure 12 and full-order system in Figure 9. This shows
that POD reduced systems can be computed with less CPU time than full-order system
while still maintaining the accuracy. However, the complexity of nonlinear term is not
truely reduced. So we combine POD approximation with DEIM algorithm to obtain a
POD-DEIM reduced system. Figure 13 shows the numerical solutions of the POD-DEIM
reduced systems with POD basis constructed from snapshot difference quotients of the
Fisher’s equation. Notice that they are similar to the solution of POD reduced system for
Fisher’s equation with original POD basis as shown in Figure 12 and full-order system
as shown in Figure 9. In addition, the solutions from both the POD and POD-DEIM
reduced systems look the same as the solution of full-order system in Figure 9. The errors
of the POD and POD-DEIM reduced systems and simulation time are shown in Table 2.
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(a) POD = 26, DEIM = 21. (b) POD = 26, DEIM = 60. (c) POD = 25, DEIM = 25.

Figure 13. [Application 2] Solution of the POD-DEIM reduced system
for Fisher’s equation with different POD and DEIM dimensions by using
the 999 snapshot solutions of the original FD system with POD basis
with snapshot difference quotients.

(a) POD = 26, DEIM = 21. (b) POD = 26, DEIM = 60. (c) POD = 25, DEIM = 25.

Figure 14. [Application 2] Solution of the POD-DEIM reduced system
for Fisher’s equation with different POD and DEIM dimensions by using
the 500 snapshot solutions of the original FD system.

Table 2 presents the simulation time and the accuracy of the POD and POD-DEIM
reduced systems, which shows that basis constructed with additional POD basis with
snapshot difference quotients gives more accurate results for POD reduced system but not
for POD-DEIM reduced system in the case of dimension POD 26 and DEIM 21. However,
for dimension POD 26 and DEIM 60, the numerical approximations are more accurate
when using these additional snapshots quotients for both POD and POD-DEIM reduced
systems. These results show that adding snapshot difference quotients can increase the
accuracy of POD reduced system, but does not neccessary improve the accuracy of POD-
DEIM reduced system.

In the next section, we will experiment various boundary conditions with Fisher’s
equation.
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Dimension Error (Average) CPU Time (sec) Ratio CPU Time

Full 500 (FD) − 6.0730 1

POD 40 5.0719× 10−16 6.0730× 10−1 1/10

POD 30 5.0606× 10−10 5.4889× 10−1 1/11

POD 26 1.0355× 10−6 4.0487× 10−1 1/15

POD 20 2.3550× 10−4 2.8938× 10−1 1/21

POD 40/DEIM 40 5.8264× 10−16 2.0243× 10−1 1/30

POD 30/DEIM 30 8.2261× 10−10 1.9251× 10−1 1/32

POD 26/DEIM 21 1.1042 1.8403× 10−1 1/33

POD 26/DEIM 60 1.4737× 10−9 2.3358× 10−1 1/26

POD 25/DEIM 25 1.4419× 10−9 1.5183× 10−1 1/40

POD 20/DEIM 20 9.8284× 10−3 1.3496× 10−1 1/45

Table 2. [Application 2] Average error of solutions; CPU time (and
its corresponding ratio) of the full system, POD reduced system, and
POD-DEIM reduced system.

5.3. Application 3 : the Varying Boundary Conditions for Fisher’s

Equation

In the last application, we consider many boundary conditions for Fisher’s equation.
The numerical test in this section have the same initial conditions as the experiments in
Section 5.1, but they use different boundary conditions.

Figure 15 shows the solution of full-order system with dimension 500 with boundary
conditions: y(−25, t) = sin( 4π

5 t), y(50, t) = 0 . Then, we construct snapshots matrix: Y =[
Y1,Y2

]
from Figure 16, where Y1 and Y2 are the solutions shown in Figure 16(a) and

16(b), respectively. After that we compute the POD basis from the snapshots of the two
full-order systems, one uses boundary condition y(−25, t) = sin(π2 t) and the other uses
y(−25, t) = sin(πt). The resulting singular values are shown in Figure 17 which use 1,000
snapshots of y(t) and F(y(t)) from Figure 16. Notice that it is enough to just use 120
basis for describing the original solutions. When we compute POD basis, we can use
construct a POD reduced system.

Figure 15. [Application 3] Solution of full-order system for Fisher’s
equation with boundary conditions is y(−25, t) = sin( 4π

5 t), y(50, t) = 0.
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(a) Boundary conditions is y(−25, t) =
sin(π

2
t), y(50, t) = 0

(b) Boundary conditions is y(−25, t) =
sin(πt), y(50, t) = 0

Figure 16. [Application 3] Solution of full-order systems for Fisher’s
equation with the different boundary conditions.
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Figure 17. [Application 3] The singular values of the 1,000 snapshots
solution of y(t) and F(y(t)) from the full-order FD discretization of the
Fisher’s equation with the boundary conditions from the solution in Fig-
ure 16.

Figure 18 shows the solutions of POD reduced systems for Fisher’s equation with the
different POD dimensions. Notice that they are similar to the solution of full-order system
in Figure 15. The numerical experiment shows that POD reduced system can be used to
compute the solutions with less time than the full-order system while still maintaining
the accuracy. Figure 19 shows the solutions of POD-DEIM reduced systems for Fisher’s
equation with different POD and DEIM dimensions. Notice that they are similar to the
solution of full-order system in Figure 15. The POD-DEIM reduced system can be used
to compute the solutions with less CPU time than both the full-order system and the
POD reduced system. The average errors and CPU time are given in Table 3.

Notice that, although the solutions of Fisher’s equation with boundary conditions
y(−25, t) = sin( 4π

5 t), y(50, t) = 0 are not used in the construction of POD basis, the
POD and POD-DEIM reduced systems give very accurate approximations as shown in
Figure 18 and 19. From Table 3, CPU time of POD reduced system reduce by a factor of
approximately 12 and CPU time of POD-DEIM reduced system decreases by a factor of
approximately 30. That is POD-DEIM reduced system uses less the computational time
than POD reduced system, as shown in the previous two numerical tests.
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(a) POD dim = 40. (b) POD dim = 30. (c) POD dim = 20.

Figure 18. [Application 3] Solution of POD reduced system for Fisher’s
equation with the 3 different POD dimensions where boundary conditions
are y(−25, t) = sin( 4π

5 t), and y(50, t) = 0.

(a) POD = 25, DEIM = 30. (b) POD = 30, DEIM = 30. (c) POD = 30, DEIM = 40.

Figure 19. [Application 3] Solution of POD-DEIM reduced system for
Fisher’s equation with the 3 different dimensions of POD and DEIM
where boundary conditions are y(−25, t) = sin( 4π

5 t), and y(50, t) = 0.

Dimension Error (Average) CPU Time (sec) Ratio CPU Time
Full 500 (FD) − 6.7724 1
POD 25 1.2600× 10−3 4.5149× 10−1 1/15
POD 30 8.5056× 10−4 6.7724× 10−1 1/10
POD 25/DEIM 30 7.9945× 10−2 1.7822× 10−1 1/38
POD 30/DEIM 30 2.0557× 10−2 2.1846× 10−1 1/31
POD 30/DEIM 40 7.3983× 10−3 2.3353× 10−1 1/29

Table 3. [Application 3] Average error of solutions and CPU time (with
its corresponding ratio) of the full system, POD reduced system, and
POD-DEIM reduced system.

6. Conclusion

This work focused on reducing the computational complexity of Fisher’s equation,
which had been used as the main model problem for nonlinear partial differential equa-
tions (PDEs). Finite difference (FD) method was used to discretize the model problem,
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which could result in a nonlinear ordinary differential equations (ODEs) with large dimen-
sion. This system was called full-order system and it was solved by using semi-implicit
Euler method to obtain the solution snapshots. We used SVD to compute the POD
basis set, and it was then combined with the Galerkin projection, which was called POD-
Galerkin approach, to construct a POD reduced system with small dimension. Even
if POD reduced system had a small dimension, it could not reduce the computational
complexity of nonlinear term. Therefore, we combined POD with DEIM. The resulting
POD-DEIM reduced system with small dimension could reduce the complexity in com-
puting the nonlinear term. The accuracy of the reduced model was shown numerically
to be in the same order when POD was extended by DEIM. An a-priori error bound
was proposed for the POD-DEIM reduced-order solutions from the semi-implicit Euler
method by extending the derivation in [59]. This work also considered combining the
original snapshots with additional finite difference of the adjacent snapshots, which was
called “POD basis with snapshot difference quotients.” Adding the snapshot difference
quotients could increase the accuracy of the POD reduced system as shown in [33], but
it did not necessary increase the accuracy of the POD-DEIM reduced system. This work
demonstrated the efficiency of the POD-DEIM technique for Fisher’s equation with vary-
ing boundary conditions. We used two different boundary conditions that were sampled
to generate snapshot matrix for computing POD basis sets used in the Galerkin pro-
jection and DEIM approximation. These basis sets were used to construct POD-DEIM
reduced systems that could accurately approximate the solutions of the original systems
with different boundary conditions, although these systems were not used in generating
the snapshot matrix for POD basis.

Some possible extensions of this work are discussed as follows. The framework pre-
sented in this work can be directly extended to the 2D fisher’s equation. The result in
Section 5 shows that the snapshot selection procedure use for computing POD basis can
be improved to give more accurate results for both POD and POD-DEIM reduced system.
Algorithm for selecting DEIM indices can also be improved in order to have smaller error.
In addition, the solutions of the full-order system, POD and POD-DEIM reduced systems
which are computed by using semi-implicit Euler method in this work can be improved
by using higher order numerical scheme. It is also important to investigate how to ob-
tain the minimum dimensions that is still enough to maintain the stability and accuracy
of the original system as much as possible. Since POD basis used in model reduction
techniques is computed from the snapshots, the choice of snapshots is a very important
factor for achieving good accuracy. We can also add the different snapshots from the
original snapshots to increase the efficiency and accuracy of the reduced system. Some
systems with external factors may not be predicted for their solution precisely. In many
simulations, we are only able to describe the probability of that solutions by using the
probability theory. Hence, a possible future research is to combine stochastic notion with
model reduction frameworks that can maintain stability and can decrease computational
time for simulating the large-scale systems. Finally, this POD-DEIM approach can be
used to study sensitively analysis when other parameter values in the system are changed.
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