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Abstract An iterative algorithm is constructed to approximate solutions of split equality fixed point

problem (SEFPP) for quasi-φ-nonexpansive mappings in real Banach spaces more general than Hilbert

spaces. Weak convergence of the sequence generated by the algorithm is proved. The theorem proved

complements recent important results to provide algorithms for approximating solutions of SEFPP. Fur-

thermore, strong convergence of the sequence generated by the algorithm is proved under the assumption

that the operators are semi-compact. Moreover, applications of the theorem to split equality problem and

split variational inclusion problem are presented. Finally, numerical examples are presented to illustrate

the strong convergence of the sequence generated by our algorithm.
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1. Introduction

Let K be a nonempty closed and convex subset of a normed space, E. Let T : K → K
be a map. A point x∗ ∈ K is called a fixed point of T if Tx∗ = x∗. We shall denote the
set of fixed points of any map T by F (T ).

Let H1, H2 and H3 be real Hilbert spaces, T : H1 → H1 and S : H2 → H2 be nonlinear
mappings such that F (T ) 6= ∅ and F (S) 6= ∅. Let A : H1 → H3 and B : H2 → H3 be
bounded linear maps. The split equality fixed point problem (SEFPP) studied by Moudafi
[1] and a host of other authors is the following:

find x∗ ∈ F (T ), y∗ ∈ F (S) such that Ax∗ = By∗.

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright c© 2021 by TJM. All rights reserved.
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We shall denote the set of solutions of the SEFPP by Ω. The SEFPP has applications in
several important fields such as in decomposition method for partial differential equation,
game theory, intensity modulated radiation therapy, and in many other fields (see, e.g.,
[2], [3] and the references contained in them). Consequently, the problem has attracted
the attention of several researchers, especially within the past 15 years, or so (see, e.g.,
[4–7] and the references therein). We remark here that if H2 = H3 and B = I, where
I is the identity map on H2, then the SEFPP reduces to the split common fixed point
problem (SCFPP) introduced by Censor and Segal [8] which is known to have applications
in several real life problems (see, e.g., [9] and the references therein).

Zhao [10] introduced the following iterative algorithm for approximating a solution of
SCFPP in real Hilbert spaces where T and S are quasi-nonexpansive mappings:

x0 ∈ H1, y0 ∈ H2,

xn+1 = αnun + (1− αn)Tun, un = xn − γnA∗(Axn −Byn),

yn+1 = βnvn + (1− βn)Svn, vn = yn + γnB
∗(Axn −Byn),

(1.1)

where A∗ and B∗ are adjoints of A and B, respectively, {αn} and {βn} are sequences in
(0, 1), {γn} is a sequence of positive numbers satisfying appropriate conditions. Under
the assumption that (I − T ) and (I − S) are demiclosed at zero, Zhao proved that the
sequence generated by (1.1) converges weakly to a solution of the SCFPP.

Chidume et al. [11], studied the following algorithm for approximating a solution of the
SEFPP in real Hilbert spaces where T and S are demi-contractive mappings.


x1 ∈ H1, y1 ∈ H2,

xn+1 = (1− α)
(
xn − γA∗(Axn −Byn)

)
+ αS

(
xn − γA∗(Axn −Byn)

)
,

yn+1 = (1− α)
(
yn − γB∗(Axn −Byn)

)
+ αT

(
yn − γB∗(Axn −Byn)

)
, n ≥ 1.

(1.2)

Under the assumption that (I−T ) and (I−S) are demiclosed at zero, Chidume et al. [11]
proved that the sequence generated by (1.2) converges weakly to a solution of the SEFPP.

In 2014, Wu et al. [12] studied the split equality problem (SEP) and multiple sets
split equality problems for quasi-nonexpansive multi-valued mappings. In the same year,
Chang and Agarwal [13] proved a strong convergence theorem for general split equality
problems for quasi-nonexpansive mappings. For more on iterative algorithms for solving
SEFPP in real Hilbert spaces, the reader may consult the following references: [12–16],
and the references contained in them.

It is well-known that most mathematical problems that arise in real life lie in Banach
spaces more general than Hilbert space: Hazewinkel, Series Editor, Mathematics and its
Applications, rightly stated this fact when he wrote:

“ ... many, and probably most mathematical objects and models do not
naturally live in a Hilbert space” [17], pg. viii.
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In 2018, Zhaoli et al. [18], studied the split feasibility and fixed point problem in 2-
uniformly convex and 2-uniformly smooth real Banach spaces. They considered the fol-
lowing algorithm:

zn = J−1
1

(
J1xn + γA∗J2(PQ − I)Axn

)
,

yn = J−1
1

(
(1− αn)J1zn + αnJ1Szn

)
,

Cn+1 = {x ∈ Cn : φ(x, yn) ≤ φ(x, xn); φ(x, zn) ≤ φ(x, xn)},
xn+1 = ΠCn+1

x1, n ≥ 1,

(1.3)

where S is a closed quasi-φ-nonexpansive map, PQ is the metric projection of E2 onto
Q, ΠCn+1

is the generalized projection of x1 onto Cn+1, {βn} ⊂ [δ, 1), δ > 0 and γ is a

constant satisfying 0 < γ < 1
‖A‖2κ2 , κ > 0 is best smoothness constant of the underlying

space. They proved that the sequence generated by (1.3) converges strongly to a solution
of the SEFPP.

In 2019, Chidume et al. [19] studied an iterative algorithm for solving SEFPP for quasi-
φ-nonexpansive mappings in a 2-uniformly convex and smooth real Banach space. They
proved that the sequence generated by their algorithm converges weakly to a solution of
the SEFPP.

Remark 1.1. We note, however, that if a real normed space is 2-uniformly convex and
2-uniformly smooth, it is necessarily a real Hilbert space.

Remark 1.2. While 2-uniformly convex and smooth real Banach spaces are more general
Banach spaces than Hilbert spaces (they include, for example, lp, for 1 < p ≤ 2), they do
not include the real Banach spaces: lp for 2 < p <∞.

Motivated by Remark 1.2, it is our purpose in this paper to introduce a new iterative
algorithm for studying the SEFPP for quasi-φ-nonexpansive mappings in real Banach
spaces that will include all lp, for 1 < p <∞.

2. Preliminaries

A real Banach space E is called an Opial space (see, e.g., Opial [20]) or is said to satisfy
an Opial condition if for any sequence {xn} in E such that {xn} converges weakly to some
x ∈ E, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, (2.1)

holds for y 6= x. It is well known that every real Hilbert space is an Opial spaces (see,
e.g., Opial [20]). Furthermore, lp spaces, 1 < p < ∞, are Opial spaces but Lp spaces
1 < p <∞, p 6= 2 are not.

Remark 2.1. Gosse and Lami-Dozo [21] have shown that for any normed space E, the
existence of a weakly continuous duality map implies that E is an Opial space (i.e., E
satisfies condition (2.1)) but the converse implication does not hold.

Let E be a strictly convex and smooth real Banach space. For p > 1, define Jp : E → 2E
∗

by

Jp(x) = {u∗ ∈ E∗ : 〈x, u∗〉 = ‖x‖‖u∗‖, ‖u∗‖ = ‖x‖p−1}.
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Jp is called the generalized duality map on E. If p = 2, J2 is called the normalized duality
map and is denoted by J . In a real Hilbert space H, J is the identity map on H. It is
easy to see from the definition that

Jp(x) = ‖x‖p−2Jx, and 〈x, Jpx〉 = ‖x‖p, ∀x ∈ E.

It is well-known that if E is smooth, then J is single-valued and if E is strictly convex, J
is one-to-one, and J is surjective if E is reflexive.

Let E be a reflexive, strictly convex and smooth real Banach space with dual space E∗.
For p ≥ 2, Chidume [22] define the following functionals: φp : E × E → R+ by

φp(x, y) := ‖x‖p − p〈x, Jpy〉+ (p− 1)‖y‖|p, ∀x, y ∈ E.

Vp : E × E∗ → R+ by

Vp(x, x
∗) := ‖x‖p − p〈x, x∗〉+ (p− 1)‖x∗‖

p
p−1 , ∀x ∈ E, x∗ ∈ E∗.

It is clear from these definitions that

Vp(x, x
∗) = φp(x, J

−1
p x∗), ∀x ∈ E, x∗ ∈ E∗. (2.2)

Remark 2.2. We observe that φp is the Bregman distance for the strictly convex func-
tional f(x) = ‖x‖p, p > 1. Thus, φp(x, y) ≥ 0, ∀ x, y ∈ E. Furthermore, it is easy to see
that φp(x, x) = 0, ∀ x ∈ E. Moreover, if p = 2, we shall denote φ2(x, y) simply as φ(x, y),
so that

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x, y ∈ E. (2.3)

The functional φ was first introduced by Alber and has been studied extensively by many
authors (see, for example, [23], [24], [25], [26], [27], [28], [29], [30], [31], and the references
therein). It is easy to see from the definition of φ that, in a real Hilbert space H, equation
(2.3) reduces to φ(x, y) = ‖x− y‖2, ∀x, y ∈ H.

Definition 2.3. Let C be a nonempty, closed and convex subset of a real normed space,
E. A mapping T : C → C is said to be quasi-φ-nonexpansive if F (T ) 6= ∅ and

φ(p, Tx) ≤ φ(p, x), ∀ p ∈ F (T ), x ∈ C.

Definition 2.4. A mapping T : C → C is said to be semi-compact if for any bounded
sequence {xn} in C with xn − Txn → 0, there exists a subsequence {xnk

} of {xn} such
that {xnk

} converges strongly to some x ∈ C.

Definition 2.5. Let E be a real normed space with dimension E ≥ 2. The modulus of
convexity of E is the function δE : (0, 2]→ [0, 1] defined by

δE(ε) :=

{
1−

∣∣∣∣∣∣∣∣u+ v

2

∣∣∣∣∣∣∣∣ : ‖u‖ = ‖v‖ = 1; ε = ‖u− v‖
}
.

Let p > 1 be a real number and δE : (0, 2] → [0, 1] be the modulus of convexity of E.
Then a normed space E is said to be p-uniformly convex if there exists a constant c > 0
such that

δE(ε) ≥ cεp.
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It is well known that Lp, lp and the Sobolev spaces Wm
p (Ω), 1 < p <∞, are all p-uniformly

convex and that the following estimates hold:

δlp(ε) = δLp
(ε) = δWp

m(Ω)(ε) =


p−1

8 ε2 + o(ε2) > p−1
8 ε2, 1 < p < 2;

1−
[
1−

(
ε
2

)p] 1
p

> 1
p

(
ε
2

)p
, p ≥ 2;

(see, e.g., [32, 33]).

Lemma 2.6 ([34]). For p > 1, let E be a p-uniformly convex real Banach space. Then,
there exists a constant cp > 0 such that

‖λx+ (1− λ)y‖p ≤ λ‖x‖p + (1− λ)‖y‖p − cpwp(λ)‖x− y‖p, (2.4)

for all λ ∈ [0, 1], x, y ∈ E, where wp(λ) = λp(1− λ) + λ(1− λ)p.

Lemma 2.7 ([34]). Let E be a p-uniformly convex real Banach space. Then, there exists
a constant dp > 0 such that for all x, y ∈ E,

‖x+ y‖p ≥ ‖x‖p + p〈y, jp(x)〉+ dp‖y‖p. (2.5)

Lemma 2.8 ([35]). Let D be a nonempty, closed and convex subset of a reflexive strictly
convex and smooth Banach space X. Then,

φ
(
u,ΠDy

)
+ φ

(
ΠDy, y

)
≤ φ(u, y), ∀u ∈ D, y ∈ X.

Lemma 2.9 ([36]). Let E be a real reflexive, strictly convex and smooth Banach space,
A : E → 2E be a maximal monotone operator with A−10 6= ∅, then for any x ∈ E,
y ∈ A−10 and r > 0, we have

φ
(
y,QAr x

)
+ φ

(
QAr x, x

)
≤ φ(y, x),

where QAr : E → E is defined by QAr x := (J + rA)−1Jx.

Lemma 2.10. Let E be a reflexive, strictly convex and smooth real Banach space. Then,
for p > 1,

Vp(u, u
∗) + p〈J−1

p u∗ − u, v∗〉 ≤ Vp(u, u∗ + v∗), ∀u ∈ E, u∗, v∗ ∈ E∗. (2.6)

Proof. We compute as follows: Using the definition of Vp, expand Vp(u, u
∗) + p〈J−1

p u∗ −
u, v∗〉 to establishing the lemma.

Lemma 2.11. Let E be a reflexive, strictly convex and smooth real Banach space. Then,
for p > 1,

φp
(
x, J−1

p (λJpu+ (1− λ)Jpv)
)
≤ λφp(x, u) + (1− λ)φp(x, v), ∀x, u, v ∈ E. (2.7)

Proof. Use the definition of φp and Lemma 2.6 to establish the lemma.

Lemma 2.12. Let E be a p-uniformly convex and smooth real Banach space with dual
space E∗. For p > 1, let Jp : E → E∗ be the generalized duality map. Then,

‖J−1
p x− J−1

p y‖ ≤ κp‖x− y‖
1

p−1 , ∀x, y ∈ E, (2.8)

where κp =
(

1
c2

) 1
p−1

, for some constant c2 > 0.

Proof. For E, the following inequality holds:

〈x− y, Jpx− Jpy〉 ≥ c2‖x− y‖p, ∀x, y ∈ E, (2.9)

for some constant c2 > 0. Inequality (2.8) follows from inequality (2.9), establishing the
Lemma.
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2.1. Analytical Representations of Generalized Duality Maps

in Lp, lp, and W p
m, Spaces, 1 < p <∞

Using the analytic representation of the normalized duality maps in Lp, lp, and W p
m,

1 < p <∞ (see e.g., Lindenstrauss and Tzafriri [32]) and the relation Jp(x) = ‖x‖p−2J(x),
we obtain the analytical representations of generalized duality maps in these spaces as
follows:

Jz = y ∈ lq, y = {|z1|p−2z1, |z2|p−2z2, ...}, z = {z1, z2, ...},
J−1z = y ∈ lp, y = {|z1|q−2z1, |z2|q−2z2, ...}, z = {z1, z2, ...},

Jz = ‖z‖2−pLp
|z(s)|p−2z(s) ∈ Lq(G), s ∈ G,

J−1z = |z(s)|q−2z(s) ∈ Lp(G), s ∈ G, and

Jz =
∑
|α|≤m

(−1)|α|Dα(|Dαz(s)|p−2Dαz(s)) ∈W q
−m(G),m > 0, s ∈ G,

3. Main Result

3.1. A Weak Convergence Theorem

In Theorem 3.2 below, for p > 1,

(i) E1 and E2 are p-uniformly convex and uniformly smooth real Banach spaces
which satisfy Opial condition, and E3 is a smooth real Banach space, with dual
spaces, E∗1 , E∗2 and E∗3 , respectively.

(ii) T : E1 → E1 and S : E2 → E2 are quasi-φ-nonexpansive maps.
(iii) A : E1 → E3 and B : E2 → E3 are bounded linear maps with adjoints A∗ and
B∗, respectively.

(iv) JpEi
denotes the generalized duality map on Ei, for i = 1, 2, 3; J−1

pEi
denotes

the generalized duality map on E∗i , for i = 1, 2, 3.

Algorithm 3.1.

x1 ∈ E1, y1 ∈ E2, zn = JpE3
(Axn −Byn),

xn+1 = J−1
pE1

(
αnJpE1un + (1− αn)JpE1Tun

)
,

un = J−1
pE1

(
JpE1xn − γA∗zn

)
,

yn+1 = J−1
pE2

(
αnJpE2

vn + (1− αn)JpE2
Sun

)
,

vn = J−1
pE2

(
JpE2

yn + γB∗zn
)
,

(3.1)

where αn ∈ (0, 1) and 0 < γ <

[
1

κp

(
‖A‖

p
p−1 +‖B‖

p
p−1

)]p−1

.

We now prove the following theorem:

Theorem 3.2. Let {(xn, yn)} be a sequence generated in E1 × E2 by algorithm 3.1.
Assume that (I − T ) and (I − S) are demiclosed at zero and that Ω := {(x, y) ∈ F (T )×
F (S) : Ax = By} 6= ∅. Then, {(xn, yn)} converges weakly to some (x∗, y∗) ∈ Ω.
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Proof. We first show that {xn} and {yn} are bounded. Let (x, y) ∈ Ω. Then, using
Lemma 2.11, we obtain

φpE1(x, xn+1) = φpE1(x, J−1
pE1

(
αnJpE1un + (1− αn)JpE1Tun

)
)

≤ αnφpE1(x, un) + (1− αn)φpE1(x, Tun)

≤ φpE1
(x, un). (3.2)

Furthermore,

φpE1
(x, un) = φpE1

(x, J−1
pE1

(
JpE1

xn − γA∗zn
)
)

= VpE1
(x, JpE1

xn − γA∗zn)

≤ VpE1
(x, JpE1

xn)− pγ〈J−1
pE1

(
JpE1

xn − γA∗zn
)
− x,A∗zn〉

= φpE1
(x, xn)− pγ〈Aun −Ax, zn〉. (3.3)

Substituting (3.3) in (3.2), we obtain

φpE1
(x, xn+1) ≤ φpE1

(x, xn)− pγ〈Aun −Ax, zn〉. (3.4)

Following a similar argument, we obtain the following:

φpE2(y, yn+1) ≤ φpE2(y, yn)− pγ〈By −Bvn, zn〉. (3.5)

Adding inequalities (3.4) and (3.5), we obtain that

φpE1
(x, xn+1) + φpE2

(y, yn+1) ≤ φpE1
(x, xn) + φpE2

(y, yn)

− pγ〈Aun −Bvn, zn〉. (3.6)

Using Lemma 2.12 and the fact that zn = JpE3(Axn −Byn), we compute as follows:

−pγ〈Aun −Bvn, zn〉 = −pγ‖Axn −Byn‖p − pγ〈Aun −Bvn, zn〉+ pγ〈Axn −Byn, zn〉
= −pγ‖Axn −Byn‖p + pγ〈A(xn − un), zn〉+ pγ〈B(vn − yn), zn〉

≤ −pγ‖Axn −Byn‖p + pγ
(
‖A‖ · ‖xn − J−1

pE1

(
JpE1

xn − γA∗zn
)
‖

+ ‖B‖ · ‖yn − J−1
pE2

(
JpE2

yn + γB∗zn
)
‖
)
· ‖zn‖

≤ −pγ‖Axn −Byn‖p + pγ
p

p−1κp

(
‖A‖ · ‖A∗zn‖

1
p−1

+ ‖B‖ · ‖B∗zn‖
1

p−1

)
· ‖zn‖. (3.7)

But ‖A‖ · ‖A∗zn‖
1

p−1 ‖zn‖ ≤ ‖A‖
p

p−1 ‖Axn −Byn‖p, and,

‖B‖ · ‖B∗zn‖
1

p−1 ‖zn‖ ≤ ‖B‖
p

p−1 ‖Axn −Byn‖p.

Substituting these inequalities in inequality (3.7), we obtain:

−pγ〈Aun−Bvn, zn〉 ≤ −pγ‖Axn−Byn‖p + pγ
p

p−1κp

(
‖A‖

p
p−1 +‖B‖

p
p−1

)
‖Axn−Byn‖p.

Substituting this inequality in inequality (3.6), we obtain:

φpE1(x, xn+1) + φpE2(y, yn+1) ≤ φpE1(x, xn) + φpE2(y, yn)

− pγ
[
1− γ

1
p−1κp

(
‖A‖

p
p−1 + ‖B‖

p
p−1
)]
‖Axn −Byn‖p

≤ φpE1
(x, xn) + φpE2

(y, yn). (3.8)
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Define Λn(x, y) := φp(x, xn) + φp(y, yn). Then, from inequality (3.8), we obtain that
{Λn(x, y)} is convergent. This implies that {xn} and {yn} are bounded and, consequently,
{un} and {vn} are bounded. Furthermore, ‖Axn −Byn‖ → 0, as n→∞. Hence,

‖xn−un‖ = ‖J−1
pE1

(JpE1
xn−γA∗zn)−xn‖ ≤ κp

(
γ‖A‖

) 1
p−1 ‖Axn−Byn‖ → 0, as n→∞.

Similarly, ‖vn − yn‖ → 0, as n→∞.

Using the definition of φp, Lemma 2.6 and the quasi-φ-nonexpansiveness of T , we obtain

φp(x, xn+1) = φp(x, J
−1
pE1

(
αnJpE1

un + (1− αn)JpE1
Tun

)
)

≤ ‖x‖p − p〈x, αnJpE1
un〉 − p〈x, (1− αn)JpE1

Tun〉+ αn‖JpE1
un‖p

+ (1− αn)‖JpE1Tun‖p − cpwp(αn)‖JpE1un − JpE1Tun‖p

= αnφp(x, un) + (1− αn)φp(x, Tun)− cpwp(αn)‖JpE1un − JpE1Tun‖p,

so that

φp(x, xn+1) ≤ φp(x, un)− cpwp(αn)‖JpE1un − JpE1Tun‖p.

From inequality (3.3), we obtain that:

φp(x, xn+1) ≤ φp(x, xn)−pγ〈Aun−Ax, zn〉−cpwp(αn)‖JpE1
un−JpE1

Tun‖p. (3.9)

Following a similar argument, we obtain that:

φp(y, yn+1) ≤ φp(y, yn)−pγ〈By−Bvn, zn〉−cpwp(αn)‖JpE2
vn−JpE1

Svn‖p. (3.10)

Adding (3.9) and (3.10), and using the fact that Ax = By, and the condition on γ, we
obtain that

Λn+1(x, y) ≤ Λn(x, y)− cpwp(αn)
[
‖JpE1

un − JpE1
Tun‖p

+ ‖JpE2
vn − JpE1

Svn‖p
]
. (3.11)

Since lim
n→∞

Λn(x, y) exists, it follows from inequality (3.11) that:

lim
n→∞

‖JpE1
un − JpE1

Tun‖ = 0 and lim
n→∞

‖JpE2
vn − JpE1

Svn‖ = 0.

By the uniform continuity of J−1
pE1

and J−1
pE2

on bounded sets, we obtain that ‖un −
Tun‖ → 0 and ‖vn − Svn‖ → 0, as n → ∞. Since {xn} and {yn} are bounded, there
exist r1 > 0 and r2 > 0 such that {xn} ⊂ B1(0, r1) := {u ∈ E1 : ‖u‖ ≤ r1} and
{yn} ⊂ B2(0, r2) := {v ∈ E2 : ‖v‖ ≤ r1}. Furthermore, there exist subsequences {xnk

}
and {ynk

} of {xn} and {yn} respectively such that xnk
⇀ x∗ and ynk

⇀ y∗, as k → ∞,
for some x∗ ∈ B1, y∗ ∈ B2. Since ‖xn−un‖ → 0 and ‖yn− vn‖ → 0, as n→∞, we have,
in particular, that unk

⇀ x∗ and vnk
⇀ y∗, as k → ∞. By demi-closedness of (I − T )

and (I − S), we obtain that x∗ ∈ F (T ) and y∗ ∈ F (S). Furthermore, by the weak lower
semi-continuity of the norm, we obtain that:

0 = lim
n→∞

‖Axn −Byn‖ = lim inf
n→∞

‖Axn −Byn‖ ≥ ‖Ax∗ −By∗‖,

which implies that Ax∗ = By∗. Hence, (x∗, y∗) ∈ Ω.
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Let {xnj} be an arbitrary subsequence of {xn} such that xnj ⇀ q ∈ E1, as j → ∞. We
claim q = x∗. Suppose this claim is false. Then q 6= x∗. Since E1 satisfies Opial condition,
we have:

lim inf
n→∞

‖xn − x∗‖ < lim inf
n→∞

‖xn − q‖ < lim inf
n→∞

‖xn − x∗‖,

and this contradiction yields that q = x∗. Hence, {xn} has a unique weak cluster point
and so xn ⇀ x∗. A similar argument yields that yn ⇀ y∗. The proof of the theorem is
complete.

3.2. A Strong Convergence Theorem

In Theorem 3.4 below, for p > 1,

(i) E1 and E2 are p-uniformly convex and uniformly smooth real Banach spaces
which satisfy Opial condition, and E3 is a smooth real Banach space, with dual
spaces, E∗1 , E∗2 and E∗3 , respectively.

(ii) T : E1 → E1 and S : E2 → E2 are quasi-φ-nonexpansive maps.
(iii) A : E1 → E3 and B : E2 → E3 are bounded linear maps with adjoints A∗ and
B∗, respectively.

(iv) JpEi denotes the generalized duality map on Ei, for i = 1, 2, 3; J−1
pEi

denotes
the generalized duality map on E∗i , for i = 1, 2, 3.

Algorithm 3.3.

x1 ∈ E1, y1 ∈ E2, zn = JpE3
(Axn −Byn),

xn+1 = J−1
pE1

(
αnJpE1

un + (1− αn)JpE1
Tun

)
,

un = J−1
pE1

(
JpE1

xn − γA∗zn
)
,

yn+1 = J−1
pE2

(
αnJpE2

vn + (1− αn)JpE2
Sun

)
,

vn = J−1
pE2

(
JpE2

yn + γB∗zn
)
,

(3.12)

where αn ∈ (0, 1) and 0 < γ <

[
1

κp

(
‖A‖

p
p−1 +‖B‖

p
p−1

)]p−1

.

We now prove the following theorem:

Theorem 3.4. Let {(xn, yn)} be a sequence generated in E1 × E2 by algorithm (3.3).
Assume that T and S are semi-compact and, (I − T ) and (I − S) are demiclosed at zero
and that Ω := {(x, y) ∈ F (T ) × F (S) : Ax = By} 6= ∅. Then, {(xn, yn)} converges
strongly to some (x∗, y∗) ∈ Ω.

Proof. Following the same argument as in the proof of Theorem 3.2, we obtain that:

lim
n→∞

‖un − xn‖ = 0 = lim
n→∞

‖vn − yn‖ and (3.13)

lim
n→∞

‖un − Tun‖ = 0 = lim
n→∞

‖vn − Svn‖. (3.14)

Thus, un ⇀ x∗ and vn ⇀ y∗. By semi-compactness of T and S, there exist subsequences
{unj
} of {un} and {vnj

} of {vn} such that unj
→ x∗ and vnj

→ y∗, as j →∞. Let {uni
}

be any other subsequence of {un} such that uni → q, as i→∞. Let w := lim inf
n→∞

(φ(q, un)−
φ(x∗, un)).

φ(q, un)− φ(x∗, un) = 2〈x∗ − q, Jun〉+ ‖q‖2 − ‖x∗‖2. (3.15)
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Since uni → q, as i→∞ and unj → x∗, as j →∞, from (3.15) we have

w = 2〈x∗ − q, Jx∗〉+ ‖q‖2 − ‖x∗‖2

and

w = 2〈x∗ − q, Jq〉+ ‖q‖2 − ‖x∗‖2.

Thus, 〈x∗ − q, Jx∗ − Jq〉 = 0. This implies that x∗ = q, since J is strictly monotone.
Therefore, {un} converges strongly to x∗. Hence, from (3.13), {xn} converges strongly
to x∗. Following a similar argument, we obtain that {yn} converges strongly to y∗. This
completes the proof.

3.3. Corollaries

The setting for Corollary 3.6 is as follows:

(i) E1 = Lp1 , and E2 = Lp2 , p1, p2 ∈ [2,∞), and E3 is a smooth real Banach
space;

(ii) T : E1 → E1 and S : E2 → E2 are quasi-φ-nonexpansive maps;
(iii) A : E1 → E3 and B : E2 → E3 are bounded linear maps with adjoints A∗ and
B∗, respectively;

(iv) Jp1 , Jp2 and Jp3 are the generalized duality maps on E1, E2 and E3, respec-
tively.

Algorithm 3.5.

x1 ∈ E1, y1 ∈ E2, zn = Jp3(Axn −Byn),

xn+1 = J−1
p1

(
αJp1un + (1− α)Jp1Tun

)
,

un = J−1
p1

(
Jp1xn − γA∗zn

)
,

yn+1 = J−1
p2

(
αJp2vn + (1− α)Jp2Sun

)
,

vn = J−1
p2

(
Jp2yn + γB∗zn

)
,

(3.16)

where α ∈ (0, 1) and 0 < γ <

[
1

κp

(
‖A‖

p
p−1 +‖B‖

p
p−1

)]p−1

. We now deduce the following

corollary:

Corollary 3.6. Let {(xn, yn)} be a sequence generated in E1 × E2 by algorithm 3.5.
Assume that (I − T ) and (I − S) are demi-closed at zero and that Ω := {(x, y) ∈ F (T )×
F (S) : Ax+By} 6= ∅. Then, {(xn, yn)} converges weakly to some (x∗, y∗) ∈ Ω.

The setting for Corollary 3.8 is as follows:

(i) E1 = Lp1 , and E2 = Lp2 , p1, p2 ∈ (1, 2], and E3 is a smooth real Banach space;
(ii) T : E1 → E1 and S : E2 → E2 are quasi-φ-nonexpansive maps;
(iii) A : E1 → E3 and B : E2 → E3 are bounded linear maps with adjoints A∗ and
B∗, respectively;

(iv) Jp1 , Jp2 and Jp3 are the generalized duality maps on E1, E2 and E3, respec-
tively.
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Algorithm 3.7.

x1 ∈ E1, y1 ∈ E2, zn = J3(Axn −Byn),

xn+1 = J−1
1

(
αJ1un + (1− α)J1Tun

)
,

un = J−1
1

(
J1xn − γA∗zn

)
,

yn+1 = J−1
2

(
αJ2vn + (1− α)J2Sun

)
,

vn = J−1
2

(
J2yn + γB∗zn

)
,

(3.17)

where α ∈ (0, 1) and 0 < γ <

[
1

κ2

(
‖A‖2+‖B‖2

)]. We now deduce the following corollary:

Corollary 3.8. Let {(xn, yn)} be a sequence generated in E1 × E2 by algorithm 3.7.
Assume that (I − T ) and (I − S) are demi-closed at zero and that Ω := {(x, y) ∈ F (T )×
F (S) : Ax+By} 6= ∅. Then, {(xn, yn)} converges weakly to some (x∗, y∗) ∈ Ω.

Remark 3.9. The condition on γ involves the norms, ‖A‖, ‖B‖ of A and B, respectively.
This is not a drawback on implementing the algorithm because, for applying the algorithm,
one does not need to compute these norms. The norms can be replaced with two
constants associated with the maps A and B, as follows. To assert that A is a bounded
linear map, one has to show that:

‖Ax‖ ≤ K‖x‖, ∀x ∈ E,

and some constant K > 0. This constant K > 0 which is an upper bound for ‖A‖
is generally fairly easy to obtain (since it is not unique) for any bounded linear map.
Similarly, to assert that B is a bounded linear map, one has to show that:

‖Bx‖ ≤ L‖x‖, ∀x ∈ E,

and some constant L > 0. Again, this constant L > 0 is an upper bound for ‖B‖ and
is generally fairly easy to obtain for any bounded linear map. It is easy to see from the
proof of Theorem 3.2 that the condition

0 < γ <

[
1

κp
(
‖A‖

p
p−1 + ‖B‖

p
p−1
)]p−1

,

can be replaced with the condition

0 < γ <

[
1

κp
(
K

p
p−1 + L

p
p−1
)]p−1

,

where K and L are easily obtained.

4. Applications

In this section, we shall present some applications of Theorem 3.2. In the sequel, we
assume that H1, H2, and H3 are real Hilbert spaces, C and Q are nonempty, closed and
convex subsets of H1 and H2, respectively, and A : H1 → H3, B : H2 → H3 are bounded
linear mappings.



1710 Thai J. Math. Vol. 19 (2021) /C. E. Chidume and A. Adamu

4.1. Split Equality Problem (SEP)

The split equality problem (SEP) is to

find x ∈ C, y ∈ Q such that Ax = By.

Several iterative algorithms have been proposed to approximate solutions of SEP in
real Hilbert spaces and in Banach spaces more general than Hilbert spaces (see, e.g.,
[19, 37, 38]).

We shall apply Theorem 3.2 to approximate a solution of the SEP in Banach spaces more
general than Hilbert spaces.

In Theorem 4.2 below, for p > 1,

(i) E1 and E2 are p-uniformly convex and uniformly smooth real Banach spaces
which satisfy Opial condition, and E3 is a smooth real Banach space, with dual
spaces, E∗1 , E∗2 and E∗3 , respectively.

(ii) T : E1 → E1 and S : E2 → E2 are quasi-φ-nonexpansive maps.
(iii) A : E1 → E3 and B : E2 → E3 are bounded linear maps with adjoints A∗ and
B∗, respectively.

(iv) JpEi
denotes the generalized duality map on Ei, for i = 1, 2, 3; J−1

pEi
denotes

the generalized duality map on E∗i , for i = 1, 2, 3.

Algorithm 4.1.

x1 ∈ E1, y1 ∈ E2, zn = JpE3
(Axn −Byn),

xn+1 = J−1
pE1

(
αnJpE1un + (1− αn)JpE1ΠCun

)
,

un = J−1
pE1

(
JpE1xn − γA∗zn

)
,

yn+1 = J−1
pE2

(
αnJpE2

vn + (1− αn)JpE2
ΠQun

)
,

vn = J−1
pE2

(
JpE2

yn + γB∗zn
)
,

(4.1)

where αn ∈ (0, 1) and 0 < γ <

[
1

κp

(
‖A‖

p
p−1 +‖B‖

p
p−1

)]p−1

.

We now prove the following theorem:

Theorem 4.2. Let {(xn, yn)} be a sequence generated in E1 × E2 by algorithm 4.1.
Assume that Ω := {(x, y) ∈ C × Q : Ax = By} 6= ∅. Then, {(xn, yn)} converges weakly
to some (x∗, y∗) ∈ Ω.

Proof. Set T = ΠC and S = ΠQ. Clearly, F (T ) = C and F (S) = Q are nonempty. Thus,
using Lemma 2.8 it is easy to see that T and S are quasi-φ-nonexpansive. Hence, the
conclusion follows from Theorem 3.2.

4.2. Split Equality Variational Inclusion Problem (SEVIP)

Let M : H1 → 2H1 and N : H2 → 2H2 be maximal monotone mappings. The split
equality variational inclusion problem (SEVIP) is:

finding x ∈M−1(0), y ∈ N−1(0) such that Ax = By,



Solving Split Equality Fixed Point Problem ... 1711

where M−1(0) = {x ∈ H1 : 0 ∈ M(x)} and N−1(0) = {x ∈ H2 : 0 ∈ N(x)} are called
the set of zeros of M and N , respectively. We shall apply Theorem 3.2 to approximate a
solution of a SEVIP in certain Banach spaces. Theorem 4.4 below improves the results
in [39] and [19].

In Theorem 4.4 below, for p > 1,

(i) E1 and E2 are p-uniformly convex and uniformly smooth real Banach spaces
which satisfy Opial condition, and E3 is a smooth real Banach space, with dual
spaces, E∗1 , E∗2 and E∗3 , respectively.

(ii) T : E1 → E1 and S : E2 → E2 are quasi-φ-nonexpansive maps.
(iii) A : E1 → E3 and B : E2 → E3 are bounded linear maps with adjoints A∗ and
B∗, respectively.

(iv) JpEi
denotes the generalized duality map on Ei, for i = 1, 2, 3; J−1

pEi
denotes

the generalized duality map on E∗i , for i = 1, 2, 3.

Algorithm 4.3.

x1 ∈ E1, y1 ∈ E2, zn = JpE3(Axn −Byn),

xn+1 = J−1
pE1

(
αnJpE1

un + (1− αn)JpE1
QMr un

)
,

un = J−1
pE1

(
JpE1

xn − γA∗zn
)
,

yn+1 = J−1
pE2

(
αnJpE2

vn + (1− αn)JpE2
QNr vn

)
,

vn = J−1
pE2

(
JpE2

yn + γB∗zn
)
,

(4.2)

where QMr := (JpE1
+ rM)−1JpE1

and QNr := (JpE2
+ rN)−1JpE2

, r > 0, αn ∈ (0, 1) and

0 < γ <

[
1

κp

(
‖A‖

p
p−1 +‖B‖

p
p−1

)]p−1

.

We now prove the following theorem:

Theorem 4.4. Let {(xn, yn)} be a sequence generated in E1 × E2 by algorithm 4.3.
Assume that Ω := {(x, y) ∈ M−1(0) × N−1(0) : Ax = By} 6= ∅. Then, {(xn, yn)}
converges weakly to some (x∗, y∗) ∈ Ω.

Proof. Set T = QMr and S = QNr . Clearly, F (T ) = C and F (S) = Q are nonempty.
Thus, using Lemma 2.9, it is easy to see that T and S are quasi-φ-nonexpansive. Hence,
the conclusion follows from Theorem 3.2.

5. Numerical Illustrations

In this section, we give numerical examples to illustrate the convergence of sequences
generated by our algorithm.

Example 5.1.

In Theorem 3.4, set E1 = R, E2 = R2 and E3 = R2. Let A : E1 → E3 and B : E2 → E3

be defined by

Ax :=
(x

2
,
x

3

)
, B(x, y) :=

(
x+ 2y, y

)
,

respectively. Then,

A∗(u, v) =
u

2
+
v

3
and B∗(u, v) = (u, 2u+ v).
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Let T : E1 → E1 and S : E2 → E2 be defined by

Tx :=
x

2
and S(u, v) := (u, v).

It is easy to verify that T and S are quasi-φ-nonexpansive and, (I − T ) and (I − S)
are demiclosed at zero. Furthermore, since 0 ∈ Ω, Ω 6= ∅. In algorithm 3.3, we take
γ = 0.3, αn = 1

(n+1)2 as our parameters. Clearly, these parameters satisfy the hypothesis

of Theorem 3.4. Using a tolerance 10−8 and setting maximum number of iterations
n = 100, we obtain the following iterates:

Table 1. Numerical results of Example 5.1

Table of values choosing x1 = −3 and y1 = (2,−2)T
Algorithm 3.3

n |xn+1 − xn| ‖yn+1 − yn‖
1 1.0156 3.1784
20 9.36E-4 0.0475
40 2.14E-4 0.0164
60 7.41E-5 5.69E-3
80 2.56E-5 1.97E-3
99 9.37E-6 7.19E-4

Table 2. Numerical results of Example 5.1

Table of values choosing x1 = 1.25 and y1 = (0.5, 2.15)T

Algorithm 3.3
n |xn+1 − xn| ‖yn+1 − yn‖
1 0.0309 4.3415
20 4.61E-4 6.89E-3
40 2.68E-5 2.04E-3
60 9.22E-6 7.07E-4
80 3.19E-6 2.45E-4
99 1.16E-6 8.94E-5

(a) Graph of the first 99 iterates of
Algorithm 3.3 choosing x1 = −3

(b) Graph of the first 99 iterates of
Algorithm 3.3 choosing x1 = 1.25

Figure 1. Graph of the iterates of {xn} generated by Algorithm 3.3
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(a) Graph of the first 99 iterates of

Algorithm 3.3 choosing y1 = (2,-

2)T

(b) Graph of the first 99 iter-

ates of Algorithm 3.3 choosing

(0.5, 2.15)T

Figure 2. Graph of the iterates of {yn} generated by Algorithm 3.3

Example 5.2.

In Theorems and 3.2, set E1 = E2 = E3 = L2([0, 1]). Let A : E1 → E3 and B : E2 → E3

be defined by

(Ax)(t) = 2x(t), and (Bx)(t) = x(t), then A∗ = A and B∗ = B.

Let T : E1 → E1 and S : E2 → E2 be defined by

(Tx)(t) =
x(t)

8
and (Sx)(t) =

x(t)

2
.

It is easy to verify that T and S are quasi-φ-nonexpansive and, (I − T ) and (I − S)
are demiclosed at zero. Furthermore, since 0 ∈ Ω, Ω 6= ∅. In algorithm 3.3 γ = 0.01,
αn = 1

(n+1)2 as our parameters. Clearly, these parameters satisfy the hypothesis of

Theorems . Using a tolerance 10−8 and setting maximum number of iterations n = 10,
we obtain the following iterates:

Table 3. Numerical results of Example 5.2

Table of values choosing x1(t) = et and y1(t) = sin t
Algorithm 3.3

n |xn+1 − xn| ‖yn+1 − yn‖
1 1.608 0.9811
2 0.3116 0.3132
3 0.0196 0.2127
4 0.0123 0.0805
5 4.78E-3 0.0256
6 1.46E-3 7.78E-3
7 4.22E-4 2.33E-3
8 1.21E-4 7.03E-3
9 3.55E-5 2.12E-4
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Table 4. Numerical results of Example 5.2

Table of values choosing x1(t) = t+ cos t and y1(t) = 2t
Algorithm 3.3

n |xn+1 − xn| ‖yn+1 − yn‖
1 1.1701 1.3055
2 0.2916 0.4081
3 0.0449 0.1607
4 0.019 0.0562
5 3.42E-3 0.0176
6 1.01E-3 5.33E-3
7 2.89E-4 1.59E-3
8 8.33E-4 4.81E-4
9 2.42E-5 1.45E-4

(a) Graph of the first 9 iterates of

Algorithm 3.3 choosing x1 = et
(b) Graph of the first 9 iterates of

Algorithm 3.3 choosing x1 = t +
cos t

Figure 3. Graph of the iterates of {xn} generated by Algorithm 3.3

(a) Graph of the first 9 iterates of
Algorithm 3.3 choosing y1 = sin t

(b) Graph of the first 9 iterates of
Algorithm 3.3 choosing y1 = 2t

Figure 4. Graph of the iterates of {yn} generated by Algorithm 3.3
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Observations. From the numerical illustrations presented in Examples 5.1 and 5.2 (see
Tables 1, 2, 3 and 4 and Figures 1, 2, 3 and 4) we observe that the sequence {xn}
approaches the solution faster than {yn} and the performance of our proposed algorithm
is relatively the same as we vary the starting points.

6. Conclusion

This paper presents a new iterative algorithm for solving SEFPP for quasi-φ-nonexpan-
sive mappings in real Banach spaces that will include all lp, for 1 < p < ∞. Weak con-
vergence of the sequence generated by the algorithm is proved and strong convergence is
proved under the assumption that the operators are semi-compact. Furthermore, appli-
cations of the theorem to split equality problem and split variational inclusion problem
are also presented. Finally, numerical implementation of the algorithm is presented.
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