ISSN 1686-0209

Prime-Graceful Graphs

Sayan Panma and Penying Rochanakul*

Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand e-mail : panmayan@yahoo.com (S. Panma); Penying.Rochanakul@cmu.ac.th (P. Rochanakul)

Abstract

A graph G with n vertices and m edges, is said to be prime-graceful, if there is an injection $\psi: V(G) \rightarrow\{1,2, \ldots, m+1\}$, where $\operatorname{gcd}(\psi(u), \psi(v))=1$ for all $e=\{u, v\} \in E(G)$ and the induced function $\psi^{*}: E(G) \rightarrow\{1,2, \ldots, m\}$ defined as $\psi^{*}(e)=|\psi(u)-\psi(v)|$ is injective. In this paper, we introduce prime-graceful labeling and show that star $K_{1, n}$, bistar $B_{n, n}$, bistar $B_{n, p-2}$, where p is an odd prime, complete bipartite graph $K_{2, n}$, tristar $S L(3, n)$, triangular book graph $B_{n}^{(3)}$ and some spiders are prime-graceful, while path P_{n}, cycle C_{n} and complete graph K_{n} are not prime-graceful in general. We also extend the idea to k-prime-graceful labeling where the range of ψ is extended to $k \min \{n, m\}$ for $k>1$. Next, we define the prime-graceful number to be the minimum k such that G is k-prime-graceful. Finally, we investigate the prime-graceful number of the underlying graphs.

MSC: 05C78; 05C30; 05C90
Keywords: graph labeling; prime-graceful labeling; k-prime-graceful; prime-graceful number

Submission date: 06.06.2020 / Acceptance date: 12.01.2021

1. Introduction

Graph labeling is one of the active fields in graph theory. There are numerous applications of graph labeling, including graph decomposition, coding for radar and missile guidance, X-ray crystallographic analysis, designing communications networks addressing, determining the optimal circuit layout, etc. More applications and details can be found in References [1-3].

A labeling of a graph is an assignment of labels to vertices and/or edges of the graph. The concept of graph labeling was first introduced by Rosa [4] in 1967. Since then, hundreds of graph labelings have been studied. Gallian has made a thorough survey on those labelings and gather them in a dynamic survey of graph labeling [5]. The term graceful labeling was first mentioned by Golomb [6] in 1972. While the term prime labeling was introduced by Tout, Dabboucy, and Howalla [7] in 1982.

In this paper, we introduce the prime-graceful labeling which is a combination of graceful labeling and prime labeling. The definitions of graceful labeling and prime labeling are varied. Here are the most commonly used versions.

[^0]Definition 1.1. A graceful labeling of a graph $G=(V, E)$ with n vertices and m edges is a one-to-one mapping ψ of the vertex set $V(G)$ into the set $\{1,2, \ldots, m+1\}$ with the following property: If we define, for any edge $e=\{u, v\} \in E(G)$, the value $\psi^{*}(e)=$ $|\psi(u)-\psi(v)|$ then $\psi^{*}(e)$ is a one-to-one mapping of the set E onto the set $\{1,2, \ldots, m+1\}$. A graph is called graceful if it has a graceful labeling.

Definition 1.2. A prime labeling of a graph $G=(V, E)$ with n vertices and m edges is a one-to-one mapping ψ of the vertex set $V(G)$ into the set $\{1,2, \ldots, n\}$ with the following property: for any edge $e=\{u, v\} \in E(G)$, the value $\operatorname{gcd}(\psi(u), \psi(v))=1$. A graph is called prime if it has a prime labeling.

We merge the constraints of both labelings and define prime-graceful graphs as follows.
Definition 1.3. A prime-graceful labeling of a graph $G=(V, E)$ with n vertices and m edges is a one-to-one mapping ψ of the vertex set $V(G)$ into the set $\{1,2, \ldots, m+1\}$ with the following property: for any edge $e=\{u, v\} \in E(G)$,
(1) the value $\operatorname{gcd}(\psi(u), \psi(v))=1$,
(2) the induced function $\psi^{*}: E(G) \rightarrow\{1,2, \ldots, m\}$, defined as $\psi^{*}(e)=\mid \psi(u)-$ $\psi(v) \mid$, is injective.
A graph is called prime-graceful if it has a prime-graceful labeling.
Prior to our work, the weaker versions of prime-graceful labeling were studied as prime graceful labeling [8] and 3-prime graceful labeling [9]. The range of ψ was extended from $n+1$ to $\min \{2 n, 2 m\}$ and $\min \{3 n, 3 m\}$, respectively. This can be generalized as follows:

Definition 1.4. For $k \geq 2$, a k-prime-graceful labeling of a graph $G=(V, E)$ with n vertices and m edges is an injective function $\psi: V(G) \rightarrow\{1,2, \ldots, \min \{k n, k m\}\}$ with the following property: for any edge $e=\{u, v\} \in E(G)$,
(1) the value $\operatorname{gcd}(\psi(u), \psi(v))=1$,
(2) the induced function $\psi^{*}: E(G) \rightarrow\{1,2, \ldots, k \min \{n, m\}+1\}$, defined as $\psi^{*}(e)=|\psi(u)-\psi(v)|$, is injective.
A graph is called k-prime-graceful if it has a k-prime-graceful labeling.
Selvarajan and Subramoniam [8], have proved that path P_{n}, cycle C_{n}, star $K_{1, n}$, friendship graph F_{n}, bistar $B_{n, n}, C_{4} \cup P_{n}, K_{m, 2}$ and $K_{m, 2} \cup P_{n}$ are 2-prime-graceful. Later, Pavithra and Mary [9] have proved that fan graph F_{n}, wheel graph W_{n}, helm graph H_{n}, gear graph G_{n}, flower graph $F l_{n}$, sunflower graph $S F_{n}$, closed helm graph $C H_{n}$, and web graph $W b_{n}$ are 3-prime-graceful.

It would be interesting to find the smallest number k of each graph. Here we give the notion of the prime-graceful number.

Definition 1.5. The prime-graceful number of G, denoted $\Xi(G)$, is the minimum k such that G is k-prime-graceful. The prime-graceful number of a prime-graceful graph is defined to be 1 .

Thus, we can conclude from prior works that the prime-graceful numbers of path P_{n}, cycle C_{n}, star $K_{1, n}$, friendship graph F_{n}, bistar $B_{n, n}, C_{4} \cup P_{n}, K_{m, 2}$ and $K_{m, 2} \cup P_{n}$ are at most 2. While the prime-graceful numbers of fan graph F_{n}, wheel graph W_{n}, helm graph H_{n}, gear graph G_{n}, flower graph $F l_{n}$, sunflower graph $S F_{n}$, closed helm graph $C H_{n}$, and web graph $W b_{n}$ are at most 3 .

In the following section, star $K_{1, n}$, bistar $B_{n, n}$, bistar $B_{n, p-2}$, where p is an odd prime, complete bipartite graph $K_{2, n}$, tristar $S L(3, n)$, triangular book graph $B_{n}^{(3)}$ and some spiders are shown to be prime-graceful, while path P_{n}, cycle C_{n} and complete graph K_{n} are not prime-graceful in general.

2. Results

In this section, we show that some graphs are prime-graceful and give the prime-graceful numbers of some graphs.
Theorem 2.1. For $n \in \mathbb{N}, P_{n}$ is prime-graceful if and only if $n \leq 5$.
Proof. It can be seen from the following diagram that $P_{1}, P_{2}, P_{3}, P_{4}$ and P_{5} are primegraceful.

Consider graph P_{n} where $n>5$. For any two adjacent vertices v and u, if both are labeled with even numbers, then $2 \leq \operatorname{gcd}(\psi(u), \psi(v))$. Hence, we need to avoid labeling two adjacent vertices with even numbers. To alternate between odd and even labels, the longest consecutive odd labeled vertices possible is 3 . So, there are at most 2 edges with even label. This implies $|E| \leq 5$. Hence P_{n} is not prime-graceful when $n>5$.

Theorem 2.2 (Theorem 1.10, [8]). The path P_{n} is 2-prime-graceful.
Corollary 2.3. For any path $P_{n}, \Xi\left(P_{n}\right)=\left\{\begin{array}{ll}1, & n \leq 5 \\ 2, & n \geq 6\end{array}\right.$.
Theorem 2.4. For $n \in \mathbb{N}, C_{n}$ is prime-graceful if and only if $n \leq 4$.
Proof. It can be seen from the following diagram that C_{3} and C_{4} are prime-graceful.

Assume $n \geq 5$. We have $\left|V\left(C_{n}\right)\right|=\left|E\left(C_{n}\right)\right|=n$. Similar to path graph, to avoid labeling two adjacent vertices with even numbers, we need to alternate between odd and even labels. Thus, at least $n-1>\left\lceil\frac{n}{2}\right\rceil$ edges labels are odd. Hence, $\psi^{*}(E) \neq$ $\{1,2, \ldots,|E|\}$. Therefore, C_{n} is prime-graceful if and only if $n \leq 4$.

Theorem 2.5 (Theorem 1.14, [8]). The cycle C_{n} is 2-prime-graceful.
Corollary 2.6. For any cycle $C_{n}, \Xi\left(C_{n}\right)=\left\{\begin{array}{ll}1, & n \leq 4 \\ 2, & n \geq 5\end{array}\right.$.
Theorem 2.7. For $n \in \mathbb{N}$, the complete graph K_{n} is prime-graceful if and only if $n \leq 4$.
Proof. It can be seen from the following diagram that K_{3} and K_{4} are prime-graceful.

Assume $n \geq 5$. There are $\binom{n}{2}$ edges, and half of that must labeled even. Since all vetices are adjacent to each other, there can be at most 1 vertex with even label. Therefore, other $n-1$ vertices with odd labels can produce $\binom{n-1}{2}$ even edges label. Since $\binom{n-1}{2}>\frac{\binom{n}{2}}{2}$ for $n \geq 5 . K_{n}$ is prime-graceful if and only if $n \leq 4$.

Corollary 2.8. For any complete graph $K_{n}, \Xi\left(K_{n}\right)=1$ if and only if $n \leq 4$.
Corollary 2.9. For any complete graph K_{n} with $n \geq 5, \Xi\left(K_{n}\right) \geq 2$.
Theorem 2.10. Stars $K_{1, n}$ are prime-graceful.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of star graph $K_{1, n}$ with v be the vertex with the largest degree of $K_{1, n}$, aka apex vertex. Define a function $\psi: V\left(K_{1, n}\right) \rightarrow\{1,2, \ldots, n+1\}$ by

$$
\begin{aligned}
\psi(v) & =1 \\
\psi\left(v_{i}\right) & =i+1 \quad \text { if } 1 \leq i \leq n
\end{aligned}
$$

Then the edge label $\psi^{*}\left(\left\{v, v_{i}\right\}\right)=i$ for all $1 \leq i \leq n$. Thus, the edge label are all distinct. Also, $\operatorname{gcd}\left(\psi(v), \psi\left(v_{i}\right)\right)=1$ for all $1 \leq i \leq n$. Therefore, $K_{1, n}$ is prime-graceful.

Example 2.11. A prime-graceful labeling of $K_{1, n}$.

Corollary 2.12. For any star $K_{1, n}, \Xi\left(K_{1, n}\right)=1$.

Definition 2.13. Bistar $B_{n, m}$ is the graph with $n+m+2$ vertices and $n+m+1$ edges obtained by joining the apex vertices of star $K_{1, n}$ and $K_{1, m}$.
Theorem 2.14. For $n \in \mathbb{N}$, the bistar graph $B_{n, n}$ is prime-graceful.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of star graph $K_{1, n}$ with u be the apex vertex, and let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of star graph $K_{1, n}$ with v be the apex vertex.

By Bertand's Postulate, there exists a prime number p, where $n+1<p<2(n+1)-2$.
Case n is odd. Define a function $\psi: V\left(B_{n, n}\right) \rightarrow\{1,2, \ldots, 2 n+2\}$ by

$$
\begin{aligned}
\psi(u) & =1, & & \psi(u)=p, \\
\psi\left(u_{i}\right) & =i+1 & & \text { if } 1 \leq i \leq \frac{p-n-2}{2}, \\
\psi\left(u_{i}\right) & =i+n+1 & & \text { if } \frac{p-n}{2} \leq i \leq p-n-2, \\
\psi\left(u_{i}\right) & =i+n+2 & & \text { if } p-n-1 \leq i \leq n, \\
\psi\left(v_{i}\right) & =i+\frac{p-n}{2} & & \text { if } 1 \leq i \leq n .
\end{aligned}
$$

Then, the resulting edge labels are

$$
\begin{aligned}
\psi^{*}(u v)= & p-1, \\
\left\{\psi^{*}\left(u u_{i}\right): 1 \leq i \leq n\right\}= & \left\{1,2, \ldots, \frac{p-n-2}{2}\right\} \cup\left\{\frac{p+n+2}{2}, \frac{p+n+4}{2}, \ldots, p-2\right\} \\
& \cup\{p, p+1, \ldots, 2 n+1\}, \\
\left\{\psi^{*}\left(v v_{i}\right): 1 \leq i \leq n\right\} & =\left\{\frac{p-n}{2}, \frac{p-n+2}{2}, \ldots, \frac{p+n}{2}\right\} .
\end{aligned}
$$

Thus, edge labels are all distinct. Moreover, we have

$$
\operatorname{gcd}(1, p)=\operatorname{gcd}\left(1, \psi\left(u_{i}\right)\right)=\operatorname{gcd}\left(p, \psi\left(v_{i}\right)\right)=1
$$

for all $1 \leq i \leq n$.
Case n is even. Define a function $\psi: V\left(B_{n, n}\right) \rightarrow\{1,2, \ldots, 2 n+2\}$ by

$$
\begin{aligned}
\psi(u) & =1, & & \psi(v)=p \\
\psi\left(u_{i}\right) & =2 n+3-i & & \text { if } 1 \leq i \leq 2 n+2-p \\
\psi\left(u_{i}\right) & =\frac{3 n+2}{2}-i & & \text { if } 2 n+3+p \leq i \leq n \\
\psi\left(v_{i}\right) & =i+1 & & \text { if } 1 \leq i \leq n / 2 \\
\psi\left(v_{i}\right) & =i+p-n-1 & & \text { if }(n / 2)+1 \leq i \leq n .
\end{aligned}
$$

Then, the resulting edge labels are

$$
\begin{aligned}
\psi^{*}(u v) & =p-1, \\
\left\{\psi^{*}\left(u u_{i}\right): 1 \leq i \leq n\right\} & =\{p, p+1, \ldots, 2 n+1\} \cup\left\{\frac{n+2}{2}, \frac{n+4}{2}, \ldots, \frac{2 p+n-4}{2}\right\}, \\
\left\{\psi^{*}\left(v v_{i}\right): 1 \leq i \leq n\right\} & =\left\{\frac{2 p-n-2}{2}, \frac{2 p-n}{2}, \ldots, p-2\right\} \cup\left\{1,2, \ldots, \frac{n}{2}\right\} .
\end{aligned}
$$

Thus, edge labels are all distinct. Moreover, we have

$$
\operatorname{gcd}(1, p)=\operatorname{gcd}\left(1, \psi\left(u_{i}\right)\right)=\operatorname{gcd}\left(p, \psi\left(v_{i}\right)\right)=1
$$

for all $1 \leq i \leq n$.
In both cases, the $g c d$ of adjacent vertices are all 1 and edge labels are all distinct. Thus, the bistar graph $B_{n, n}$ is prime-graceful.

Example 2.15. A prime-graceful labeling of $B_{12,12}$.
Choose $p=19$.

Theorem 2.16. For $n \in \mathbb{N}$ and a prime $p>2$, the bistar graph $B_{n, p-2}$ is prime-graceful.
Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of star graph $K_{1, n}$ with u be the apex vertex, and let $v_{1}, v_{2}, \ldots, v_{p-2}$ be the vertices of star graph $K_{1, p-2}$ with v be the apex vertex.

Define a function $\psi: V\left(B_{n, p-2}\right) \rightarrow\{1,2, \ldots, n+p\}$ by

$$
\begin{aligned}
\psi(u) & =1, & & \psi(u)=p \\
\psi\left(u_{i}\right) & =i+p & & \text { if } 1 \leq i \leq n \\
\psi\left(v_{j}\right) & =j+1 & & \text { if } 1 \leq j \leq p-2 .
\end{aligned}
$$

Then, the resulting edge labels are

$$
\begin{aligned}
\psi^{*}(u v) & =p-1, \\
\left\{\psi^{*}\left(u u_{i}\right): 1 \leq i \leq n\right\} & =\{p, p+1, \ldots, p+n-1\}, \\
\left\{\psi^{*}\left(v v_{j}\right): 1 \leq j \leq p-2\right\} & =\{1,2, \ldots, p-2\} .
\end{aligned}
$$

Thus, edge labels are all distinct. Moreover, we have

$$
\operatorname{gcd}(1, p)=\operatorname{gcd}\left(1, \psi\left(u_{i}\right)\right)=\operatorname{gcd}\left(p, \psi\left(v_{j}\right)\right)=1
$$

for all $1 \leq i \leq n, 1 \leq j \leq p-2$.
Thus, if p is an odd prime, then the bistar graph $B_{n, p-2}$ is prime-graceful.

Example 2.17. A prime-graceful labeling of $B_{5,9}$.

Corollary 2.18. For any bistar $K_{n, m}, \Xi\left(K_{1, n}\right)=1$ if $m=n$ or $m+2$ is an odd prime.
Definition 2.19. An $S F(n, m)$ is a graph consisting of a cycle C_{n}, where $n \geq 3$ and n set of m independent vertices where each set joined to a different vertex of C_{n}.

An $S F(3, m)$ is called the tristar.
Theorem 2.20. For $n \in \mathbb{N}$, if $n+2$ and $3 n+4$ are prime, the tristar graph $S F(3, n)$ is prime-graceful.

Proof. Label the vertices on C_{3} by $1, n+2$ and $3 n+4$, respectively. Label the vertices that are adjacent with vertex label 1 by $2 n+4,2 n+5, \ldots, 3 n+3$. Label the vertices that are adjacent with vertex label $n+2$ by $2,3, \ldots, n+1$. Label the vertices that are adjacent with vertex label $3 n+4$ by $n+3, n+4, \ldots, 2 n+2$. The gcd of adjacent vertices are all 1 and edge labels are all distinct.

Thus, if $n+2$ and $3 n+4$ are prime, the tristar graph $S F(3, n)$ is prime-graceful.
Example 2.21. A prime-graceful labeling of $\operatorname{SF}(3,5)$.

Theorem 2.22. For $n \in \mathbb{N}$ where $n>2$, the spider of n legs where all of its legs have lengths two is prime-graceful if and only if $2 n+1$ or $2 n+3$ is prime.
Proof. Let v_{i}, u_{i} be the label of vertices on the i th leg, where u_{i} are leaf vertices, and v the label of the central vertex.
(\Leftarrow) Assume $2 n+1$ or $2 n+3$ is prime.
Case $2 n+1$ is prime. Define $\psi:\left\{v, v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\} \rightarrow\{1,2,3, \ldots, 2 n+1\}$ by

$$
\begin{aligned}
\psi(v) & =2 n+1, & & \\
\psi\left(v_{i}\right) & =2 i-1 & & \text { if } 1 \leq i \leq n \\
\psi\left(u_{i}\right) & =2 n+2-2 i & & \text { if } 1 \leq i \leq n
\end{aligned}
$$

Then, the resulting edge labels are

$$
\left.\begin{array}{rl}
\left\{\psi^{*}\left(v v_{i}\right):\right. & 1 \leq i \leq n\} \\
\left\{\psi^{*}\left(v_{i} u_{i}\right):\right. & 1 \leq i \leq n\}
\end{array}=\{1,4, \ldots, 2 n\}, \ldots, 2 n-1\right\} .
$$

Therefore, all edge labels are distinct. Since $2 n+1$ is prime, $\operatorname{gcd}(2 n+1,2 i-1)=1$ and $\operatorname{gcd}(2 n+2-2 i, 2 i-1)=\operatorname{gcd}(2 n+1,2 i-1)=1$. Thus, if $2 n+1$ is prime, spiders of n legs with all legs have length two are prime-graceful.
Case $2 n+3$ is prime. Define $\psi:\left\{v, v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\} \rightarrow\{1,2,3, \ldots, 2 n+1\}$ by

$$
\begin{aligned}
\psi(v) & =1 & & \\
\psi\left(v_{i}\right) & =2 i+1 & & \text { if } 1 \leq i \leq n \\
\psi\left(u_{i}\right) & =2 n+2-2 i & & \text { if } 1 \leq i \leq n
\end{aligned}
$$

Then, the resulting edge labels are

$$
\begin{aligned}
\left\{\psi^{*}\left(v v_{i}\right): 1 \leq i \leq n\right\} & =\{2,4, \ldots, 2 n\} \\
\left\{\psi^{*}\left(v_{i} u_{i}\right): 1 \leq i \leq n\right\} & =\{1,3, \ldots, 2 n-1\}
\end{aligned}
$$

Therefore, all edge labels are distinct. Since $2 n+3$ is prime, $\operatorname{gcd}(2 i+1,1)=1$ and $\operatorname{gcd}(2 n+2-2 i, 2 i+1)=\operatorname{gcd}(2 n+3,2 i+1)=1$. Thus, if $2 n+3$ is prime, spiders of n legs with all legs have length two are prime-graceful.
(\Rightarrow) Assume a spider of n legs where all of its legs have lengths two is prime-graceful. Then there exists a prime-graceful labeling

$$
\phi:\left\{v, v_{1}, v_{2}, \ldots, v_{n}, u_{1}, u_{2}, \ldots, u_{n}\right\} \rightarrow\{1,2,3, \ldots, 2 n+1\} .
$$

We first show that $\phi(v)$ must be odd. If $\phi(v)$ is even, then to be relatively prime $\phi\left(v_{i}\right)$ must be odd for all $1 \leq i \leq n$. Thus, all n edge labels $\phi^{*}\left(v v_{i}\right)$ are odd and the remaining n edge labels $\phi^{*}\left(v_{i} u_{i}\right)$ must be even. This implies $\phi\left(u_{i}\right)$ is odd for all $1 \leq i \leq n$. Now we have $2 n$ vertices that must be labeled with odd number. However, there are only $n+1$ odd numbers in the set $\{1,2,3, \ldots, 2 n+1\}$. Since $n>2$, this is clearly impossible. Hence, $\phi(v)$ is odd.

Next, we show that $\phi\left(v_{i}\right)$ is odd and $\phi\left(u_{i}\right)$ is even for all $1 \leq i \leq n$. Note that there are 3 possible label patterns of $v-v_{i}-u_{i}$, namely; odd - odd - odd, odd - odd - even, and odd - even - odd. Assume there are k legs with label pattern odd - odd - odd. To obtain the same number of odd and even edge labels, there must also be k legs with label pattern odd - even - odd. Thus, there are $n-2 k$ legs with label pattern odd - odd - even.

This implies there are exactly $0+k+(n-2 k)=n-k$ vertices on spider's legs that are labeled with even number. However, the numbers of vertices of a spider graph is equal to the size of its label set. That means all labels from the set $\{1,2,3, \ldots, 2 n+1\}$ must be used. Since there are n even number in the set, we have $n-k=n$. This makes $k=0$ and implies all legs has label pattern odd - odd - even, i.e., $\phi\left(v_{i}\right)$ is odd and $\phi\left(u_{i}\right)$ is even for all $1 \leq i \leq n$.

Since the edge with label $2 n$ must be incident to two vertices with odd labels 1 and $2 n-1$, then $\phi(v) \in\{1,2 n+1\}$.
Case $\phi(v)=2 n+1$. As $\phi\left(v_{i}\right)$ is odd for all $1 \leq i \leq n$ and all distinct, without lost of generality, we can define $\phi\left(v_{i}\right)=2 i-1$. Since ϕ is a prime-graceful labeling, we have $\operatorname{gcd}\left(\phi(v), \phi\left(v_{i}\right)\right)=\operatorname{gcd}(2 n+1,2 i-1)=1$ for all $1 \leq i \leq n$. Thus, $2 n+1$ is prime.
Case $\phi(v)=1$. As $\phi\left(v_{i}\right)$ is odd for all $1 \leq i \leq n$ and all distinct, without lost of generality, we can define $\phi\left(v_{i}\right)=2 i+1$. Here we have $\operatorname{gcd}\left(\phi(v), \phi\left(v_{i}\right)\right)=\operatorname{gcd}(1,2 i+1)=1$ for all $1 \leq i \leq n$ and edge labels obtained from $v v_{1}, v v_{2}, \ldots, v v_{n}$ are $2,4,6, \ldots, 2 n$.

Here, the edge with label $2 n-1$ must be incident to vertices with labels $2 n$ and 1 , aka v_{1}. So, we have $\phi\left(u_{1}\right)=2 n$. Now, the edge with label $2 n-3$ must be incident to vertices with labels 2 and $2 n-1$, aka v_{n}. So, we have $\phi\left(u_{n}\right)=2$. Similarly, we have $\phi\left(u_{2}\right)=2 n-2$, $\phi\left(u_{n-1}\right)=4$, and so on. To put it simply, we have $\phi\left(u_{i}\right)=2 n+2-2 i$ for all $1 \leq i \leq n$. Since ϕ is a prime-graceful labeling, we have $\operatorname{gcd}\left(\phi\left(v_{i}\right), \phi\left(u_{i}\right)\right)=\operatorname{gcd}(2 i+1,2 n+2-2 i)=$ $\operatorname{gcd}(2 i+1,2 n+3)=1$ for all $1 \leq i \leq n$. Thus, $2 n+3$ is prime.

Therefore, the spider of n legs where all of its legs have lengths two is prime-graceful if and only if $2 n+1$ or $2 n+3$ is prime.

Example 2.23. A prime-graceful labeling of spider graph with 5 legs of length 2.

Theorem 2.24. For $n \in \mathbb{N}$, the complete bipartite graph $K_{2, n}$ is prime-graceful.
Proof. Let u and v be the two vertices of degree n, and $v_{1}, v_{2}, \ldots, v_{n}$ be other vertices of degree 2.
Define $\psi:\left\{u, v, v_{1}, v_{2}, \ldots, v_{n}\right\} \rightarrow\{1,2,3, \ldots, 2 n+1\}$ by

$$
\begin{array}{lrl}
\psi(u)=1, & \psi(v)=2 \\
\psi\left(v_{i}\right)=2 i+1 & & \text { if } 1 \leq i \leq n
\end{array}
$$

Then, the resulting edge labels are

$$
\begin{array}{ll}
\left\{\psi^{*}\left(u v_{i}\right):\right. & 1 \leq i \leq n\}=\{2,4, \ldots, 2 n\} \\
\left\{\psi^{*}\left(v v_{i}\right):\right. & 1 \leq i \leq n\}=\{1,3, \ldots, 2 n-1\}
\end{array}
$$

Edge labels are all distinct. Moreover, $\operatorname{gcd}(2 i+1,1)=1$ and $\operatorname{gcd}(2 i+1,2)=1$ for all $1 \leq i \leq n$. Thus, the complete bipartite graph $K_{2, n}$ is prime-graceful.

Example 2.25. A prime-graceful labeling of $K_{2, n}$.

Corollary 2.26. For any complete bipartite graph $K_{2, n}, \Xi\left(K_{2, n}\right)=1$.
Definition 2.27. The triangular book graph $B_{n}^{(3)}$ is the graph with $n+2$ vertices $u, v, v_{1}, v_{2}, \ldots, v_{n}$ and $2 n+1$ edges constructed by n triangles sharing a common edge $u v$. In other words, the triangular book graph $B_{n}^{(3)}$ is the complete tripartite graph $K_{1,1, n}$

Theorem 2.28. For $n>1$, the triangular book graph $B_{n}^{(3)}$ is prime-graceful if and only if $n+2$ is an odd prime or $n+1$ is a power of two.
Proof. Let u and v be the two vertices of degree n, and $v_{1}, v_{2}, \ldots, v_{n}$ be other vertices of degree 2.
(\Leftarrow) Case $n+2$ is an odd prime. Then n is odd. Define $\psi:\left\{u, v, v_{1}, v_{2}, \ldots, v_{n}\right\} \rightarrow$ $\{1,2,3, \ldots, 2 n+1\}$ by

$$
\begin{aligned}
& \psi(u)=1 \\
& \psi(v)=n+2
\end{aligned}
$$

$$
\psi\left(v_{i}\right)=n+2+i \quad \text { if } 1 \leq i \leq n .
$$

Then, the resulting edge labels are

$$
\begin{aligned}
\psi^{*}(u v) & =n+1 \\
\left\{\psi^{*}\left(u v_{i}\right): 1 \leq i \leq n\right\} & =\{n+2, n+3, \ldots, 2 n+2\} \\
\left\{\psi^{*}\left(v v_{i}\right): 1 \leq i \leq n\right\} & =\{1,2, \ldots, n\}
\end{aligned}
$$

Here, edge labels are all distinct. Since $n+2$ is prime, $\operatorname{gcd}(n+2+i, 1)=1$ and $\operatorname{gcd}(n+$ $2, n+2+i)=\operatorname{gcd}(n+2, i)=1$ for all $1 \leq i \leq n$. Thus, if $n+2$ is odd prime, then the triangular book graph $B_{n}^{(3)}$ is prime-graceful.
Case $n+1$ is a power of two. Define $\psi:\left\{u, v, v_{1}, v_{2}, \ldots, v_{n}\right\} \rightarrow\{1,2,3, \ldots, 2 n+2\}$ by

$$
\begin{aligned}
\psi(u) & =1 \\
\psi(v) & =2 n+2 \\
\psi\left(v_{i}\right) & =2 i+1
\end{aligned}
$$

$$
\text { if } 1 \leq i \leq n \text {. }
$$

Then, the resulting edge labels are

$$
\begin{aligned}
\psi^{*}(u v) & =2 n+1 \\
\left\{\psi^{*}\left(u v_{i}\right): 1 \leq i \leq n\right\} & =\{2,4, \ldots, 2 n\} \\
\left\{\psi^{*}\left(v v_{i}\right): 1 \leq i \leq n\right\} & =\{1,3, \ldots, 2 n-1\}
\end{aligned}
$$

Here, edge labels are all distinct. Since $n+1$ is a power of two, $n+1=2^{k}$ for some positive integer k. We the have $\operatorname{gcd}(1,2 i+1)=1$ and $\operatorname{gcd}(2 n+2,2 i+1)=\operatorname{gcd}\left(2^{k+1}, 2 i+1\right)=1$ for all $1 \leq i \leq n$. Thus, if $n+1$ is a power of two, then the triangular book graph $B_{n}^{(3)}$ is prime-graceful.
(\Rightarrow) Assume a triangular book graph $B_{n}^{(3)}$ is prime-graceful. Then there exists a primegraceful labeling $\phi:\left\{u, v, v_{1}, v_{2}, \ldots, v_{n}\right\} \rightarrow\{1,2,3, \ldots, 2 n+2\}$.

Because u and v are adjacent, $\phi(u)$ and $\phi(v)$ cannot be even at the same time. Hence, without lost of generality, we can assume $\phi(v)$ is odd.
Case $\phi(u)$ is even. The labels $\phi(v), \phi\left(v_{1}\right), \phi\left(v_{2}\right), \ldots, \phi\left(v_{n}\right)$ are all distinct odd labels from the set $\{1,3,5, \ldots, 2 n+1\}$. Since the edge with label $2 n+1$ only appear from incident vertices with labels 1 and $2 n+2$, we have $\phi(u)=2 n+2$. If there exists an odd prime p such that $p \mid(n+1)$, then $1<p \leq n$ and there exists a vertex $x \in\left\{v, v_{1}, v_{2}, \ldots, v_{n}\right\}$ that $\phi(x)=p$. Hence $\operatorname{gcd}(\phi(u), \phi(x)) \geq p>1$, which opposed to the property prime-graceful label. Therefore, there is no such p. That means $n+1$ is a power of two.
Case $\phi(u)$ is odd. Since both $\phi(u)$ and $\phi(v)$ are odd and the edge with label $2 n+1$ only appear from incident vertices with labels 1 and $2 n+2$, we have $\phi(u)=1$ or $\phi(v)=1$. Let's say $\phi(u)=1$. Assume $\phi(v)=a$, where a is odd and $3 \leq a \leq 2 n+1$. Then, to obtain edge with label a without violating the prime labeling property, there exists $j \in\{1,2, \ldots, n\}$ where $\phi\left(v_{j}\right)=a+1$. Here, $\phi^{*}\left(v v_{i}\right)=1$. That eliminate 2 and $a-1$ from $\left\{\phi\left(v_{i}\right): 1 \leq i \leq n\right\}$. Thus, to obtain edge with label $a-2$ without violating the graceful labeling property, there exists $\ell \in\{1,2, \ldots, n\}$ where $\phi\left(v_{\ell}\right)=2 a-2$. Then $2 a-2 \leq 2 n+2$. This implies $a \leq n+2$. Then there exists a non-negative integer t where $a+t=n+2$.

Next, we show that $a=n+2$. Assume $t \geq 1$. Then $\max \left\{\phi^{*}\left(v v_{i}\right): 1 \leq i \leq n\right\}=$ $\max \{\phi(v)-3,2 n+2-\phi(v)\}=\max \{n-t-1, n+t\}=n+t$. That implies edge labels $n+t+1, n+t+2, \ldots, 2 n+1$ can only be obtained from $\phi^{*}\left(u v_{i}\right)$. So, we can define $\phi\left(v_{i}\right)=n+2+i$ for $i=t, t+1, \ldots, n$ and leave $\phi\left(v_{i}\right) \leq a-1=n+1-t$ for all $1 \leq i \leq t-1$. Then, the current resulting edge labels are

$$
\begin{aligned}
\left\{\psi^{*}(u v)\right\} & =\{a-1=n+1-t\} \\
\left\{\psi^{*}\left(u v_{i}\right): t \leq i \leq n\right\} & =\{n+t+1, n+t+2, \ldots, 2 n+1\}, \\
\left\{\psi^{*}\left(v v_{i}\right): t \leq i \leq n\right\} & =\{2 t, 2 t+1, \ldots, n+t\}
\end{aligned}
$$

The sum of the remaining edge labels is $1+2+\cdots+2 t-1=t(2 t-1)$. Also, $\psi^{*}(u v)+$ $\sum_{i=1}^{t-1} \psi^{*}\left(u v_{i}\right)+\sum_{i=1}^{t-1} \psi^{*}\left(v v_{i}\right)=t(a-1)$. So $t(2 t-1)=t(a-1)$. That means $a=2 t$, contradicts its parity. Therefore, $t=0$. Thus, $\phi(v)=n+2$ and $\left\{\phi\left(v_{i}\right): 1 \leq i \leq n\right\}=$ $\{n+3, n+4, \ldots, 2 n+2\}$. Which implies $n+2$ must be prime.

Example 2.29. A prime-graceful labeling of $B_{n}^{(3)}$ where $n+2$ is prime.

Corollary 2.30. For any triangular book graph $B_{n}^{(3)}$ with $n>1, \Xi\left(B_{n}^{(3)}\right)=1$ if and only if $n+2$ is an odd prime or $n+1$ is a power of two.

3. Conclusions

We have introduced new vertex labelings, namely prime-graceful and k-prime-graceful, and proposed the notion of the prime-graceful number. We proved the existence of primegraceful labelings for star $K_{1, n}$, bistar $B_{n, n}$, bistar $B_{n, m}$, where $m+2$ is an odd prime, complete bipartite graph $K_{2, n}$, tristar $S L(3, n)$, where $n+2$ and $3 n+4$ are prime, triangular book graph $B_{n}^{(3)}$, where $n+2$ is an odd prime or $n+1$ is a power of two, and spider with n legs of length 2 , where $2 n+1$ or $2 n+3$ is prime. Thus, the prime-graceful numbers of these graphs are 1.

The prime-graceful numbers of path P_{n} and cycle C_{n} are 2 , when $n>5$ and $n>$ 4 , respectively. While the prime-graceful number of complete graph K_{n} are not yet determined.

A possible direction of future research is to investigate the prime-graceful number of other graphs.

Acknowledgements

This work is supported by the Research Fund for DPST Graduate with First Placement [Grant no. 038/2015], The Institute for the Promotion of Teaching Science and Technology (IPST), Thailand.

References

[1] B.D. Acharya, S. Arumugam, A. Rosa, Labelings of Discrete Structures and Applications, Narosa, 2007.
[2] G.S. Bloom, S.W. Golomb, Applications of numbered undirected graphs, in Proceedings of the IEEE 65 (4) (1977) 562-570.
[3] G.S. Bloom, S.W. Golomb, Numbered complete graphs, unusual rulers, and assorted applications, Alavi Y., Lick D.R. (eds), Theory and Applications of Graphs, Lecture Notes in Mathematics 642, Springer, Berlin, Heidelberg, 1978.
[4] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod Paris (1967), 349-355.
[5] J. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. \#DS6, http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS6/pdf.
[6] S.W. Golomb, How to number a graph, in Graph Theory and Computing, R.C. Read, ed., Academic Press, New York (1972), 23-37.
[7] A. Tout, A.N. Dabboucy, K. Howalla, Prime labeling of graphs, Nat. Acad. Sci. Letters 11 (1982) 365-368.
[8] T.M. Selvarajan, R. Subramoniam, Prime graceful labeling, International Journal of Engineering \& Technology 7 (4.36) (2018) 750-752.
[9] P. Pavithra, U. Mary, 3-Prime graceful labeling, Journal of Information and Computational Science 10 (1) (2020) 1381-1387.

[^0]: *Corresponding author.

