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Abstract In this paper, we prove that in the category of C∗-algebras and completely positive linear

maps an injective AF-algebra must be finite dimensional. We also show that a separable essentially simple

C∗-algebra whose injective envelope is a von Neumann algebra must be an AF-algebra. Further, we show

that if the regular completion (or equivalently, the injective envelope) of an essentially simple AF-algebra

is a W∗-algebra, then the AF-algebra is isomorphic to a direct sum of elementary C∗-algebras.
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1. Introduction

The class of AF-algebras includes UHF-algebras studied in 60’s by James Glimm [1],
and that of the matroid C∗-algebras, which is stably isomorphic to UHF-algebras, studied
around the same time by Dixmier [2] (see [3], [4] for more details).

Theory of injective envelopes has a long history in Functional Analysis. In 1964,
Cohen showed that a unique injective envelope of a Banach space exists, and proved that
an injective Banach space is linearly isometric to a function space C(M), where M is a
compact Hausdorff and extremely disconnected topological space, i.e., closure of every
open subset in M is open). In 1978, Hamana proved that injective objects exist and are
unique (up to isomorphism) in the category of Banach A-modules and continuous module
homomorphisms, where A is an unital Banach algebra. He managed to do this by using
seminorm admissible extensions of Banach A-modules and putting a partial order on the
family of extensions.

In 1979, Hamana [5, Theorem 4.1], proved that any C∗-algebra has a unique injective
envelope. Hamana used the Arveson extension theorem in [5]. In this setting, following
Choi and Effros [6], he considered a completely positive linear map φ of C∗-algebra B into
itself, and observed that Im(φ) with multiplication ”◦”, x◦y = φ(xy) for all x, y ∈ Im(φ),
and involution and norm induced by those of B, is an unital C∗-algebra. The C∗-algebra
Im(φ) is denoted by C∗(φ). Hamana proved that C∗(φ) is injective if B is injective in the
category of C∗-algebras. Finally, if A is a C∗-algebra, there exists an injective C∗-algebra
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C containing A as a C∗-subalgebra, by Arveson extension theorem (which asserts that
the algebra of bounded operators on a Hilbert space as a C∗-algebra is injective). By [5,
Theorem 3.4], there exists a minimal A-projection φ on C. If B = C∗(φ) and κ is the
canonical inclusion of A into B, then (B, κ) is an injective envelope of A.

The main purpose of the current paper is to make a detailed study of the injective
envelopes of approximately finite-dimensional C∗-algebras (AF-algebras). These are the
norm closure of an increasing sequence of finite-dimensional C∗-algebras. We do this via
looking at essential ideals of AF-algebras, which has not been done by any other papers
as we know.

In the second section, we set up terminologies and notations. In section 3, we discuss
AF-algebras in more details and introduce the notion of a monotone complete C∗-algebra.
Section 4 is devoted to the proof of the fact that no infinite-dimensional AF-algebra could
be injective in the category of C∗-algebras. In section 5, we prove that a separable
essentially simple C∗-algebra whose injective envelope is a von Neumann algebra must be
an AF-algebra.

2. Terminologies and Notations

In this section, we recall standard definitions and results needed later in the text and
discuss certain concrete examples. The main references for this section are [7], [3], and
[8].

A C∗-algebra A is a W ∗-algebra if and only if A, as a Banach space, is the dual space
X∗ of some (in fact, unique) Banach space X. It is a classical fact that a C∗-algebra
A is said to be a W ∗-algebra if A has a representation as a von Neumann algebra of
operators acting on some Hilbert space. A C∗-algebra A is an AW ∗-algebra if and only if
the left annihilator of each right ideal in A has the form Ap, where p ∈ A is a projection,
or equivalently if every maximal abelian C∗-subalgebra D ⊆ A is monotone complete
[7]. Any W ∗-algebra is an AW ∗-algebra, but the converse is not true, i.e., there exists
AW ∗-algebras which fail have any faithful representation as a von Neumann algebra. A
projection p ∈ A is abelian if the AW ∗-algebra pAp will be commutative algebra and
an AW ∗-algebra A is said to be of type I if every direct summand of A has an abelian
projection.

Definition 2.1. [8] A C∗-algebra is an approximately finite-dimensional algebra, or
shortly, an AF-algebra, if and only if it is an inductive limit of a countable direct se-
quence of C∗-algebras of finite-dimensional.

We recall that in [3], a C∗-algebra is an AF-algebra if A has a unit e, and there exists
an increasing sequence {An}∞n=1 of finite-dimensional subalgebras of A such that

⋃∞
n=1An

is norm-dense in A. By [9, Example 6.2.4], this is clearly the same as the above definition.
For the separable C∗-algebra case, there also exists an equivalent local definition of AF-

algebras (since finite-dimensional C∗-algebras are clearly separable, so are AF-algebras).
If C∗-algebra is non-separable, AF-algebras are defined as the inductive limit of arbitrary
inductive system of finite dimensional C∗-algebras, as done by Katsura in [10] (which
again has a local characterization).

A collection {(An, ϕn)}∞n=1 is a direct sequence of C∗-algebra, with each ϕn : An −→
An+1 ∗-homomorphism and An C

∗-algebra. We often write

A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ · · ·
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For instance, let An = M2n be the 2n×2n complex matrices. Define ϕn : M2n −→M2n+1

by sending a to

a⊕ a :=

(
a 0
0 a

)
.

Then M2
ϕ1−→M4

ϕ2−→M8
ϕ3−→ · · · is a direct sequence of C∗-algebras.

A collection ψn : An −→ B of ∗-homomorphism into a C∗-algebra B is called compatible
(with the direct system) if

An
ϕn //

ψn ""

An+1

ψn+1

��
B

commutes for all n, where {(An, ϕn)}∞n=1 a direct sequence of C∗-algebras. A C∗-algebra
A with compatible ∗-homomorphism ϕn : An −→ A is a direct limit for a direct sequence

A1
ϕ1−→ A2

ϕ2−→ A3
ϕ3−→ · · ·

if there is a unique ∗-homomorphism ψ : A −→ B such that

A
ψ // B

An

ϕn

OO

ψn

>>

commutes for all n and given compatible ∗-homomorphism ψn into a C∗-algebra B.
Any direct sequence {(An, ϕn)}∞n=1 has a direct limit (A,ϕn) = limn→∞(An, ϕn). A

direct limit
A = lim

→
(An, ϕn)

is an AF-algebra, where every An is finite-dimensional.

Example 2.2. [8] The C∗- algebra C([0, 1]) is not an AF-algebra. Note that since [0, 1]
is connected, the only projections on C([0, 1]) are 0 and 1. Hence, C([0, 1]) only has two
finite-dimensional C∗-subalgebras, i.e., the subalgebras {0} and C. Therefore, C([0, 1])
cannot be an AF-algebra.

Example 2.3. [8] The C∗- algebra K(H) of compact operators on a separable infinite-
dimensional Hilbert space H is an (infinite dimensional) AF-algebra. take orthonormal
basis {ek}∞k=1 in H. Suppose that Pn is the projection onto the subspace spanned by
{e1, e2, e3, · · · , en}, An = PnK(H)Pn and let ϕn be the inclusion map of An into An+1.
Then since

⋃
n≥1An consists of the finite-rank operators on H, K(H) is the direct limit

of the An’s.

Example 2.4. [3] K(H)+CI ⊆ B(H) is an AF-algebra. Let Pn be an increasing sequence
of projections together with rank(Pn) = n, which is converging strongly to the identity.
Consider An = CP⊥n +PnK(H)Pn ' C⊕Mn. It is easy to check that

⋃
n≥1An is dense in

K(H) + CI. By definition of An, we see that x ∈ An is the sum of a finite-rank operator
and a multiple of the identity, therefore An ⊆ K(H) + CI. Conversely, by using the fact
that operators of finite-rank are norm dense in K(H), and that the finite combinations of
e1e2 · · · are dense in H, it easy to show that K(H) + CI ⊆

⋃
n≥1An. The embedding of

An into An+1 maps Mn once into Mn+1. Since P⊥n = P⊥n+1 +En+1 where En+1 is a rank
1 projection less than Pn+1, the scalars are imbedded once into each summand of An+1.
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In all which follows, the equality A = ∪nAn always means that A is an AF-algebra with
an increasing sequence of finite-dimensional subalgebras of A, {An}n=1,2,···, all containing
the identity of A.

If we set, A0 = Ce, so that A0 ⊆ A1 ⊆ A2 ⊆ · · · , then A = ∪∞n=0An is an unital

AF-algebra, and e is the unit of A. Consider that A = ∪nAn, B = ∪nBn. It is easy
to check that A ⊕ B = ∪n(An ⊕Bn) and A ⊗ B = ∪n(An ⊗Bn). Let A = ∪nAn, and
ρ be a morphism of A onto a C∗-algebra B. Since ‖ρ(x)‖ ≤ ‖x‖ for all x ∈ A, then

B = ∪nρ(An). Because, the C∗-algebras An are finite-dimensional, the C∗-subalgebras
Bn = ρ(An) of B are finite-dimensional, and because ρ maps unit of A into the unit of
B, this gives that the B is an AF-algebra. This shows that the category of AF-algebras
with their morphisms is closed under finite sums and (minimal) tensor products.

Definition 2.5. [8] A C∗-algebraA is called local AF-algebra if any finite subset {a1, ..., an}
⊆ A and ε > 0 there exists a C∗-subalgebra of finite-dimensional B of A and b1, · · · , bn
in B such that for all 1 ≤ j ≤ n,

‖aj − bj‖ < ε.

The following result is proved in [8, Theorem 3.4].

Theorem 2.6. For any given separable C∗-algebra A, the C∗-algebra A is AF-algebra if
and only if it is a local AF-algebra.

By [8, Proposition 1.4], if each isometry in C∗-algebra A is unitary, then A is finite
C∗-algebra.

Proposition 2.7. [8, Proposition 3.6] Every unital AF-algebra is a finite C∗-algebra.

A C∗-algebra A is called monotone complete if and only if any bounded increasing
net in Asa has a least upper bound in Asa, where Asa denotes the real vector space of
hermitian elements of A. The least upper bound of a bounded increasing net {hα}α in
Asa is denoted by supα hα. A C∗-algebra A is monotone σ-complete if every bounded
increasing sequence {hn}n∈N in Asa has a least bound upper in Asa.

Monotone complete C∗-algebras are unital, and every W ∗-algebra is monotone com-
plete. However, it is not known whether every AW ∗-algebra is monotone complete. The
following proposition gives the situation for the injective envelope of C∗-algebras.

Proposition 2.8. [7, Proposition 1.3] Let E ⊆M be operator systems, with M monotone
complete. If the linear map φ : M −→ E is positive and such that φ|E = idE, then E is
monotone complete.

A subsequence of the above proposition is that the injective envelope I(A) of any
C∗-algebra A is monotone complete. Particular, I(A) is an AW ∗-algebra.

Let A be a C∗-subalgebra of B, we denote the smallest subset of Bsa that contains Asa
and is monotone closed in B by m-clBAsa. The monotone closure of A in B is defined to
be the set

m-clBA = (m-clBAsa) + i(m-clBAsa).

In particular, m-clBA is a monotone complete C∗-subalgebra of B [11, Lemma 1.4].
A C∗-subalgebra C of B is called monotone closed if m-clBC = C. Because this

property involves both C and B, it is possible for a C∗-subalgebra C of B to be monotone
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complete yet fail to be monotone closed. In fact, it is frequently the case that a von
Neumann algebra M ⊂ B(H) is not monotone closed in B(H).

A order dense in C∗-algebra B is a C∗-subalgebra A of B if

h = sup{k ∈ A+ : k ≤ h}, ∀h ∈ B+.

For example, C∗-algebra K(H) in B(H) is order dense.

Definition 2.9. A C∗-algebra B is regular monotone completion of a C∗-algebra A if
(1) A is a C∗-subalgebra of B,
(2) B is monotone complete,
(3) m-clBA = B, and
(4) A is order dense in B.

In [11], Hamana proved that a regular monotone completion exists for every C∗-algebra
A and any two regular monotone completions of A are ∗-isomorphic. Here A is used to
denote the regular monotone completion of A. Hamana’s construction of A is via the
injective envelope of A. Namely, A is the monotone closure of A in I(A). For each
C∗-algebra A there is a representation in which

A ⊆ A ⊆ I(A),

where this containments are as a C∗-subalgebra. An important feature of this containment
is that A is monotone closed in I(A).

3. Injective Envelopes of AF-Algebras

In this section, we show that an injective AF-algebra has to be finite dimensional. After
Hamana [5], we know that the category of C∗-algebras contain the injective envelope of
its objects. Throughout this section, AF-algebras are assumed to be separable (not in
the general local sense of Katsura).

Let A and B be C∗-algebras, and let φ : A −→ B be a linear map,

φ(n) : Mn(A) −→Mn(B)

be the amplification map obtained by applying φ entrywise. The map φ is said positive
and denotes φ ≥ 0 if a is in A+, then φ(a) be in B+, and if φ(n) : Mn(A) −→Mn(B) be a
positive, the map φ n-positive, and finally, The φ is completely positive, if it is n-positive
for given any n ≥ 1. A positive map is automatically bounded ( the proof is essentially the
same as for positive linear functionals). Indeed, an unital positive map is a contraction.
More generally, this kind of maps can be defined over operator systems.

An order embedding map φ is a map φ : A −→ B such that the φ is isometric and
φ(x) ≥ 0 if and only if x ≥ 0, equivalently, φ and φ−1 : φ(A) −→ A are both positive
contractions, and complete order embedding if φ(n) is an order embedding for all n.

Definition 3.1. A C∗-algebra A is injective if given any subspace S of a C∗-algebra C,
any completely positive linear map of S into A, there exists a completely positive linear
map of C into A.

Definition 3.2. Let A be an AF-algebra. An AF-algebra I(A) is injective envelope
of A if and only if the I(A) is injective and the only completely positive linear map
f : I(A) −→ I(A) for which f |A = idA is the identity map f = idI(A).

The following proposition, we bring is a well-known result.

Proposition 3.3. [12, Proposition IV.2.1.7] Any injective C∗-algebra is an AW ∗-algebra.
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According to the proposition 2.8, we can also say that the injective envelope of any
C∗-algebra is monotone complete. In particular, it is an AW ∗-algebra. Now we want to
prove that there is no injective AF-algebra except the finite dimensional ones.

Theorem 3.4. In the category of C∗-algebras, the only injective AF-algebras are the ones
which are of finite-dimensional.

Proof. Let A be an injective AF-algebra. Then A is an AW ∗-algebra by Proposition
3.3. On the other hand, since A is an AF-algebra, so A = ∪∞n=0An. Each An is finite-
dimensional and the collection of An is countable, so A is a separable AW ∗-algebra. Now,
a maximal abelian C∗−subalgebra (masa) in AW ∗-algebra A is C(X) for an extermally
disconnected compact X. Since, A is a separable so is C(X). It follows that X must
be metrizable and any extermally disconnected metrizable space should be discrete. It
follows from compactness of X that X must be finite. So C(X) will be finite-dimensional.
Now, by [13], it follows that A is also finite-dimensional.

A consequence of above theorem is the following corollary.

Corollary 3.5. The injective envelope of an infinite-dimensional AF-algebras, could not
be an AF-algebra.

It is desirable to show that injective objects in the category of AF-algebras are also
finite dimensional. At this point, we do not know if injective objects in the category of
AF-algebras have to be AW ∗-algebras. Also, we don’t know yet if the category of all
AF-algebras (including non-separable ones) contains injective envelopes of its objects.

4. Essential Ideals of AF-Algebras

The aim of this section is to discuss on essential ideals of AF-algebras and show that
for a essentially simple AF-algebra, it is nice to have a hand on the minimal essential
ideal. The motivation for this is coming from the result of Argerami and Farenick [14,
Theorem 2.2].

An ideal I of a C∗-algebra A is called essential if K ∩ I 6= {0} for given any non-zero
ideal K of A (or equivalently, aI = 0 implies a = 0, for all a ∈ A). An essential ideal is
necessarily non-zero.

Example 4.1. (i) If Y is locally compact and Hausdorff, then I = C0(X) is an essential
ideal of C0(Y ) for some open dense subset X ⊆ Y and is the only essential ideal of C0(Y ).

(ii) let A be a type I AW ∗-algebra and p is an abelian projection of A, then the ideal
I =< p > is an essential ideal in A.

Definition 4.2. A C∗-algebra A is called essentially simple if it has no proper closed
essential ideal.

Clearly, each simple C∗-algebra is essentially simple, but the converse is not true as it
is seen from the following example. If A is non-unital, then neither the multiplier algebra
M(A) nor the minimal unitization A+ C ⊆M(A) is essentially simple, as in both cases,
A is a proper closed essential ideal. As we essentially deal with separable C∗-algebras
in this paper, the former case is not such an interesting counterexample, as M(A) is not
usually sparable in infinite dimensional case. However, the first case is a good source of
non essentially simple separable C∗-algebras, such as K(H) + CI ⊆ B(H), which also
appeared in Example 2.4.
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Example 4.3. (i) Finite dimensional C∗-algebras are essentially simple: Let B be a finite
dimensional C∗-algebra and I be a closed ideal in B. Then B is a finite direct sum of
matrix algebras, and since full matrix algebras are simple, I has to be a direct sum of
a finite subfamily. Now if I is nontrivial, there is a full summand which is missing in
I. Choose a non-zero element a in this full summand and regard it as an element of B.
Clearly, aI = 0, while a 6= 0, that is, I could not be essential.

(ii) More generally, any direct sum of simple C∗-algebras (with more than one factor)
is (non simple but) essentially simple, by an argument verbatim to (i).

Let I be a two-sided ideal in AF-algebra A then I also is an AF-algebra such that

I =
⋃
n≥1(I

⋂
An).

where is A =
⋃
n≥1An and each An is finite-dimensional C∗-subalgebra.

It is desirable if one could use the above characterization (along with alternative char-
acterizations using the Bratteli diagrams) to characterize essentially simple AF-algebras.
Also, it is desirable to have a characterization of those AF-algebras with a unique proper
closed essential ideal (like the case of minimal unitization). Finally, for a non-essentially
simple AF-algebra, it is nice to have a hand on the minimal essential ideal.

For the AF-algebra A = K(H), the injective envelope of A is the W ∗-algebra B(H).
We use the result of Argerami and Farenick [14, Theorem 2.2] to show that K(H) (and
its direct sums) are basically the only case that such phenomena could happen.

Definition 4.4. We say that a C∗-algebra is elementary if it is ∗-isomorphic to K(H)
for some Hilbert space H.

The next result follows directly from definition and [14, Theorem 2.2].

Proposition 4.5. If A is a separable essentially simple C∗-algebra, then the followings
are equivalent;

(i) A is a W ∗-algebra,
(ii) I(A) is a W ∗-algebra,
(iii) A is isomorphic to an at most countable direct sum of algebras of the form K(Hi),

where Hi is a Hilbert space.

Since, the K(H) is AF-algebra, and AF-algebras are closed under taking countable
direct sum. Therefore, we will have the following corollary.

Corollary 4.6. A separable essentially simple C∗-algebra whose injective envelope is a
von Neumann algebra must be an AF-algebra.

Next, we discuss liminal and postliminal C∗-algebras in the context of injective en-
velopes. There exists examples of AF-algebras which are postliminal but not liminal, as
well as examples which are not postliminal.

Definition 4.7. Let A be a C∗-algebra:
(i) A is liminal if ϕ(A) = K(H), which (H,ϕ) is a non-zero irreducible representation

of A (equivalently, ϕ(A) ⊆ K(H)).
(ii) A is called postliminal if ϕ(A) ⊇ K(H), which (H,ϕ) is a non-zero irreducible

representation (H,ϕ) of A (equivalently, K(H) ∩ ϕ(A) 6= 0).

The liminal algebras are also called CCR stands for completely continuous representa-
tions being an old synonym compact, and the postliminal algebras are called GCR stands
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for generalized CCR or Type I C∗-algebras. The Type I terminology should not be mis-
understood with its von Neumann algebra counterpart, as Type I von Neumann algebras
are not necessarily Type I as a C∗-algebra.
Every liminal C∗-algebra is abviously postliminal.

Example 4.8. (i) Every abelian C∗-algebra is liminal, for this let (H,ϕ) be a non-zero
irreducible representation of A, then the comutant ϕ(A)′ equal to C1. Furthers, since A
is abelian, ϕ(A) ⊆ ϕ(A)′. Hence, ϕ(A) = C1, so H is one dimensional. Since ϕ(A) has
no non-trivial invariant vector subspaces. Therefore, ϕ(A) = K(H).

(ii) Let A be a finite-dimensional C∗-algebra, then it is liminal. Because if (H,ϕ) be
a non-zero irreducible representation of A, then H = ϕ(A)x for some non-zero vector
x ∈ H, so H is finite-dimensional and therefore, ϕ(A) ⊆ K(H) = B(H).

We know that every C∗-subalgebra of a liminal C∗-algebra and its quotient C∗-algebra
is also liminal [9, Theorem 5.6.1]. Also, if I is a closed ideal in a C∗-algebra A, Then the
postliminal of A equivalent to the postliminal of I and A/I [9, Theorem 5.6.2].

On the other hand, Teoplitz algebra T is postliminal, but it is not liminal. Since its
commutator ideal K := K(H2(T)) is liminal, and since the quotient T /K is ∗-isomorphic
to C(T), i.e., it is abelian and so liminal. Hence, K := K(H2(T)) and T /K is postliminal.
Finally, T is postliminal. However, T is not liminal, as the identity representation of T
in H2(T) is irreducible but not finite-dimensional.

Next, let us observe that K(H) is a liminal AF-algebra. Since the identity repre-
sentation is the only non-zero irreducible representation that is unitarily equivalent to
every non-zero irreducible representation of K(H), and K(H)′ = C1, (H,ϕ) = (H, i).
Therefore, K(H) is liminal.

On the other hand, the unital AF-algebra A = K(H) + CI ⊆ B(H) is not liminal,
but it is postliminal. First, observe that finite-dimensional irreducible representations are
only irreducible representations of an unital liminal C∗-algebra A. For this, let (H,ϕ)
be a non-zero irreducible representation of A, then it is non-degenerate, and therefore
ϕ(1) = idH . Hence, idH ∈ ϕ(A) = K(H), so it is compact, and thus dim(H) <∞. Now
assume thatH is a infinite-dimensional Hilbert space, then the C∗-algebra A = K(H)+CI
is unital and contains an infinite-dimensional non-zero irreducible representation, namely,
the identity representation on H. Hence, A is not liminal. But, A is postliminal. Since
K(H) and A

K(H) = C are liminal C∗-algebras, and so are postliminal. The last argument

also reveals the fact that if I is a closed ideal of a C∗-algebra A such that I and A
I are

liminal, then it does not follow that A is also liminal (while the converse is known to be
true [9, Theorem 5.6.1]).

It is easy to check that if a C∗-algebra is simple postliminal C∗-algebra, then it is
elementary. Since A is a postliminal C∗-algebra, then ϕ(A) ⊇ K(H). On the other hand,
since A is simple, then ϕ(A) is simple, and (H,ϕ) is non-zero irreducible representation.
Hence, ϕ(A) = K(H), i.e. A is *-isomorphic to K(H). But if an elementary C∗-algebra
is unital, then it is finite-dimensional and vice versa [9, Theorem 1.4.2]. Therefore, an
infinite-dimensional unital simple C∗-algebra is not postliminal. Because, if C∗-algebra
is postliminal, then it is elementary, Since it is simple. But we know that every unital
elementary is finite-dimensional. For example, no UHF-algebras are postliminal. In
particular, if H is a separable infinite-dimensional Hilbert space, then the Calkin algebra
is an example of simple C∗-algebra, which contradicts the postliminal of B(H). Namely,
B(H) is not postliminal.
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Theorem 4.9. Any separable essentially simple postliminal C∗-algebra is liminal.

Proof. Let A satisfy the assumptions of the theorem. Since A is postliminal, it follows
from [11, Theorem 6.6] that A is a type I AW ∗-algebra. Since every type I AW ∗-algebra
is also injective, we get A = I(A). Now [7, Theorem 3.1] implies that A has a liminal
essential ideal I, then I = A, by essential simplicity. That is, A is liminal.
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