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Abstract The algebraic system is a well-established structure of classical universal algebra. An algebraic

system is a triple consisting a nonempty set together with the sequence of operation symbols and the

sequence of relation symbols. To express the primary properties of algebraic systems one needs the

notion of formulas. The paper is devoted to studying of the structures related to full formulas which are

extensional concepts constructed from full terms. Defining a superposition operation on the set of full

formulas one obtains a many-sorted algebra which satisfies the superassociative law. In particular, we

introduce a natural concept of a full hypersubstitution for algebraic systems which extends the concept

of full hypersubstitutions of algebras, i.e., the mappings which send operation symbols to full terms

of the same arities and relation symbols to full formulas of the corresponding arities. Together with

one associative operation on the collection of full hypersubstitutions for algebraic systems, we obtain a

semigroup of full hypersubstitutions for algebraic systems.
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1. Introduction and Preliminary Definitions

The idea of terms is one of the mathematical basic concepts. Terms may be regarded
as words formed by letters. Let I be a nonempty indexed set and (fi)i∈I be a sequence
of operation symbols. To every operation symbol fi, we assign a natural number ni ∈
N+ := {1, 2, 3, . . .}, the arity of fi. The sequence τ := (ni)i∈I is called a type. We
denote by Xn := {x1, . . . , xn} is a finite set called an alphabet and its elements are called
variables and for each n ≥ 1, let Xn := {x1, . . . , xn}. An n-ary term of type τ is defined
inductively by:

(1) Every variable xj ∈ Xn is an n-ary term of type τ .
(2) If t1, . . . , tni are n-ary terms of type τ and fi is an ni-ary operation symbol,

then fi(t1, . . . , tni) is an n-ary term of type τ .
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Let Wτ (Xn) be the set of all n-ary terms of type τ and Wτ (X) :=
⋃
n∈N+ Wτ (Xn) be

the set of all terms of type τ . The study of terms in various directions can be found, for
instance, in [1, 2].

Now, we recall the concept of superposition operation of terms. For each natural
numbers m,n ≥ 1, the superposition operation of terms is a many-sorted mapping

Snm : Wτ (Xn)×Wτ (Xm)n →Wτ (Xm)

defined by

(1) Snm(xj , t1, . . . , tn) := tj , if xj , 1 ≤ j ≤ n is a variable from Xn.
(2) Snm(fi(s1, . . . , sni

), t1, . . . , tn) := fi(S
n
m(s1, t1, . . . , tn), . . . , Snm(sni

, t1, . . . , tn)).

Then the many-sorted algebra can be defined by

cloneτ= ((Wτ (Xn))n∈N+ , (Snm)n,m∈N+ , (xi)i≤n∈N+),

which is called the clone of all terms of type τ . In this case, the variables x1, . . . , xn act
as the nullary operations. The primary result of the clone of all terms of type τ is a
satisfying identities (C1), (C2), (C3) (see [3]).

One of important structures on universal algebra is an algebraic system. Here, we
would like to generalize all above concepts to algebraic systems. For more information
about algebraic systems, we refer the reader to [4, 5]. To approach this, we begin by giving
some basic definitions. Let J be a nonempty indexed set and let (γj)j∈J be a sequence
of relation symbols. Let τ ′ := (nj)j∈J where nj is the arity of γj for every j ∈ J .

Definition 1.1. ([5]) An algebraic system of type (τ, τ ′) is a triple consisting a nonempty
set A together with a sequence (fAi )i∈I of operations on A where fAi is ni-ary for i ∈ I
and a sequence (γAj )j∈J of relations on A where γAj is nj-ary for j ∈ J , i.e,

A := (A, (fAi )i∈I , (γ
A
j )j∈J).

Here, some standard examples will be provided. Ordered semigroups can be regarded
as algebraic systems of type ((2), (2)) such as an algebraic system (N+,+,≤) of type
((2), (2)) consisting the set of all natural numbers, one binary operation on N+ and one
binary relation on N+, say + and ≤, respectively.

Not only all of the terms in the second-order language will be used to express properties
of algebraic systems but also another one is called quantifier free formulas. The concept
of quantifier free formulas is first introduced by A.I. Mal’cev who is the Russian mathe-
matician in 1973 [5]. For more detail see also [4, 5]. Next, we recall the formal definition
of n-ary quantifier free formulas which is defined by K. Denecke and D. Phusanga in 2008.

Definition 1.2. ([6]) Let n ∈ N+. An n-ary quantifier free formula of type (τ, τ ′) (for
simply, formula) is defined in the following way:

(1) If t1, t2 are n-ary terms of type τ , then the equation t1 ≈ t2 is an n-ary
quantifier free formula of type (τ, τ ′).

(2) If j ∈ J and t1, . . . , tnj
are n-ary terms of type τ and γj is an nj-ary relation

symbol, then γj(t1, . . . , tnj ) is an n-ary quantifier free formula of type (τ, τ ′).
(3) If F is an n-ary quantifier free formula of type (τ, τ ′), then ¬F is an n-ary

quantifier free formula of type (τ, τ ′).
(4) If F1 and F2 are n-ary quantifier free formulas of type (τ, τ ′), then F1 ∨ F2 is

an n-ary quantifier free formula of type (τ, τ ′).
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Let F(τ,τ ′)(Wτ (Xn)) be the set of all n-ary quantifier free formulas of type (τ, τ ′) and let

F(τ,τ ′)(Wτ (X)) :=
⋃
n∈N+

F(τ,τ ′)(Wτ (Xn))

be the set of all quantifier free formulas of type (τ, τ ′).
The definition of superposition of formulas Rnm was already defined. For this defining

see [6]. These operations are used to define a many-sorted algebra

Formclone(τ, τ ′) := ((Wτ (Xn) ∪ F(τ,τ ′)(Xn))n≥1, (R
n
m)m,n≥1, (xi)1≤i≤n,i,n∈N),

which is called the formula-term clone of type (τ, τ ′).
In 2017, T. Kumduang and S. Leeratanavalee [7] introduced the definition of linear

formulas which extended the idea of linear terms. Some fundamental properties of linear
formulas were studied. This topic also investigated by K. Denecke in 2019. (see, [1, 8]).

Now, we recall the concept of a hypersubstitution, which was introduced by K. Denecke,
D. Lau, R. Poschel and D. Schweigert in [3]. We begin with a number of definitions
and some notations. Throughout of these preliminaries, we assume a fixed type τ =
(ni)i∈I , with operation symbols fi for i ∈ I. See, e.g., [3, 9] for more background on
hypersubstitutions and hyperidentities.

The concept of a hypersubstitution for algebras can be extended in the canonical way
to a hypersubstitution for algebraic systems of type (τ, τ ′). In 2018, J. Koppitz and D.
Phusanga [10] introduced the concept of a hypersubstitution for algebraic systems.

Definition 1.3. ([10]) A hypersubstitution for algebraic systems of type (τ, τ ′) is a map-
ping

σ : {fi | i ∈ I} ∪ {γj | j ∈ J} →Wτ (X) ∪ F(τ,τ ′)(Wτ (X))

which maps operation symbols to terms and relation symbols to quantifier free formulas
preserving arities. Let Hyp(τ, τ ′) be the set of all hypersubstitutions for algebraic systems
of type (τ, τ ′).

Any hypersubstitution for algebraic systems of type (τ, τ ′) σ induces an extensional
mapping σ̂ defined on the set Wτ (X) ∪ F(τ,τ ′)(Wτ (Xn)), as follows.

Definition 1.4. Let σ ∈ Hyp(τ, τ ′) and let n ∈ N. Then σ induces a mapping

σ̂ : Wτ (X) ∪ F(τ,τ ′)(Wτ (X))→Wτ (X) ∪ F(τ,τ ′)(Wτ (X))

by setting

(1) σ̂[xi] := xi for every i = 1, . . . , n.
(2) σ̂[fi(t1, . . . , tni

)] := Sni
n (σ(fi), σ̂[t1], . . . , σ̂[tni

]) for i ∈ I.
(3) σ̂[s ≈ t] := σ̂[s] ≈ σ̂[t].
(4) σ̂[γj(t1, . . . , tnj

)] := R
nj
n (σ(γj), σ̂[t1], . . . , σ̂[tnj

]) for j ∈ J .
(5) σ̂[¬F ] := ¬σ̂[F ] for every F ∈ F(τ,τ ′)(Wτ (X)).
(6) σ̂[F1 ∨ F2] := σ̂[F1] ∨ σ̂[F2] for every F1, F2 ∈ F(τ,τ ′)(Wτ (X)).

We recall that ◦ denotes the usual composition of mappings and it is easy to verify that
σ̂1 ◦ σ2 ∈ Hyp(τ, τ ′), whenever σ1, σ2 ∈ Hyp(τ, τ ′). In the study of hypersubstitutions
for algebras, the multiplication ◦h of hypersubstitutions was introduced. For algebraic
systems, J. Koppitz and D. Phusanga defined a binary operation ◦r on Hyp(τ, τ ′) by
σ1 ◦r σ2 := σ̂1 ◦ σ2 where σ1, σ2 ∈ Hyp(τ, τ ′).

Let σid be the hypersubstitution for algebraic systems which maps each ni-ary oper-
ation symbol fi to the term fi(x1, , ..., xni) for all i ∈ I, and maps each nj-ary relation
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symbol γj to the quantifier free formula γj(x1, . . . , xnj ) for all j ∈ J . In particular, the
authors proved that Hyp(τ, τ ′) := (Hyp(τ, τ ′), ◦r, σid) is a monoid. To approach linear
hypersubstitutions for algebraic systems see [11].

Throughout this paper, we assume that all operation symbols have the same fixed arity
n for some n ∈ N+. Let τn,i be such a fixed n-ary type with operation symbols (fi)i∈I
indexed by some nonempty set I. That is τn,i is a sequnce of i-tuple of fixed n-ary op-
eration symbols. For instance, τ2,3 = (2, 2, 2) this means we have three binary operation
symbols. For the type of relation symbols which fixed arity m, we denoted by τ ′m,j be
a sequence of such relation symbols with the same fixed arity m indexed by some set J .
This means that, this paper is devoted to study the algebraic systems of type (τn,i, τ

′
m,j).

This paper is motivated by several recent studies [8, 10, 11] of such research area. We
restrictly focus on full terms of type τn,i (the definition will be given on the next section)
for a natural number n ≥ 1 and i ∈ I, i.e., there are infinitely many n-ary operation
symbols. We define the definition of full formulas of type (τn,i, τ

′
m,j) for natural numbers

n,m ≥ 1. Our first aim is to construct the many-sorted algebra as in the same situa-
tion of Formclone(τ, τ ′), and then define the superposition operation Rn on the set of
full formulas. Furthermore, the canonical concept of full hypersubstitutions for algebraic
systems is introduced. To construct the algebra of all full hypersubstitutions for alge-
braic systems, the theorem of superassociative law, endomorphism of clone, and some
significantly properites of the extension of full hypersubstitutions for algebraic systems
are investigated.

2. Full Formulas and the Clone of Full Formulas

Now, it comes to our main results. The concept of a full term was already defined
for algebras by K. Denecke and P. Jampachon in 2004 [12]. In particular, they formed a
Menger algebra of such terms [13]. Let Hn be the set of all mapping α : {1, . . . , n} →
{1, . . . , n}.

Definition 2.1. An n-ary full term of type τn,i is inductively defined by:

(1) Let α ∈ Hn be an arbitrary function and let fi be an operation symbol of type
τn,i. Then fi(xα(1), . . . , xα(n)) is an n-ary full term of type τn,i.

(2) If t1, . . . , tn are n-ary full terms of type τn,i and fi is an operation symbol of
type τn,i, then fi(t1, . . . , tn) is an n-ary full term of type τn,i.

Let WF
τn,i

(Xn) be the set of all n-ary full terms of type τn,i and let

WF
τn,i

(X) :=
⋃
n∈N+

WF
τn,i

(Xn)

be the set of all full terms of type τn,i.

Example 2.2. Let τ2,1 be the type with only one binary operation symbol f and H2 =
{α : {1, 2} → {1, 2}} be the set of all mappings on {1, 2}. Then f(x1, x1), f(x1, x2),
f(x2, x1), f(x2, x2), f(f(x1, x1), f(x1, x1)), f(f(x2, x1), f(x2, x2)) are examples of binary
full terms of type τ2,1.

We now define an (n+ 1)-superposition operation Sn on WF
τn,i

(Xn), i.e., a mapping

Sn : WF
τn,i

(Xn)×WF
τn,i

(Xn)n →WF
τn,i

(Xn)

(1) Sn(fi(xα(1), . . . , xα(n)), s1, . . . , sn) := fi(sα(1), . . . , sα(n)) where α ∈ H2,
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(2) Sn(fi(t1, . . . , tn), s1, . . . , sn) := fi(S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)).

Now we can form the algebra cloneF τn,i := (WF
τn,i

(Xn), Sn) of type (n+1). Furthermore,
the algebra cloneF τn,i is a Menger algebra of rank n.

Theorem 2.3. ([12]) The algebra cloneF τn,i satisfies the superassociative law;

Sn(Sn(t, t1, . . . , tn), s1, . . . , sn) = Sn(t, Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))

where t, t1, . . . , tn, s1, . . . , sn ∈WF
τn,i

(Xn).

Our main purpose is to define quantifier free full formulas which are induced by full
terms. Using the definition of full terms in Definition 2.1, we define the new concept of a
quantifier free full formula of type (τn,i, τ

′
m,j) for natural numbers n,m ≥ 1.

Let us consider τ ′m,j = (m, . . . ,m), i.e., we have j-tuple of m-ary relation symbols.
As an example we consider type τ ′3,4, that means τ ′3,4 = (3, 3, 3, 3) so that we have four
ternary relation symbols.

Definition 2.4. Let n ∈ N+. An n-ary quantifier free full formula of type (τn,i, τ
′
m,j)

(for simply, full formula) is defined in the following way:

(1) If t1, t2 are n-ary full terms of type τn,i, then the equation t1 ≈ t2 is an n-ary
quantifier free full formula of type (τn,i, τ

′
m,j).

(2) If t1, . . . , tm are n-ary full terms of type τn,i and γj is a relation symbol of type
τ ′m,j , then γj(t1, . . . , tm) is an n-ary quantifier free full formula of type (τn,i, τ

′
m,j).

(3) If F is an n-ary quantifier free full formula of type (τn,i, τ
′
m,j), then ¬F is an

n-ary quantifier free full formula of type (τn,i, τ
′
m,j).

(4) If F1 and F2 are n-ary quantifier free full formulas of type (τn,i, τ
′
m,j), then

F1 ∨ F2 is an n-ary quantifier free full formula of type (τn,i, τ
′
m,j).

Let FF(τn,i,τ ′
m,j)

(WF
τn,i

(Xn)) be the set of all n-ary quantifier free full formulas of type

(τn,i, τ
′
m,j) and let

FF(τn,i,τ ′
m,j)

(Wτn,i
(X)) :=

⋃
n∈N+

FF(τn,i,τ ′
m,j)

(Wτn,i
(Xn))

be the set of all quantifier free full formulas of type (τn,i, τ
′
m,j).

Example 2.5. Let (τ2,2, τ
′
2,1) be a type of algebraic systems, i.e., we have two binary

operation symbols f and g and one binary relation symbol γ. Then the examples of
binary full formulas of type (τ2,2, τ

′
2,1) are f(x1, x2) ≈ g(x2, x1), f(g(x2, x2), f(x1, x1)) ≈

f(x1, x1), γ(f(x2, x2), g(x2, x1)), γ(f(x1, x1), f(g(x2, x2), f(x1, x1))). Moreover, we obtain
other full formulas of type (τ2,2, τ

′
2,1) from these by using the connectives ¬ and ∨.

Now, we generalize the definition of superposition operation of full terms to quantifier
free full formulas by substituting variables occurring in a quantifier free full formula by
full terms, then we get quantifier free full formulas. We explain this by the following
operation Rn where n ≥ 1.

Definition 2.6. The operation

Rn : FF(τn,i,τ ′
m,j)

(WF
τn,i

(Xn))×WF
τn,i

(Xn)n → FF(τn,i,τ ′
m,j)

(WF
τn,i

(Xn))

where m,n ∈ N+, are defined by the following inductive steps:

(1) If t1, t2 ∈WF
τn,i

(Xn), then

Rn(t1 ≈ t2, s1, . . . , sn) := Sn(t1, s1, . . . , sn) ≈ Sn(t2, s1, . . . , sn).
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(2) If t1, . . . , tm ∈WF
τn,i

(Xn), then

Rn(γj(t1, . . . , tm), s1, . . . , sn) := γj(S
n(t1, s1, . . . , sn), . . . , Sn(tm, s1, . . . , sn)).

(3) If F ∈ FF(τn,i,τ ′
m,j)

(WF
τn,i

(Xn)), then Rn(¬F, s1, . . . , sn) := ¬Rn(F, s1, . . . , sn).

(4) If F1, F2 ∈ FF(τn,i,τ ′
m,j)

(WF
τn,i

(Xn)), then

Rn(F1 ∨ F2, s1, . . . , sn) := Rn(F1, s1, . . . , sn) ∨Rn(F2, s1, . . . , sn).

Below we provide an example of Definition 2.6 that demonstrates a method for substi-
tuting full formulas by full terms.

Example 2.7. Let (τ2,1, τ
′
3,1) be a type of algebraic systems with a binary operation

symbol and a ternary relation symbol say g and λ, respectively. Consider the superposition
R2 and two binary full terms s1 = g(xα(1), xα(2)), s2 = g(xβ(1), xβ(2)) in WF

τ2,1(X2) where

α and β are mappings from {1, 2} to {1, 2} defined by α =

(
1 2
2 1

)
and β =

(
1 2
1 1

)
.

Then we have the following:
(1) If t1 ≈ t2 has the form g(x2, x2) ≈ g(x1, x2), then R2(g(x2, x2) ≈ g(x1, x2), s1, s2)

is a full formula S2(g(x2, x2), s1, s2) ≈ S2(g(x1, x2), s1, s2). By the superposition S2, we
have g(g(x1, x1), g(x1, x1)) ≈ g(g(x2, x1), g(x1, x1)).

(2) If λ(g(x1, x2), g(x2, x1), g(x2, x2)) is a full formula in FF(τ2,1,τ ′
3,1)

(WF
τ2,1(X2)), then

we obtain R2(λ(g(x1, x2), g(x2, x1), g(x2, x2)), s1, s2). By Definition 2.6 and S2, it is equal
to λ(g(g(x2, x1), g(x1, x1)), g(g(x1, x1), g(x2, x1)), g(g(x1, x1), g(x1, x1))).

Furthermore, applying logical connectors ¬ and ∨ we obtain other full formulas.

If we form the set of all n-ary quantifier free full formulas of type (τn,i, τ
′
m,j), the

computation with full formulas is fully described by the following algebra,

FormcloneF (τn,i, τ
′
m,j) := (WF

τn,i
(Xn),FF(τn,i,τ ′

m,j)
(WF

τn,i
(Xn)), Sn, Rn).

This algebraic structure is called the clone of full formulas of type (τn,i, τ
′
m,j).

Theorem 2.8. The algebra FormcloneF (τn,i, τ
′
m,j) satisfies the following equation.

Rn(Rn(F, t1, . . . , tn), s1, . . . , sn) = Rn(F, Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))

where t1, . . . , tn, s1, . . . , sn ∈WF
τn,i

(Xn) and F ∈ FF(τn,i,τ ′
m,j)

(WF
τn,i

(Xn)).

Proof. We give a proof by the definition of full formulas F . If F is a full formula s ≈ t,
then
Rn(Rn(s ≈ t, t1, . . . , tn), s1, . . . , sn)

= Sn(Sn(s, t1, . . . , tn), s1, . . . , sn) ≈ Sn(Sn(t, t1, . . . , tn), s1, . . . , sn)
= Sn(s, Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))
≈ Sn(t, Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))

= Rn(s ≈ t, Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)).

If F is a full formula γj(u1, . . . , un), where u1, . . . , un ∈WF
τn,i

(Xn), then

Rn(Rn(γj(u1, . . . , un), t1, . . . , tn), s1, . . . , sn)
= Rn(γj(S

n(u1, t1, . . . , tn), . . . , Sn(un, t1, . . . , tn)), s1, . . . , sn)
= γj(S

n(u1, S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))

, . . . , Sn(un, S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)))

= Rn(γj(u1, . . . , un), Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)).
Assume that a full formula F satisfies the statement of the theorem. Then
Rn(Rn(¬F, t1, . . . , tn), s1, . . . , sn)
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= Rn(¬Rn(F, t1, . . . , tn), s1, . . . , sn)
= ¬Rn(Rn(F, t1, . . . , tn), s1, . . . , sn)
= ¬Rn(F, Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))
= Rn(¬F, Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)).

Assume that full formulas F1 and F2 satisfy the statement of the theorem. Then
Rn(Rn(F1 ∨ F2, t1, . . . , tn), s1, . . . , sn)

= Rn(Rn(F1, t1, . . . , tn), s1, . . . , sn) ∨Rn(Rn(F2, t1, . . . , tn), s1, . . . , sn)
= Rn(F1, S

n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))
∨Rn(F2, S

n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))
= Rn(F1 ∨ F2, S

n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)).
This shows that

Rn(Rn(F, t1, . . . , tn), s1, . . . , sn) = Rn(F, Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))

for all F ∈ FF(τn,i,τ ′
m,j)

(WF
τn,i

(Xn)).

3. Full Hypersubstitutions of Type (τn,i, τ
′
m,j)

The major intention of this section is to introduce the notion of a full hypersubstitu-
tion for algebraic systems of type (τn,i, τ

′
m,j). Such concept is a powerful tool to study

hyperidentities. See, e.g., [3, 14] for more inside story on hyperidentities. In [12] the full
hypersubstitution of type τn,i was given by K. Denecke and P. Jampachon. To fulfil the
understanding, the following details are necessary.

For a full term we need the concept of a full term tβ arising from the original full term
t where β ∈ Hn. Such full term can be defined inductively as follows:

(1) If t = fi(xα(1), . . . , xα(n)) for i ∈ I, α ∈ Hn, then tβ = fi(xβ(α(1)), . . . , xβ(α(n))).
(2) If t = fi(t1, . . . , tn), then tβ = fi((t1)β , . . . , (tn)β).

Obviously, tβ is a full term for any term t and β ∈ Hn.
The concept of ordinary hypersubstitutions was mentioned in the previous section.

Now, we recall the notion of full hypersubstitution which is a restriction of hypersubsti-
tutions.

Definition 3.1. A full hypersubstitution of type τn,i is a mapping

σ : {fi | i ∈ I} →WF
τn,i

(Xn).

Every full hypersubstitution σ can be extended to a mapping

σ̂ : WF
τn,i

(Xn)→WF
τn,i

(Xn)

defined on the set of full terms by the following identities:

(1) σ̂[fi(xα(1), . . . , xα(n))] := (σ(fi))α for every α ∈ Hn.
(2) σ̂[fi(t1, . . . , tn)] := Sn(σ(fi), σ̂[t1], . . . , σ̂[tn]).

Let HypF (τn,i) be the set of all full hypersubstitutions of type τn,i. On this set, one
can defined a binary operation ◦h by σ1 ◦h σ2 := σ̂1 ◦ σ2 where ◦ denotes the usual
composition. Together with the identity element σid defining by σid(fi) = fi(x1, . . . , xn)
we can form the monoid (HypF (τn,i), ◦h, σid). For more detail on a full hypersubstitution
see [12].

By both ideas of full hypersubstitutions of type τn,i and hypersubstitutions for algebraic
systems of type (τ, τ ′) as we mentioned in Definition 1.3, we will combine these ideas



1644 Thai J. Math. Vol. 19 (2021) /T. Kumduang and S. Leeratanavalee

and introduce the new algebraic structure of a semigroup of full hypersubstitutions for
algebraic systems in a natural way by using many tools from the previous results. We will
start with giving the concept of full formulas generated by β ∈ Hn. For any full formula
F of type (τn,i, τ

′
m,j), a full formula Fβ arising from F and the term tβ by mapping all

variables corresponding to a mapping β ∈ Hn inductively by the following steps.

(1) If F is s ≈ t, then Fβ = (s ≈ t)β := sβ ≈ tβ .
(2) If F is γj(t1, . . . , tm), then Fβ = (γj(t1, . . . , tm))β := γj((t1)β , . . . , (tm)β).
(3) (¬F )β = ¬(Fβ) where Fβ is already defined.
(4) (F1 ∨ F2)β = (F1)β ∨ (F2)β where (F1)β , (F2)β are already defined.

Definition 3.2. A full hypersubstitution for algebraic systems of type (τn,i, τ
′
m,j), for

short, a full hypersubstitution of type (τn,i, τ
′
m,j) is a mapping

σ : {fi | i ∈ I} ∪ {γj | j ∈ J} →WF
τn,i

(Xn) ∪ FF(τn,i,τ ′
m,j)

(WF
τn,i

(Xm))

which sends ni-ary operation symbols to ni-ary full terms and nj-ary relation symbols to
nj-ary quantifier free full formulas, respectively. We denote the set of all full hypersub-
stitutions of type (τn,i, τ

′
m,j) by HypF (τn,i, τ

′
m,j).

To define a binary operation on HypF (τn,i, τ
′
m,j), we extend a full hypersubstitution of

type (τn,i, τ
′
m,j) to a mapping σ̂ defining on the set WF

τn,i
(Xn) ∪ FF(τn,i,τ ′

m,j)
(WF

τn,i
(Xm))

of all full terms of type τn,i and all full formulas of type (τn,i, τ
′
m,j) as follows.

Definition 3.3. Let σ be a full hypersubstitution of type (τn,i, τ
′
m,j). Then σ induces a

mapping

σ̂ : WF
τn,i

(Xn) ∪ FF(τn,i,τ ′
m,j)

(WF
τn,i

(Xm))→WF
τn,i

(Xn) ∪ FF(τn,i,τ ′
m,j)

(WF
τn,i

(Xm)),

by the following settings.

(1) σ̂[fi(xα(1), . . . , xα(n))] := (σ(fi))α for every α ∈ Hn.
(2) σ̂[fi(t1, . . . , tn)] := Sn(σ(fi), σ̂[t1], . . . , σ̂[tn]).
(3) σ̂[s ≈ t] := σ̂[s] ≈ σ̂[t].
(4) σ̂[γj(t1, . . . , tm)] := Rm(σ(γj), σ̂[t1], . . . , σ̂[tm]) for t1, . . . , tm ∈WF

τn,i
(Xm).

(5) σ̂[¬F ] := ¬σ̂[F ] for F ∈ FF(τn,i,τ ′
m,j)

(WF
τn,i

(Xm)).

(6) σ̂[F1 ∨ F2] := σ̂[F1] ∨ σ̂[F2] for F1, F2 ∈ FF(τn,i,τ ′
m,j)

(WF
τn,i

(Xm)).

Example 3.4. Let (τ3,1, τ
′
2,1) be a type, i.e., we have one ternary operation symbol,

say f and one binary relation symbol, say γ. Let σ : {f} ∪ {γ} → WF
τ3,2(X3) ∪

FF(τ3,1,τ ′
2,1)

(WF
τ3,1(X2)) where σ(f) = f(x2, x1, x3) and σ(γ) = f(x1, x2, x1) ≈ f(x2, x2, x1).

Then we have
σ̂[f(x3, x2, x2)] = S3(σ(f), σ̂[x3], σ̂[x2], σ̂[x2])

= S3(f(x2, x1, x3), x3, x2, x2)
= f(x2, x3, x2),

and σ̂[γ(x2, x1)] = R2(σ(γ), σ̂[x2], σ̂[x1])
= R2(f(x1, x2, x1) ≈ f(x2, x2, x1), x2, x1)
= f(x2, x1, x2) ≈ f(x1, x1, x2).

By using the definition of σ̂ and the usual composition of mappings, we can set a binary
operation ◦r on HypF (τn,i, τ

′
m,j) as follows:
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Definition 3.5. Let σ1, σ2 ∈ HypF (τn,i, τ
′
m,j). A binary operation ◦r on HypF (τn,i, τ

′
m,j)

is defined by the following assertion:

σ1 ◦r σ2 := σ̂1 ◦ σ2.

By this defining, σ̂1 ◦ σ2 sends {fi | i ∈ I} to WF
τn,i

(Xn) and sends {γj | j ∈ J}
to FF(τn,i,τ ′

m,j)
(WF

τn,i
(Xm)), respectively. So we obtain the result of any two elements in

HypF (τn,i, τ
′
m,j) operating by ◦r.

In order to prove the associativity of the binary operation ◦r, we need some prepara-
tions.

Lemma 3.6. Let σ ∈ HypF (τn,i, τ
′
m,j) and β ∈ Hn. Then

(1) Sn(t, σ̂[tβ(1)], . . . , σ̂[tβ(n)]) = Sn(tβ , σ̂[t1], . . . , σ̂[tn]).
(2) Rm(F, σ̂[tβ(1)], . . . , σ̂[tβ(m)]) = Rm(Fβ , σ̂[t1], . . . , σ̂[tm]).

Proof. (1) Let t ∈WF
τn,i

(Xn). We give a proof by induction on the complexity of the full

term t. If t = fi(xα(1), . . . , xα(n)) where α ∈ Hn, then
Sn(fi(xα(1), . . . , xα(n)), σ̂[tβ(1)], . . . , σ̂[tβ(n)])

= fi(σ̂[tβ(α(1))], . . . , σ̂[tβ(α(n))])
= Sn(fi(xβ(α(1)), . . . , xβ(α(n)), σ̂[t1], . . . , σ̂[tn]))
= Sn((fi(xα(1), . . . , xα(n)))β , σ̂[t1], . . . , σ̂[tn])).

If t = fi(s1, . . . , sn), where s1, . . . , sn ∈WF
τn,i

(Xn), and assume that

Sn(si, σ̂[tβ(1)], . . . , σ̂[tβ(n)]) = Sn((si)β , σ̂[t1, . . . , tn])

for all i = 1, . . . , n, then
Sn(fi(s1, . . . , sn), σ̂[tβ(1)], . . . , σ̂[tβ(n)])

= fi(S
n(s1, σ̂[tβ(1)], . . . , σ̂[tβ(n)]), . . . , S

n(sn, σ̂[tβ(1)], . . . , σ̂[tβ(n)]))
= fi(S

n((s1)β , σ̂[t1], . . . , σ̂[tn]), . . . , Sn((sn)β , σ̂[t1], . . . , σ̂[tn]))
= Sn(fi((s1)β , . . . , (sn)β), σ̂[t1], . . . , σ̂[tn])
= Sn((fi(s1, . . . , sn))β , σ̂[t1], . . . , σ̂[tn]).

Therefore, we have Sn(t, σ̂[tβ(1)], ..., σ̂[tβ(n)]) = Sn(tβ , σ̂[t1], ..., σ̂[tn]) for all t ∈WF
τn,i

(Xn).

(2) Let F ∈ FF(τn,i,τ ′
m,j)

(WF
τn,i

(Xm)). We give a proof by the following steps. If F is a full

formula s ≈ t, then
Rm(s ≈ t, σ̂[tβ(1)], . . . , σ̂[tβ(m)])

= Sm(s, σ̂[tβ(1)], . . . , σ̂[tβ(m)]) ≈ Sm(t, σ̂[tβ(1)], . . . , σ̂[tβ(m)])
= Sm(sβ , σ̂[t1], . . . , σ̂[tm]) ≈ Sm(tβ , σ̂[t1], . . . , σ̂[tm])
= Rm((s ≈ t)β , σ̂[t1], . . . , σ̂[tm]).

If F is a full formula γj(s1, . . . , sm), where s1, . . . , sm ∈WF
τn,i

(Xm), then

Rm(γj(s1, . . . , sm), σ̂[tβ(1)], . . . , σ̂[tβ(m)])

= γj(S
m(s1, σ̂[tβ(1)], . . . , σ̂[tβ(m)]), . . . , S

m(sm, σ̂[tβ(1)], . . . , σ̂[tβ(m)]))
= γj(S

m((s1)β , σ̂[t1], . . . , σ̂[tm]), . . . , Sm((sm)β , σ̂[t1], . . . , σ̂[tm]))
= Rm(γj((s1)β , . . . , (sm)β), σ̂[t1], . . . , σ̂[tm])
= Rm((γj(s1, . . . , sm))β , σ̂[t1], . . . , σ̂[tm]).

Assume that a full formula F satisfies the statement (2). Then
Rm(¬F, σ̂[tβ(1)], . . . , σ̂[tβ(m)])
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= ¬Rm(F, σ̂[tβ(1)], . . . , σ̂[tβ(m)])
= ¬Rm(Fβ , σ̂[t1], . . . , σ̂[tm])
= Rm(¬(Fβ), σ̂[t1], . . . , σ̂[tm])
= Rm((¬F )β , σ̂[t1], . . . , σ̂[tm]).

Assume that full formulas F1 and F2 satisfy the statement (2). Then
Rm(F1 ∨ F2, σ̂[tβ(1)], . . . , σ̂[tβ(m)])

= Rm(F1, σ̂[tβ(1)], . . . , σ̂[tβ(m)]) ∨Rn(F2, σ̂[tβ(1)], . . . , σ̂[tβ(m)])
= Rm((F1)β , σ̂[t1], . . . , σ̂[tm]) ∨Rm((F2)β , σ̂[t1], . . . , σ̂[tm])
= Rm((F1 ∨ F2)β , σ̂[t1], . . . , σ̂[tm]).

Therefore, we have Rm(F, σ̂[tβ(1)], . . . , σ̂[tβ(m)]) = Rm(Fβ , σ̂[t1], . . . , σ̂[tm]) for all F ∈
FF(τn,i,τ ′

m,j)
(WF

τn,i
(Xm)).

The following theorem shows that σ is an endomorphism on FormcloneF (τn,i, τ
′
m,j).

We apply the results of Theorem 2.8 and 3.6 to prove this fact.

Theorem 3.7. Let σ ∈ HypF (τn,i, τ
′
m,j). Then the following assertions hold:

(1) σ̂[Sn(t, t1, . . . , tn)] = Sn(σ̂[t], σ̂(t1), . . . , σ̂(tn)).
(2) σ̂[Rn(F, t1, . . . , tm)] = Rn(σ̂[F ], σ̂(t1), . . . , σ̂(tm)).

Proof. (1) We can give a proof by induction on the complexity of a full term t by applying
the results of Lemma 3.6 and Theorem 2.8.
(2) Let F ∈ FF(τn,i,τ ′

m,j)
(WF

τn,i
(Xm)). We give a proof by the following steps. If F is a full

formula s ≈ t, then
σ̂[Rm(s ≈ t, t1, . . . , tm)]

= σ̂[Sm(s, t1, . . . , tm)] ≈ σ̂[Sm(t, t1, . . . , tm)]
= Sm(σ̂[s], σ̂[t1], . . . , σ̂[tm]) ≈ Sm(σ̂[t], σ̂[t1], . . . , σ̂[tm])
= Rm(σ̂[s ≈ t], σ̂[t1], . . . , σ̂[tm]).

If F is a full formula γj(s1, . . . , sm), where s1, . . . , sm ∈WF
τn,i

(Xm), then

σ̂[Rm(γj(s1, . . . , sm), t1, . . . , tm)]
= Rm(σ(γj), σ̂[Sm(s1, t1, . . . , tm)], . . . , σ̂[Sm(sm, t1, . . . , tm)])
= Rm(σ(γj), S

m(σ̂[s1], σ̂[t1], . . . , σ̂[tm]), . . . , Sm(σ̂[sm], σ̂[t1], . . . , σ̂[tm]))
= Rm(Rm(σ(γj), σ̂[s1], . . . , σ̂[sm]), σ̂[t1], . . . , σ̂[tm])
= Rm(σ̂[γj(s1, . . . , sm)], σ̂[t1], . . . , σ̂[tm]).

Assume that a full formula F satisfies the statement (2). Then we have to show that it is
also satisfied for ¬F . Finally, assume that full formulas F1 and F2 satisfy the statement
(2). Then we have to show that it is also satisfied for F1 ∨ F2.

The proof of the following two lemmas is straightforward and its will be used to prove
the next two theorems.

Lemma 3.8. Let t ∈WF
τn,i

(Xn), F ∈ FF(τn,i,τ ′
m,j)

(WF
τn,i

(Xm)), β, γ ∈ Hn. Then

tγ◦β = (tβ)γ and Fγ◦β = (Fβ)γ .

Lemma 3.9. Let t ∈WF
τn,i

(Xn), F ∈ FF(τn,i,τ ′
m,j)

(WF
τn,i

(Xm)), β ∈ Hn. Then

σ̂[tβ ] = σ̂[t]β and σ̂[Fβ ] = σ̂[F ]β.

The following theorem shows that the extension of a multiplication is equal to the
composition of the extensions by induction on the complexity of a full term t and the
definition of a full formula F .
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Theorem 3.10. Let σ1, σ2 ∈ HypF (τn,i, τ
′
m,j). Then

(σ1 ◦r σ2)̂ = σ̂1 ◦ σ̂2.
Proof. Let t ∈WF

τn,i
(Xn). We give a proof by induction on the complexity of a full term

t. If t = fi(xα(1), . . . , xα(n)) where α ∈ Hn, then

(σ1 ◦r σ2)̂[fi(xα(1), . . . , xα(n))] = ((σ1 ◦r σ2)(fi))α (by Definition 3.3)
= σ̂1[σ̂2(fi)]α
= σ̂1[σ̂2(fi)α] (by Lemma 3.9)
= σ̂1[σ̂2[fi(xα(1), . . . , xα(n))]] (by Definition 3.3)
= (σ̂1 ◦ σ̂2)[fi(xα(1), . . . , xα(n))].

If t = fi(s1, . . . , sn), where s1, . . . , sn ∈WF
τn,i

(Xn), and assume that

(σ1 ◦r σ2)̂[si] = (σ̂1 ◦ σ̂2)[si]

for all i = 1, . . . , n, then

(σ1 ◦r σ2)̂[fi(s1, . . . , sn)] = Sn((σ̂1 ◦ σ̂2)(fi), (σ̂1 ◦ σ̂2)[s1], . . . , (σ̂1 ◦ σ̂2)[sn])
= Sn(σ̂1[σ̂2(fi)], σ̂1[σ̂2[s1]], . . . , σ̂1[σ̂2[sn]])
= σ̂1[Sn([σ2(fi)], σ̂2[s1], . . . , σ̂2[sn])] (by Lemma 3.7)
= (σ̂1 ◦ σ̂2)[fi(s1, . . . , sn)].

Let F ∈ FF(τn,i,τ ′
m,j)

(WF
τn,i

(Xm)). We give a proof by the following steps. If F is a full

formula s ≈ t, then

(σ1 ◦r σ2)̂[s ≈ t] = (σ1 ◦r σ2)̂[s] ≈ (σ1 ◦r σ2)̂[t]
= (σ̂1 ◦ σ̂2)[s] ≈ (σ̂1 ◦ σ̂2)[t]
= (σ̂1 ◦ σ̂2)[s ≈ t].

If F is a full formula γj(s1, . . . , sm), where s1, . . . , sm ∈WF
τn,i

(Xm), then

(σ1 ◦r σ2)̂[γj(s1, . . . , sm)] = Rm((σ̂1 ◦ σ̂2)(γj), (σ̂1 ◦ σ̂2)[s1], . . . , (σ̂1 ◦ σ̂2)[sm])
= Rm(σ̂1[σ̂2(γj)], σ̂1[σ̂2[s1]], . . . , σ̂1[σ̂2[sm]])
= σ̂1[Rm([σ2(γj)], σ̂2[s1], . . . , σ̂2[sm])] (by Lemma 3.7)
= (σ̂1 ◦ σ̂2)[γj(s1, . . . , sm)].

Assume that a full formula F satisfies the theorem. Then we have to show that it is also
satisfied for ¬F . Finally, assume that full formulas F1 and F2 satisfy. Then we have to
show that it is also satisfied for F1 ∨ F2.

The following theorem is the most important result because the paper is presenting
the new algebraic structure.

Theorem 3.11. The algebra (HypF (τn,i, τ
′
m,j), ◦r) is a semigroup.

Proof. Using Lemma 3.10 and the natural fact that the usual composition ◦ is associative,
it can be shown that ◦r is an associative binary operation on HypF (τn,i, τ

′
m,j). In fact,

for any σ1, σ2, σ3 ∈ HypF (τn,i, τ
′
m,j), we have

(σ1 ◦r σ2) ◦r σ3 = (σ1 ◦r σ2)̂ ◦ σ3
= (σ̂1 ◦ σ̂2) ◦ σ3
= σ̂1 ◦ (σ̂2 ◦ σ3)
= σ1 ◦r (σ2 ◦r σ3).
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It implies that the structure (HypF (τn,i, τ
′
m,j), ◦r) forms a semigroup.

4. Conclusions and Recommendations for the Future Work

For the first main result of the paper, full formulas of type (τn,i, τ
′
m,j) induced by full

terms of type τn,i were introduced. The algebraic structure which is called the clone of
full formulas of type (τn,i, τ

′
m,j) was constructed. Such algebra is a couple of the set of

full formulas and the (n+1)-ary superposition operation defined on this set. Furthemore,
the concept of full hypersubstitutions for algebraic systems of type (τn,i, τ

′
m,j) and their

extensions were established. This mapping is closely connected to endomorphism of the
clone of full formulas. Finally, we proved that the set of all full hypersubstitutions for
algebraic systems of type (τn,i, τ

′
m,j) with one associative binary operation forms a semi-

group.
Finally, a number of suggestions for future research work in this area are given.

(1) Study some fundamental properties of the semigroup of all full hypersubsti-
tutions for algebraic systems of type (τn,i, τ

′
m,j). Find the order of its elements.

Charaterize the idempotent elements and determine several kinds of regular ele-
ments. Investigate the Green’s relations.

(2) Apply another type of terms to define the formulas genereted by those terms.
Construct the clone of such formulas and study some algebraic properties of its.

(3) Define the concepts of nondeterministic full hypersubstitutions for algebraic
systems. Giving the connection between them and the results presented in this
paper (see the paper [15] for this research area).

(4) Classify all varieties V of algebraic systems of some types by replace the op-
eration by the term operation induced by a full term and replace the relation by
the relation induced by a full formula (see for example [16]).
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