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1. INTRODUCTION

The existence of a fixed points for contraction mappings in complete metric spaces was
first investigated by Banach himself who established the well known Banach contraction
principle [1] in 1922. Tt was applied for the existence theory of differential, integral,
partial differential and functional equations [2]. It is a tool for providing the existence of
solutions in game theory, mathematical economic and some biological models [2, 3]

Since then many authors have extended and improved this and other fixed point results.

In 1989, Bakhtin [1] (see also Czerwik [5]) introduced the concept of a b-metric space
(a more general type of metric space) and proved some fixed point theorems for some
contraction mappings in b-metric spaces which generalize Banach’s contraction principle
in metric spaces.

In 2015, Khojasteh et al. [6] introduced the notion of a simulation function in connec-
tion with generalization of Banach’s contraction principle.
In 2016, Olgun et al. [7] introduced the notion of a generalized Z-contraction and

proved the existence of fixed points, using the concept of a simulation function.
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Recently, Rolddn-Lépez-de-Hierroet et al. [3] modified the notion of a simulation func-
tion and guaranteed the existence and uniqueness of a coincidence point of two nonlinear
mappings, using the concept of a simulation function.

Very recently, Demma et al. [9] introduced the notion of b-simulation functions in the
setting of b-metric spaces and established the existence and uniqueness of a fixed point
in b-metric spaces.

In this paper, we introduce the notion of generalized Zj-contraction with b-simulation
function and prove some fixed point theorems in complete b-metric spaces. Furthermore,
we give an example to illustrate the main result. As consequences of this study, several
related results of fixed point theory in metric space and b-metric space were deduced.

2. PRELIMINARIES

We begin by giving some notations and preliminaries that we shall need to state our
results.

In the sequel, the letters R and N will denote the set of all real numbers and the set of
all natural numbers, respectively.

Definition 2.1. [10] (Metric space) Let X be a nonempty set. A function
d: X x X — [0,00) is said to be a metric on X if, for all z,y,z € X the following are
condition
(ml d(xz,y) =0 if and only if x = y;
(m2) d(x7 y) = d(y7 1‘);
(m3)  d(z,y) < d(z,2) +d(zy);
The pair (X, d) is called a metric space.

Definition 2.2. [4] (b-Metric Space) Let X be a nonempty set and let b > 1 be a given
real number. A function d: X x X — [0, 00) is said to be a b-metric if for all z,y,z € X
the following conditions are satisfies:
(bl) d(z,y) =0 if and only if z = y;
(b2) d(x, y) = d(yv :L‘);
(b3)  d(z,y) < bld(x,z) + d(z,y)].
The pair (X, d) is called a b-metric space (in short bMS).

Example 2.3. [I1] Let the function d : R x R — [0,00) defined by d(z,y) = |z — y/|*.
Then d is a b-metric on R with b = 2, but it is not a metric on R, as

d(1,3) =4 >2=d(1,2) +d(2,3).
Let us show that d is a b-metric on R with b = 2. Consider
d(z,y) = |z — y* < (|2 — 2| + |2 — y])?
=z — 2"+ 2z —zllz —yl) + |z —yI
<o -2+ (Jo— 22 + ]2 —y*) + |z — y|* (Remark 2.4)
=2(jo - 22+ |2 - yP?)
= 2(d(m,z) +d(z,y)).

Remark 2.4. Let A, B € R.
Since 0 < (4| — [B|)* = |A]” — 2|A||B| + |BI?, 2|A||B| < |A]® + B,



Some Fixed Point Theorems in b-Metric Spaces ... 1627

Definition 2.5. [5] (Convergent, Cauchy sequence and Complete) Let {x,,} be a sequence
in a b—metric space (X, d).
(i) {x,} is called b—convergent if and only if there is z € X such that
d(xp,z) = 0 as n — oo.
(ii) {x} is a b—Cauchy sequence if and only if d(xy,, ) — 0 as n,m — oo.
(iii) The b—metric space is Complete if every Cauchy sequence convergent.

Proposition 2.6. [5] In a b—metric space (X, d), the following assertions hold:
(i) A b—convergent sequence has a unique limit.
(i) Each b—convergent sequence is b— Cauchy.
(#ii) In general, a b—metric is not continuous.

Definition 2.7. [0] (Simulation function) Let ¢ : [0,00) x [0,00) — R be a mapping.
Then ( is called a simulation function if it satisfies the following conditions:

(€1 ¢(0,0) = 0;

(€2) ((t,s) <s—tforallt,s>0;

(¢3) if {t }, {sn} are sequences in (0, 00) such that

lim ¢, = hm Sp, > 0 then limsup ((t,, sn) < 0

n—00 n—o00
We denote the set of all sunulatlon functions by Z.

Example 2.8. [6] Let ¢ : [0,00) x [0,00) — R be defined by

C(t,s) =As—t
for all t,s € [0,00) and A € [0,1). Then ¢ is a simulation function.
Proof. (1) ¢(0,0) = A(0) = (0) = 0.
(¢2) Let t,s >0
C(t,s) =As—t<s—t.
(¢3) Let {tn},{sn} be sequences in (0,00) such that hm t, = lim s, = C for

n—r oo
some C € RT.
Then
limsup ((ty,, s,) = limsup(As,, — t,)
n—oo n—oo
= Aimsup(s,) — limsup(t,) = A\C' — C < 0.
n—o0 n—00

Example 2.9. [0] (Generalization of Example 2.8) Let (; : [0, 00) x [0, 00) — R be defined
by

G(t,s) =¥(s) — &(t)
for all t, s € [0,00), where 1, ¢ : [0,00) — [0,00) are two continuous functions such that
Y(t) = ¢(t) =0 if and only if ¢ = 0 and (t) <t < ¢(¢) for all ¢t > 0.
Then (; is a simulation function.

Proof. (¢1) ¢1(0,0) = 4(0) — ¢(0) = 0.
(¢2) Let t,s > 0
Ci(t,s) =v(s) —o(t) <s—t.



1628 Thai J. Math. Vol. 19 (2021) /B. Rodjanadid et al.

(¢3) Let {t,},{sn} be sequences in (0,00) such that lim ¢, = lim s, = C for
n—oo

n— 00
some C' € RT.
Then
lim sup Cl (tna Sn) = lim SUP(WSn) - ¢(tn))
n—oo n—oo

= limsup ¢(s,,) — limsup ¢(¢,)

n— oo n—oo
= ¢(limsup s,,) — ¢(limsup ¢,)
n—oo n—oo

=¥(C) = ¢(C) <0.

Definition 2.10. [6] (Z-contraction) Let (X, d) be a metric space, T : X — X a mapping
and ¢ € Z. Then T is called a Z-contraction with respect to ( if the following condition
is satisfied
C(d(Tz,Ty),d(z,y)) >0, for all z,y € X.
If T is a Z-contraction with respect to ¢ € Z, then d(Tx,Ty) < d(x,y) for all distinct
z,y € X.

Theorem 2.11. [6] Let (X,d) be a complete metric space and T : X — X be a Z-
contraction with respect to ( € Z. Then T has a unique fized point u in X and for every
xog € X the Picard sequence {x,}; where x, = Tx,_1 for alln € N converges to the fixved
point of T'.

Definition 2.12. [7] (Generalized Z-contraction) Let (X, d) be a metric space, T : X —
X be a mapping, and ( € Z. Then T is called generalized Z- contraction with respect to
¢ if the following condition is satisfied

C(d(Tz,Ty), M(z,y)) > 0 for all z,y € X,

where
M (z,y) = max {d(x, y),d(z, Tx),d(y, Ty), % (d(:l:, Ty) + d(y, Tx)) }

Remark 2.13. [7] Every generalized Z-contraction on a metric space has at most one
fixed point. Indeed, let z and w be two fixed points of T , which is a generalized Z-
contraction self map of a metric space (X,d). Then

0<¢d(Tz,Tw), M(z,w)) = {(d(z,w),d(z,w)),
which is a contradiction.

Theorem 2.14. [7] Let (X, d) be a complete metric space and T : X — X be a generalized
Z-contraction with respect to ¢ € Z. Then T has a fized point in X. Moreover, for every
xg € X, the Picard sequence {T"xo} converges to this fized point.

Definition 2.15. [9] (b-simulation function) Let (X, d) be a b-metric space with a con-
stant b > 1. A b-simulation function is a function £ : [0,00) % [0,00) — R, satisfying the
following conditions:

(€1)  &(t,s) <s—tforall t,s > 0;

(€2)  if {t,}, {sn} are sequences in (0, 00) such that



Some Fixed Point Theorems in b-Metric Spaces ... 1629

0 < lim t, <liminfs, <limsups, <b hm t, < 00,

n—oo n—oo n—oo

then
lim sup &(bt,,, s,,) < 0.

n—soo
We denote the set of all b-simulation functions by Z.
Example 2.16. [9] Let £ : [0,00) % [0,00) — R be defined by
E(t,s) =As—t
for all ¢, s € [0,00) and A € [0,1). Then £ is a b-simulation function.
Proof. (£1) Let t,s >0
E(t,s)=As—t<s—t.
(€2) Let {t,}, {sn} be sequences in (0, c0) such that
0<C = lim t, <liminfs, <limsups, <b hm t, = bC < o0,

n—oo n—oo n—oo

for some C € RT
Then

lim sup (bt,,, s,,) = limsup(As,, — bt,,)

n—oo n—oo

= Aimsup(s,) — blimsup(t,) < AbC — bC < 0.

n— oo n— oo

Theorem 2.17. [9] Let (X, d) be a complete b-metric space with a constant b > 1 and let
T:X — X be a mapping. Suppose that there exists a b-simulation function & such that

§(bd(Tx, Ty), d(x,y)) > 0
for all x,y € X. Then T has a unique fized point.

3. MAIN RESULTS

In this section, we define the generalized Z,-contraction and prove the existence of a
fixed point for such mapping in complete b-metric spaces.

Definition 3.1. Let (X,d) be a b-metric spaces with a constant b > 1,7 : X — X be
a mapping, and £ € Z,. Then T is called generalized Z,-contraction with respect to £ if
the following condition is satisfied

Ebd(Tz, Ty), Mp(x,y)) > 0 for all z,y € X, (3.1

where

My (z,y) = max {d(x, y),d(z, Tx),d(y, Ty), 2% (d(:c, Ty) + d(y, Tx)) }

Lemma 3.2. Let (X,d) be a b-metric space with constantb>1 and let T : X — X be a
generalized Zy,-contraction with be respect to £ € Zy. Let {x,} be a Picard sequence with
initial point xg € X. Then

nl;rrgc d(xp, Tnt1) =0
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Proof. Let xyg € X be arbitrary and {z,} be a Picard sequence in X, that is,

r, = Tx,_1 for all n € N.

If there exists ng € N such that z,, = z,,+1 then x,, is a fixed point of T" and the
assertion follows. On the other hand, suppose that d(z,,z,+1) > 0 for all n € N. Then,
since

ﬁ d(l’n, xn) + d(xn—ly xn-‘,—l)

d(l‘n, :Enfl)a d(mn; Tn 1); d(xnfla an),
My(xp, Tp—1) :max{ -

=max {d(mn,l, X)), d(Ty, (En+1)}.

From (3.1) and property (£1), we have

0< f(bd(xn+1v In)a Mb(xm zn—1)>

= f(bd(xn—i-lv xn): max {d(xn—la xn)a d(xnv xn—i—l)})

< max {d(mn_l,zn), d(xn,:cn+1)} — bd(Tns1, Tn). (3.2)
If d(zp, xpny1) > d(xp—1,2,) for some n € N, then from (3.2), we get

0< d((L‘n, xn+1) - bd(anrh xn)7

SO
bd(a:n—‘rla xn) < d(xn—i-h xn)z
hence
b<1,
which is a contradiction. Thus d(zy,, z,+1) < d(xp—1,2,) for all n € N and
0< g(bd(xn,xn+1),d(a:n_1,xn)). (3.3)

So, the sequence {d(x,,z,+1)} is a decreasing sequence of nonnegative real numbers.
Hence there exist » > 0 such that lim d(z,,2,4+1) = r. Assume r > 0. Applying the
n—oo

property (£2), with ¢, = d(zy, Zn11) and s, = d(Tn—1,%s), it follows that

lim sup{(bd(xn,a:n+1), d(xn_l,xn)) <0,

n—roo

which contradicts (3.3). Therefore,

lim d(z,,zn41) =0.
n— o0

Lemma 3.3. Let (X,d) be a b-metric space with constant b > 1 and let T : X — X be
a generalized Zy,-contraction with respect to & € 2. Let {x,} be a Picard sequence with
ingtial point xg € X. Suppose that T,_1 # xp, for all n € N. Then {z,} is a bounded
sequence.

Proof. Assume that {z,} is not a bounded sequence. Then there exist a subsequence
{zn,} of {z,} such that ny = 1 and, for each k € N,nj; is the minimum integer such
that

A(Tnypsys Tny) > 1 (3.4)
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and

d(Xpm, xy, ) < 1 for all integers m such that ny < m < ngyq — 1.

By (b3) of Definition 2.2 and (3.4), we get

1 <d(@nyyy, Tny) < bA(Tnyyys Trgyy—1) + 0d(Znyy —1, Tny)
< bd(mnk-#wmnk-;-l*l) +0.

Letting k — oo in (3.6) and using Lemma 3.2, we obtain

1 <liminf d(zp,,,,n,) < limsupd(n,,,, Tn,) < b.
k—o0 k—o0

From (3.1) and property (£1), we have

0 < &(bngy s Bne)s Mgy 15T 1) )
< Mb(xnk+1—1; -Tnk—l) - bd(xnk+1’xnk)

bd(‘rnk-{-l ) xnk) < Mb(xnk-ufla xnkfl)'

Since

My (x _1,%Tp,—1) = Max
b( ng41—1r fng 1) { QLb d(xnk+1—1a$nk)+d(xnk—1a33nk+1)

< max
QLI) d(x7zk+1—17 xnk) + d(mnk—lv xnk+1)

b<1 + d(x”k ’ m”kfl)) ’ d(xnk+1*1> xnk+1)7 d(xnkfla mnk))
i (d(xnk+1—1a xnk) + d(xnk—h xnkJrl))

b<1 + d(.’L‘nk ) :L"nkfl)) ) d(xnk+1717 xnk+1)7 d(x’nkflu mnk);
2 (1 +d(Tpy -1, Tnyyy)

b(l + d(xnk,xnk,l)),d(mnk+l,1,xnk+1), (X, —1, Ty, )s }

< max

< max

< max

= (1 + b(d(;vnk,l7 T, ) + d(mnk7mnk+l)))
b<1 + d(.’L‘nk 9 :L"nkfl)) ) d(xnk+1717 xnk+1)7 d(x’nkflu mnk);
35 (0 (dme1,00) 4 o 0,) )

b<1 + d(.’l}nk ) :L"I’kal)) ) d<xnk+1717 xnk+1)7 d(x’nkfla mnk);
% (1 + d(xnk—lv xnk) + d(xnkvxnk+1))

< max

= max

—l————— ——/

d(xnk+1717 ‘T’I’kal)7 d(xnk+1717 xnk+1 )7 d(mnk717 :I:’I’Lk7

b(d(xnkﬂflﬁ xﬂk) + d(xnk ) xnkfl)) ) d(xnkﬂfla T ), d(mnk,l, xnk>7

(3.7)

}
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b(l +d(zn,, Tn,—1 ),d Ty —1> Trgyy ) A Zng—1, Ty ),
< max L
3 1+ d(xnk—lvxnk) + ( (znkvxmwrl—l) + d(x"kﬂ—l’xnkﬂ)))
b ]‘ d(xnkvxnk 1 )7d :L.nk+1 17xnk+1) d(mnkflu'rnk)a
< max (3.8)
(b d xnk 1,Zn,) + ( (xnkaxnk+1—l) +d(x”k+1—1?xnk+1))>
From (3.4) and (3.8), we get
b < bd(ZnyyrsTny)
< Mb(xnkurl—hxnk—l)
b(l + d(xnk ) xnkfﬂ) ) d(xnk+1*13 Lngqq )7 d(xnk*h xnk)v
< max N )
5 <b +d(Tn,—1,Tn,) + b(d(xnk,xnﬂl,l) +d(Tn,, -1, xnkﬂ)))
taking k — oo, then
b S lim Mb(xnk+1—13x7Lk—1)
k—o0
b<1 + d(wnk ) mnkfl)) ’ d(wnk+1*17 xnk+1)v d(xnk-*la xnk))
< lim max .
k—o0 3 (b + d(@ny,—1,Tn,,) + b(d(xnk,xnkﬂ_l) +d(zn, -1, xnkﬂ)))
that is,

lim My (@, —1,Tn,—1) = b.
k—o0

Thus by (3.7) and property (£2), with ty = d(zp,,,,Tn,) and s = My(Tp, -1, Tne—1),
we have

0< limsupﬁ(bd(wnk+l,xnk), Mb(asnkﬂ,l,xnk,l)) <0,

k—o0

which is a contradiction. Hence the sequence {x,} is bounded. (]

Lemma 3.4. Let (X,d) be a b-metric space with constantb>1 and let T : X — X be a
generalized Zy-contraction with respect to & € Zy,. Let {x,} be a Picard sequence initial
point o € X. Suppose that x,_1 # x, for alln € N. Then {x,} is a Cauchy sequence.

Proof. Let
C,, = sup{d(z;,z;) : 4,5 > n},neN.
Since the sequence {z,} is bounded (Lemma 3.3), C,, < oo for every n € N and since

{Cy} is a positive decreasing sequence, there exist C' > 0 such that

lim C, =C.

n—oo

Suppose C' > 0. By the definition of C,,, for every k € N there exists ng, my; € N such
that mg > ni > k and

1
Cr — 7 < A Xy, s Ty, ) < C. (3.9)
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Letting k — oo in (3.9), we have

lim d(m,, Zn,) = C, (3.10)
k—o0

and
lim d(@m, -1, %n,—1) = C. (3.11)
k—o00

By (3.1) and property (£1), we have

0 < € (bd@ames ) Mo(@my 1,70, -1) )
< My(Tmp—1, Tnp—1) — bd( Ty, Ty, )
S0
bd(Tmy s Ty ) < Mp(Timp—1,Tny—1)

{ d("I"’ﬁl)c 1,$nk 1) d(mmk71>xmk (wnk717xnk)7 }
= Imax

1
2b d(x’mk 17$nk)+d$nk 1,$mk)

< d(xmkflvxnkfl)ad(xmk 17xmk) ("’Un)C 171'nk)
max % (b(d(xmkﬂ, Ty, ) F A @y Ty, ) H0(d(Tny -1, 20, ) + d(acnk,a:mk)))

d(xmk—la xnk—l)a d(xmk—la 'ka), d(xnk—la xnk)v
= Ima.
* % (d(xmkflﬂ mmk) + d(mmk ) xnk) + d(mnk*h xnk) + d(xnk ) xmk))
(3.12)
Letting k — oo in (3.12), using Lemma 3.2, (3.10) and (3.11), we have

bC = hm bd( s Tny,) < hm My(Tmy—1, Tnp—1)

— 00

< im max{ cll(xmk_l,xnk_l),d(xmk_l,xmk),d(xnk_l,xnk), }
= koo 5 (d(zmk_l, Ty ) + A @y Ty, ) + d(Tpp—1, 20, ) + d(mnk,xn%))
—C,
then
bC < liminf My(m,—1, Tnp—1) < limsup Mp(@m, —1, Tn,—1) < C. (3.13)

k—o0 k—o0

From (3.13) we see that, Since C > 0 that b = 1. Then by the property (£2) with
ty = d(Tm,,, Tn, ) and s = Mp(Tm, —1,Tn,—1), We get
0< limsupf(bd(mmk,xnk),Mb(xmk,l,xnk,l)) <0,
k—o00

which is a contradiction. Thus C' = 0, that is,
lim C, =0 for all b > 1.

n—o0

This proves that {z,} is a Cauchy sequence. m

Theorem 3.5. Let (X,d) be a complete b-metric space with constant b > 1 and let
T : X — X be a generalized Zy-contraction with respect to € € 2,. Then T has a fixed
point.
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Proof. Let g € X and {z,} be a Picard sequence with initial point z¢. if z, = Ty
for some m € N, then z,, = x;,11 = T, that is x,, is a fixed point of T'. In this case,
the existence of a fixed point is proved. So, we can suppose that x, # x,4+1 for every
n € N. Now by Lemma 3.4, the sequence {z,} is Cauchy and since (X, d) is complete,
then there exists some z € X such that

lim z, = z. (3.14)

n—oo

We shall prove that z is a fixed point of T. Assume z # T'z, then d(z,Tz) = k > 0 for
some k € R.
Since

d‘rnaz dl‘n,T.rn dZTZ,
d(szZ)<Mb($n;Z)maX{ (@n, 2),d( ) d(2,Tz) }

- o (d(ﬂlcn7 Tz)+d(z, Txn))

_ xn, 2),d(xn, Txy),d(z,Tz),
=T S5 (b, 2) + d(=.T2) + bld(z ) + d(a, T,)))
z),d

(T, Txyn),d(2,Tz), }

(Tn, 2
- max{ d(zy, 2) +d(z,Tz) + d(z, zn) + d(Tp, Ta:n)) (3.15)

taking n — oo, we get
lim My(z,,z2) =d(z,Tz) =k > 0.

n—00
Using (3.1), (3.15) and property (£1), we obtain
0 < &bd(Txp, Tz), My(xn, 2)) (3.16)
< My(xp,z) — bd(Tx,, T2)
bd(Txy, Tz) < My(xp, 2)
My(2p, 2)
A .
y (b3) of Definition (2.2), we get
d(z,Tz) < bld(z,Txzy) + d(Tx,,T2))
d(z,Tz)
b
Letting n — oo in (3.17) and (3.18), we have

k d(z,T My (2n, k
7= lim M < lim d(Tx,,Tz) < lim M =—.

d(Tz,, Tz) < (3.17)

< d(Tz,,T=). (3.18)

Then
k
lim d(Txy,,Tz) = 7> 0.

n—oo
Therefore by (3.16) and property (£2), with ¢, = d(T'z,,Tz) and s, = My(x,, z). Then
0< limsupﬁ(bd(Txn,Tz), My(x,, z)) <0,
n—oo

which is a contradiction, we get d(z,Tz) = 0, that is z is a fixed point of T'. This complete
the proof. -
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Corollary 3.6. Let (X,d) be a complete b-metric space with a constant b > 1 and let
T:X — X be a mapping. Suppose that there exists X € (0,1) such that

bd(Tx, Ty) < AMy(z,y) for all z,y € X.
Then T has a fized point.
Proof. The result follows from Theorem 3.5, by taking as b-simulation function
E(t,s) =As—t
for all ¢,s < 0. [
Note If My(x,y) = d(z,y), this corollary gives a result of Banach type [12].

Corollary 3.7. [7] Let (X,d) be a complete metric space, T : X — X be a mapping.
Suppose that there exists a simulation function & such that

C(d(Tz, Ty), M(z,y)) = 0 for all z,y € X,

where
M(z,y) = max {d(x, y),d(x, Tx),d(y, Ty), % (d(m, Ty) + d(y, Tx)) }

Then T has a fized point.
Proof. Tt follows from Theorem 3.5 with b = 1. [

Example 3.8. Let X = [0,1] and d : X x X — R defined by d(z,y) = (z — y)?. Then
(X,d) is a complete b-metric space with b = 2. Define T : X — X by

ax 1
forall z € X and a € (0, —]|.
o forallz nd a € ( \/i]

Let £ : [0,00) x [0,00) — R be defined by &(t,s) = =25 — t. Then £ is a b-simulation

T =
T

s+1
function. Indeed, we obtain
Mb(mvy)
2d(Tx, Ty), M, =—— —2d(Tx, T
£(2d(T'z,Ty), My(z,y)) My(z,y) + 1 d(Tz, Ty)
d(z,y)
——=— = 2d(Tx, T
2 dog) + 1 (T, Ty)
(z —y)? _2[ ar  ay r
C(m—y)2+1 l+2z 14y
(z —y)* 2a%(z — y)?

S @yl [Tty
(x—y)? _ 2a°(x—y)°
(@—y)?+1 (z-y)?+1
_ (@ —y)? —2a%(z —y)?
(@)t
= (120 (z —y)? >0, forall z,y € X.
(z—y)*+1
Thus all the conditions of Theorem 3.5 are satisfied. Hence T has a fixed point (at x = 0).

>
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