Thai Journal of **Math**ematics Volume 19 Number 4 (2021) Pages 1625–1636

http://thaijmath.in.cmu.ac.th

Some Fixed Point Theorems in b-Metric Spaces with b-Simulation Functions

Benjawan Rodjanadid*, Phuridet Cherachapridi and Jessada Tanthaunch

School of Mathematics, Institute of Science, Suranaree University of Technology e-mail: benjawan@sut.ac.th (B. Rodjanadid); phuridet.cherachapridi@gmail.com (P. Cherachapridi); jessada@g.sut.ac.th (J. Tanthaunch)

Abstract The more generalized idea of the triangle inequality was introduced so that the concept of metric space was extended to "b-metric space" in 1989 by Bakhtin. Many definitions and theories based on a metric space, e.g. convergent and cauchy sequences, a complete space, a simulation function, the contraction principle, the fixed point theorem, were considered in the b-metric spaces mentioned. In this article the notions of b-simulation functions and generalized \mathcal{Z}_b -contraction mappings were proposed. Also the existence of a fixed point for such a mapping in a complete b-metric space was presented.

MSC: 47H10; 54H25

Keywords: fixed point; b-metric space; b-simulation function; generalized \mathcal{Z}_b -contraction

Submission date: 19.07.2019 / Acceptance date: 02.11.2021

1. Introduction

The existence of a fixed points for contraction mappings in complete metric spaces was first investigated by Banach himself who established the well known Banach contraction principle [1] in 1922. It was applied for the existence theory of differential, integral, partial differential and functional equations [2]. It is a tool for providing the existence of solutions in game theory, mathematical economic and some biological models [2, 3]

Since then many authors have extended and improved this and other fixed point results. In 1989, Bakhtin [4] (see also Czerwik [5]) introduced the concept of a b-metric space (a more general type of metric space) and proved some fixed point theorems for some contraction mappings in b-metric spaces which generalize Banach's contraction principle in metric spaces.

In 2015, Khojasteh et al. [6] introduced the notion of a simulation function in connection with generalization of Banach's contraction principle.

In 2016, Olgun et al. [7] introduced the notion of a generalized \mathcal{Z} -contraction and proved the existence of fixed points, using the concept of a simulation function.

^{*}Corresponding author.

Recently, Roldán-López-de-Hierroet et al. [8] modified the notion of a simulation function and guaranteed the existence and uniqueness of a coincidence point of two nonlinear mappings, using the concept of a simulation function.

Very recently, Demma et al. [9] introduced the notion of b-simulation functions in the setting of b-metric spaces and established the existence and uniqueness of a fixed point in b-metric spaces.

In this paper, we introduce the notion of generalized \mathcal{Z}_b -contraction with b-simulation function and prove some fixed point theorems in complete b-metric spaces. Furthermore, we give an example to illustrate the main result. As consequences of this study, several related results of fixed point theory in metric space and b-metric space were deduced.

2. Preliminaries

We begin by giving some notations and preliminaries that we shall need to state our results.

In the sequel, the letters \mathbb{R} and \mathbb{N} will denote the set of all real numbers and the set of all natural numbers, respectively.

Definition 2.1. [10] (Metric space) Let X be a nonempty set. A function $d: X \times X \to [0, \infty)$ is said to be a metric on X if, for all $x, y, z \in X$ the following are condition

(m1)
$$d(x,y) = 0$$
 if and only if $x = y$;
(m2) $d(x,y) = d(y,x)$;
(m3) $d(x,y) \le d(x,z) + d(z,y)$;

The pair (X, d) is called a *metric space*.

Definition 2.2. [4] (b-Metric Space) Let X be a nonempty set and let $b \ge 1$ be a given real number. A function $d: X \times X \to [0, \infty)$ is said to be a b-metric if for all $x, y, z \in X$ the following conditions are satisfies:

(b1)
$$d(x, y) = 0$$
 if and only if $x = y$;
(b2) $d(x, y) = d(y, x)$;
(b3) $d(x, y) \le b[d(x, z) + d(z, y)]$.

The pair (X, d) is called a *b-metric space* (in short bMS).

Example 2.3. [11] Let the function $d : \mathbb{R} \times \mathbb{R} \to [0, \infty)$ defined by $d(x, y) = |x - y|^2$. Then d is a b-metric on \mathbb{R} with b = 2, but it is not a metric on \mathbb{R} , as

$$d(1,3) = 4 > 2 = d(1,2) + d(2,3).$$

Let us show that d is a b-metric on \mathbb{R} with b=2. Consider

$$d(x,y) = |x-y|^2 \le (|x-z|+|z-y|)^2$$

$$= |x-z|^2 + (2|x-z||z-y|) + |z-y|^2$$

$$\le |x-z|^2 + (|x-z|^2 + |z-y|^2) + |z-y|^2 \text{ (Remark 2.4)}$$

$$= 2(|x-z|^2 + |z-y|^2)$$

$$= 2(d(x,z) + d(z,y)).$$

Remark 2.4. Let $A, B \in \mathbb{R}$.

Since $0 \le (|A| - |B|)^2 = |A|^2 - 2|A||B| + |B|^2$, $2|A||B| \le |A|^2 + |B|^2$.

Definition 2.5. [5] (Convergent, Cauchy sequence and Complete) Let $\{x_n\}$ be a sequence in a b-metric space (X, d).

- (i) $\{x_n\}$ is called b-convergent if and only if there is $x \in X$ such that $d(x_n, x) \to 0$ as $n \to \infty$.
- (ii) $\{x_n\}$ is a b-Cauchy sequence if and only if $d(x_n, x_m) \to 0$ as $n, m \to \infty$.
- (iii) The b—metric space is Complete if every Cauchy sequence convergent.

Proposition 2.6. [5] In a b-metric space (X, d), the following assertions hold:

- (i) A b-convergent sequence has a unique limit.
- (ii) Each b-convergent sequence is b-Cauchy.
- (iii) In general, a b-metric is not continuous.

Definition 2.7. [6] (Simulation function) Let $\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R}$ be a mapping. Then ζ is called a *simulation function* if it satisfies the following conditions:

$$(\zeta 1) \qquad \zeta(0,0) = 0;$$

$$(\zeta 2)$$
 $\zeta(t,s) < s-t \text{ for all } t,s>0;$

 $(\zeta 3)$ if $\{t_n\}, \{s_n\}$ are sequences in $(0, \infty)$ such that

$$\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n > 0 \text{ then } \limsup_{n \to \infty} \zeta(t_n, s_n) < 0$$

We denote the set of all simulation functions by \mathcal{Z} .

Example 2.8. [6] Let $\zeta:[0,\infty)\times[0,\infty)\to\mathbb{R}$ be defined by

$$\zeta(t,s) = \lambda s - t$$

for all $t, s \in [0, \infty)$ and $\lambda \in [0, 1)$. Then ζ is a simulation function.

Proof.
$$(\zeta 1) \zeta(0,0) = \lambda(0) - (0) = 0.$$

 $(\zeta 2)$ Let t, s > 0

$$\zeta(t,s) = \lambda s - t < s - t.$$

 $(\zeta 3)$ Let $\{t_n\}, \{s_n\}$ be sequences in $(0, \infty)$ such that $\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n = C$ for some $C \in \mathbb{R}^+$.

Then

$$\limsup_{n \to \infty} \zeta(t_n, s_n) = \limsup_{n \to \infty} (\lambda s_n - t_n)
= \lambda \limsup_{n \to \infty} (s_n) - \limsup_{n \to \infty} (t_n) = \lambda C - C < 0.$$

Example 2.9. [6] (Generalization of Example 2.8) Let $\zeta_1 : [0, \infty) \times [0, \infty) \to \mathbb{R}$ be defined by

$$\zeta_1(t,s) = \psi(s) - \phi(t)$$

for all $t, s \in [0, \infty)$, where $\psi, \phi : [0, \infty) \to [0, \infty)$ are two continuous functions such that $\psi(t) = \phi(t) = 0$ if and only if t = 0 and $\psi(t) < t \le \phi(t)$ for all t > 0. Then ζ_1 is a simulation function.

Proof.
$$(\zeta 1) \zeta_1(0,0) = \psi(0) - \phi(0) = 0.$$

 $(\zeta 2) \text{ Let } t, s > 0$
 $\zeta_1(t,s) = \psi(s) - \phi(t) < s - t.$

 $(\zeta 3)$ Let $\{t_n\}, \{s_n\}$ be sequences in $(0, \infty)$ such that $\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n = C$ for some $C \in \mathbb{R}^+$.

Then

$$\begin{split} \limsup_{n \to \infty} \zeta_1(t_n, s_n) &= \limsup_{n \to \infty} (\psi(s_n) - \phi(t_n)) \\ &= \limsup_{n \to \infty} \psi(s_n) - \limsup_{n \to \infty} \phi(t_n) \\ &= \psi(\limsup_{n \to \infty} s_n) - \phi(\limsup_{n \to \infty} t_n) \\ &= \psi(C) - \phi(C) < 0. \end{split}$$

Definition 2.10. [6] (\mathcal{Z} -contraction) Let (X, d) be a metric space, $T : X \to X$ a mapping and $\zeta \in \mathcal{Z}$. Then T is called a \mathcal{Z} -contraction with respect to ζ if the following condition is satisfied

$$\zeta(d(Tx,Ty),d(x,y)) \geq 0$$
, for all $x,y \in X$.

If T is a \mathcal{Z} -contraction with respect to $\zeta \in \mathcal{Z}$, then d(Tx, Ty) < d(x, y) for all distinct $x, y \in X$.

Theorem 2.11. [6] Let (X,d) be a complete metric space and $T: X \to X$ be a \mathbb{Z} -contraction with respect to $\zeta \in \mathbb{Z}$. Then T has a unique fixed point u in X and for every $x_0 \in X$ the Picard sequence $\{x_n\}$; where $x_n = Tx_{n-1}$ for all $n \in \mathbb{N}$ converges to the fixed point of T.

Definition 2.12. [7] (Generalized \mathcal{Z} -contraction) Let (X, d) be a metric space, $T: X \to X$ be a mapping, and $\zeta \in \mathcal{Z}$. Then T is called *generalized* \mathcal{Z} - contraction with respect to ζ if the following condition is satisfied

$$\zeta(d(Tx,Ty),M(x,y)) \ge 0 \text{ for all } x,y \in X,$$

where

$$M(x,y) = \max \left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{1}{2} \left(d(x,Ty) + d(y,Tx) \right) \right\}.$$

Remark 2.13. [7] Every generalized \mathcal{Z} -contraction on a metric space has at most one fixed point. Indeed, let z and w be two fixed points of T, which is a generalized \mathcal{Z} -contraction self map of a metric space (X,d). Then

$$0 \leq \zeta(d(Tz,Tw),M(z,w)) = \zeta(d(z,w),d(z,w)),$$

which is a contradiction.

Theorem 2.14. [7] Let (X, d) be a complete metric space and $T: X \to X$ be a generalized \mathbb{Z} -contraction with respect to $\zeta \in \mathbb{Z}$. Then T has a fixed point in X. Moreover, for every $x_0 \in X$, the Picard sequence $\{T^n x_0\}$ converges to this fixed point.

Definition 2.15. [9] (b-simulation function) Let (X,d) be a b-metric space with a constant $b \ge 1$. A b-simulation function is a function $\xi : [0,\infty) \times [0,\infty) \to \mathbb{R}$, satisfying the following conditions:

- $(\xi 1)$ $\xi(t,s) < s-t \text{ for all } t,s > 0;$
- $(\xi 2)$ if $\{t_n\}, \{s_n\}$ are sequences in $(0, \infty)$ such that

$$0 < \lim_{n \to \infty} t_n \le \liminf_{n \to \infty} s_n \le \limsup_{n \to \infty} s_n \le b \lim_{n \to \infty} t_n < \infty,$$

then

$$\limsup_{n \to \infty} \xi(bt_n, s_n) < 0.$$

We denote the set of all b-simulation functions by \mathcal{Z}_b .

Example 2.16. [9] Let $\xi:[0,\infty)\times[0,\infty)\to\mathbb{R}$ be defined by

$$\xi(t,s) = \lambda s - t$$

for all $t, s \in [0, \infty)$ and $\lambda \in [0, 1)$. Then ξ is a b-simulation function.

Proof. $(\xi 1)$ Let t, s > 0

$$\xi(t,s) = \lambda s - t < s - t.$$

 $(\xi 2)$ Let $\{t_n\}, \{s_n\}$ be sequences in $(0, \infty)$ such that

$$0 < C = \lim_{n \to \infty} t_n \le \liminf_{n \to \infty} s_n \le \limsup_{n \to \infty} s_n \le b \lim_{n \to \infty} t_n = bC < \infty,$$

for some $C \in \mathbb{R}^+$

Then

$$\lim \sup_{n \to \infty} \xi(bt_n, s_n) = \lim \sup_{n \to \infty} (\lambda s_n - bt_n)$$
$$= \lambda \lim \sup_{n \to \infty} (s_n) - b \lim \sup_{n \to \infty} (t_n) \le \lambda bC - bC < 0.$$

Theorem 2.17. [9] Let (X, d) be a complete b-metric space with a constant $b \ge 1$ and let $T: X \to X$ be a mapping. Suppose that there exists a b-simulation function ξ such that

$$\xi(bd(Tx,Ty),d(x,y)) \ge 0$$

for all $x, y \in X$. Then T has a unique fixed point.

3. Main Results

In this section, we define the generalized \mathcal{Z}_b -contraction and prove the existence of a fixed point for such mapping in complete b-metric spaces.

Definition 3.1. Let (X, d) be a b-metric spaces with a constant $b \geq 1, T : X \to X$ be a mapping, and $\xi \in \mathcal{Z}_b$. Then T is called generalized \mathcal{Z}_b -contraction with respect to ξ if the following condition is satisfied

$$\xi(bd(Tx, Ty), M_b(x, y)) \ge 0 \text{ for all } x, y \in X,$$
(3.1)

where

$$M_b(x,y) = \max \left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{1}{2b} \left(d(x,Ty) + d(y,Tx) \right) \right\}.$$

Lemma 3.2. Let (X,d) be a b-metric space with constant $b \ge 1$ and let $T: X \to X$ be a generalized \mathcal{Z}_b -contraction with be respect to $\xi \in \mathcal{Z}_b$. Let $\{x_n\}$ be a Picard sequence with initial point $x_0 \in X$. Then

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0$$

Proof. Let $x_0 \in X$ be arbitrary and $\{x_n\}$ be a Picard sequence in X, that is, $x_n = Tx_{n-1}$ for all $n \in \mathbb{N}$.

If there exists $n_0 \in \mathbb{N}$ such that $x_{n_0} = x_{n_0+1}$ then x_{n_0} is a fixed point of T and the assertion follows. On the other hand, suppose that $d(x_n, x_{n+1}) > 0$ for all $n \in \mathbb{N}$. Then, since

$$M_b(x_n, x_{n-1}) = \max \left\{ d(x_n, x_{n-1}), d(x_n, x_{n+1}), d(x_{n-1}, x_n), \\ \frac{1}{2b} \left(d(x_n, x_n) + d(x_{n-1}, x_{n+1}) \right) \right\}$$
$$= \max \left\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \right\}.$$

From (3.1) and property $(\xi 1)$, we have

$$0 \leq \xi \left(bd(x_{n+1}, x_n), M_b(x_n, x_{n-1}) \right)$$

$$= \xi \left(bd(x_{n+1}, x_n), \max \left\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \right\} \right)$$

$$< \max \left\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \right\} - bd(x_{n+1}, x_n). \tag{3.2}$$

If $d(x_n, x_{n+1}) \ge d(x_{n-1}, x_n)$ for some $n \in \mathbb{N}$, then from (3.2), we get

$$0 < d(x_n, x_{n+1}) - bd(x_{n+1}, x_n),$$

so

$$bd(x_{n+1}, x_n) < d(x_{n+1}, x_n),$$

hence

$$b < 1$$
.

which is a contradiction. Thus $d(x_n, x_{n+1}) < d(x_{n-1}, x_n)$ for all $n \in \mathbb{N}$ and

$$0 \le \xi \Big(bd(x_n, x_{n+1}), d(x_{n-1}, x_n) \Big). \tag{3.3}$$

So, the sequence $\{d(x_n, x_{n+1})\}$ is a decreasing sequence of nonnegative real numbers. Hence there exist $r \geq 0$ such that $\lim_{n \to \infty} d(x_n, x_{n+1}) = r$. Assume r > 0. Applying the property $(\xi 2)$, with $t_n = d(x_n, x_{n+1})$ and $s_n = d(x_{n-1}, x_n)$, it follows that

$$\limsup_{n\to\infty} \xi\Big(bd(x_n,x_{n+1}),d(x_{n-1},x_n)\Big)<0,$$

which contradicts (3.3). Therefore,

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$

Lemma 3.3. Let (X,d) be a b-metric space with constant $b \ge 1$ and let $T: X \to X$ be a generalized \mathcal{Z}_b -contraction with respect to $\xi \in \mathcal{Z}_b$. Let $\{x_n\}$ be a Picard sequence with initial point $x_0 \in X$. Suppose that $x_{n-1} \ne x_n$ for all $n \in \mathbb{N}$. Then $\{x_n\}$ is a bounded sequence.

Proof. Assume that $\{x_n\}$ is not a bounded sequence. Then there exist a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $n_1=1$ and, for each $k\in\mathbb{N}, n_{k+1}$ is the minimum integer such that

$$d(x_{n_{k+1}}, x_{n_k}) > 1 (3.4)$$

and

$$d(x_m, x_{n_k}) \le 1$$
 for all integers m such that $n_k \le m \le n_{k+1} - 1$. (3.5)

By (b3) of Definition 2.2 and (3.4), we get

$$1 < d(x_{n_{k+1}}, x_{n_k}) \le bd(x_{n_{k+1}}, x_{n_{k+1}-1}) + bd(x_{n_{k+1}-1}, x_{n_k})$$

$$\le bd(x_{n_{k+1}}, x_{n_{k+1}-1}) + b.$$
(3.6)

Letting $k \to \infty$ in (3.6) and using Lemma 3.2, we obtain

$$1 \le \liminf_{k \to \infty} d(x_{n_{k+1}}, x_{n_k}) \le \limsup_{k \to \infty} d(x_{n_{k+1}}, x_{n_k}) \le b.$$

From (3.1) and property ($\xi 1$), we have

$$0 \leq \xi \Big(bd(x_{n_{k+1}}, x_{n_k}), M_b(x_{n_{k+1}-1}, x_{n_k-1}) \Big)$$

$$< M_b(x_{n_{k+1}-1}, x_{n_k-1}) - bd(x_{n_{k+1}}, x_{n_k})$$

$$bd(x_{n_{k+1}}, x_{n_k}) < M_b(x_{n_{k+1}-1}, x_{n_k-1}).$$

$$(3.7)$$

Since

$$\begin{split} &M_b(x_{n_{k+1}-1},x_{n_k-1}) = \max \left\{ \begin{array}{l} d(x_{n_{k+1}-1},x_{n_k-1}), d(x_{n_{k+1}-1},x_{n_{k+1}}), d(x_{n_k-1},x_{n_k}, \\ \frac{1}{2b} \Big(d(x_{n_{k+1}-1},x_{n_k}) + d(x_{n_k-1},x_{n_{k+1}}) \Big) \end{array} \right\} \\ &\leq \max \left\{ \begin{array}{l} b\Big(d(x_{n_{k+1}-1},x_{n_k}) + d(x_{n_k},x_{n_k-1}) \Big), d(x_{n_{k+1}-1},x_{n_{k+1}}), d(x_{n_k-1},x_{n_k}), \\ \frac{1}{2b} \Big(d(x_{n_{k+1}-1},x_{n_k}) + d(x_{n_k-1},x_{n_{k+1}}) \Big) \end{array} \right\} \\ &\leq \max \left\{ \begin{array}{l} b\Big(1 + d(x_{n_k},x_{n_k-1}) \Big), d(x_{n_{k+1}-1},x_{n_{k+1}}), d(x_{n_k-1},x_{n_k}), \\ \frac{1}{2b} \Big(d(x_{n_{k+1}-1},x_{n_k}) + d(x_{n_k-1},x_{n_{k+1}}) \Big) \end{array} \right\} \\ &\leq \max \left\{ \begin{array}{l} b\Big(1 + d(x_{n_k},x_{n_k-1}) \Big), d(x_{n_{k+1}-1},x_{n_{k+1}}), d(x_{n_k-1},x_{n_k}), \\ \frac{1}{2b} \Big(1 + d(x_{n_k},x_{n_k-1}) \Big), d(x_{n_{k+1}-1},x_{n_{k+1}}), d(x_{n_k-1},x_{n_k}), \\ \frac{1}{2b} \Big(1 + b\Big(d(x_{n_k-1},x_{n_k}) + d(x_{n_k},x_{n_{k+1}}) \Big) \Big) \end{array} \right\} \\ &\leq \max \left\{ \begin{array}{l} b\Big(1 + d(x_{n_k},x_{n_k-1}) \Big), d(x_{n_{k+1}-1},x_{n_{k+1}}), d(x_{n_k-1},x_{n_k}), \\ \frac{1}{2b} \Big(b + b\Big(d(x_{n_k-1},x_{n_k}) + d(x_{n_k},x_{n_{k+1}}) \Big) \\ \end{array} \right\} \\ &= \max \left\{ \begin{array}{l} b\Big(1 + d(x_{n_k},x_{n_k-1}) \Big), d(x_{n_{k+1}-1},x_{n_{k+1}}), d(x_{n_k-1},x_{n_k}), \\ \frac{1}{2b} \Big(b + b\Big(d(x_{n_k-1},x_{n_k}) + d(x_{n_k},x_{n_{k+1}}) \Big) \\ \end{array} \right\} \\ &= \max \left\{ \begin{array}{l} b\Big(1 + d(x_{n_k},x_{n_k-1}) \Big), d(x_{n_{k+1}-1},x_{n_{k+1}}), d(x_{n_k-1},x_{n_k}), \\ \frac{1}{2b} \Big(b + b\Big(d(x_{n_k-1},x_{n_k}) + d(x_{n_k},x_{n_{k+1}}) \Big) \\ \end{array} \right\} \right\} \\ &= \max \left\{ \begin{array}{l} b\Big(1 + d(x_{n_k},x_{n_k-1}) \Big), d(x_{n_{k+1}-1},x_{n_{k+1}}), d(x_{n_k-1},x_{n_k}), \\ \frac{1}{2b} \Big(b + b\Big(d(x_{n_k-1},x_{n_k}) + d(x_{n_k},x_{n_{k+1}}) \Big) \\ \end{array} \right\} \right\} \\ &= \max \left\{ \begin{array}{l} b\Big(1 + d(x_{n_k},x_{n_k-1}) \Big), d(x_{n_{k+1}-1},x_{n_{k+1}}), d(x_{n_k-1},x_{n_k}), \\ \frac{1}{2} \Big(1 + d(x_{n_k-1},x_{n_k}) + d(x_{n_k},x_{n_{k+1}}) \Big) \\ \end{array} \right\} \\ &= \max \left\{ \begin{array}{l} b\Big(1 + d(x_{n_k},x_{n_k-1}) \Big), d(x_{n_k-1},x_{n_k+1}), d(x_{n_k-1},x_{n_k}), \\ \frac{1}{2} \Big(1 + d(x_{n_k-1},x_{n_k}) + d(x_{n_k},x_{n_{k+1}}) \Big) \\ \end{array} \right\} \\ &= \max \left\{ \begin{array}{l} b\Big(1 + d(x_{n_k},x_{n_k-1}) \Big), d(x_{n_k-1},x_{n_k+1}), d(x_{n_k-1},x_{n_k}), \\ \frac{1}{2} \Big(1 + d(x_{n_k-1},x_{n_k}) + d(x_{n_k-1$$

$$\leq \max \left\{ b\left(1 + d(x_{n_{k}}, x_{n_{k-1}})\right), d(x_{n_{k+1}-1}, x_{n_{k+1}}), d(x_{n_{k-1}}, x_{n_{k}}), \\
\frac{1}{2}\left(1 + d(x_{n_{k}-1}, x_{n_{k}}) + b\left(d(x_{n_{k}}, x_{n_{k+1}-1}) + d(x_{n_{k+1}-1}, x_{n_{k+1}})\right)\right) \right\} \\
\leq \max \left\{ b\left(1 + d(x_{n_{k}}, x_{n_{k}-1})\right), d(x_{n_{k+1}-1}, x_{n_{k+1}}), d(x_{n_{k}-1}, x_{n_{k}}), \\
\frac{1}{2}\left(b + d(x_{n_{k}-1}, x_{n_{k}}) + b\left(d(x_{n_{k}}, x_{n_{k+1}-1}) + d(x_{n_{k+1}-1}, x_{n_{k+1}})\right)\right) \right\}. (3.8)$$

From (3.4) and (3.8), we get

$$\begin{split} &b < bd(x_{n_{k+1}}, x_{n_k}) \\ &< M_b(x_{n_{k+1}-1}, x_{n_k-1}) \\ &\leq \max \left\{ \begin{array}{l} b\Big(1 + d(x_{n_k}, x_{n_k-1})\Big), d(x_{n_{k+1}-1}, x_{n_{k+1}}), d(x_{n_k-1}, x_{n_k}), \\ \frac{1}{2}\Big(b + d(x_{n_k-1}, x_{n_k}) + b\Big(d(x_{n_k}, x_{n_{k+1}-1}) + d(x_{n_{k+1}-1}, x_{n_{k+1}})\Big)\Big) \end{array} \right\}, \end{split}$$

taking $k \to \infty$, then

$$b \leq \lim_{k \to \infty} M_b(x_{n_{k+1}-1}, x_{n_k-1})$$

$$\leq \lim_{k \to \infty} \max \left\{ \begin{array}{l} b\Big(1 + d(x_{n_k}, x_{n_k-1})\Big), d(x_{n_{k+1}-1}, x_{n_{k+1}}), d(x_{n_k-1}, x_{n_k}), \\ \frac{1}{2}\Big(b + d(x_{n_k-1}, x_{n_k}) + b\Big(d(x_{n_k}, x_{n_{k+1}-1}) + d(x_{n_{k+1}-1}, x_{n_{k+1}})\Big)\Big) \right\}$$

$$= b,$$

that is,

$$\lim_{k \to \infty} M_b(x_{n_{k+1}-1}, x_{n_k-1}) = b.$$

Thus by (3.7) and property ($\xi 2$), with $t_k = d(x_{n_{k+1}}, x_{n_k})$ and $s_k = M_b(x_{n_{k+1}-1}, x_{n_k-1})$, we have

$$0 \le \limsup_{k \to \infty} \xi \left(bd(x_{n_{k+1}}, x_{n_k}), M_b(x_{n_{k+1}-1}, x_{n_k-1}) \right) < 0,$$

which is a contradiction. Hence the sequence $\{x_n\}$ is bounded.

Lemma 3.4. Let (X,d) be a b-metric space with constant $b \ge 1$ and let $T: X \to X$ be a generalized \mathcal{Z}_b -contraction with respect to $\xi \in \mathcal{Z}_b$. Let $\{x_n\}$ be a Picard sequence initial point $x_0 \in X$. Suppose that $x_{n-1} \ne x_n$ for all $n \in \mathbb{N}$. Then $\{x_n\}$ is a Cauchy sequence.

Proof. Let

$$C_n = \sup\{d(x_i, x_j) : i, j \ge n\}, n \in \mathbb{N}.$$

Since the sequence $\{x_n\}$ is bounded (Lemma 3.3), $C_n < \infty$ for every $n \in \mathbb{N}$ and since $\{C_n\}$ is a positive decreasing sequence, there exist $C \geq 0$ such that

$$\lim_{n\to\infty} C_n = C.$$

Suppose C > 0. By the definition of C_n , for every $k \in \mathbb{N}$ there exists $n_k, m_k \in \mathbb{N}$ such that $m_k > n_k \ge k$ and

$$C_k - \frac{1}{k} < d(x_{m_k}, x_{n_k}) \le C_k.$$
 (3.9)

Letting $k \to \infty$ in (3.9), we have

$$\lim_{k \to \infty} d(x_{m_k}, x_{n_k}) = C, \tag{3.10}$$

and

$$\lim_{k \to \infty} d(x_{m_k - 1}, x_{n_k - 1}) = C. \tag{3.11}$$

By (3.1) and property $(\xi 1)$, we have

$$0 \le \xi \Big(bd(x_{m_k}, x_{n_k}), M_b(x_{m_k-1}, x_{n_k-1}) \Big)$$

$$< M_b(x_{m_k-1}, x_{n_k-1}) - bd(x_{m_k}, x_{n_k}),$$

so

$$bd(x_{m_k}, x_{n_k}) < M_b(x_{m_{k-1}}, x_{n_{k-1}})$$

$$= \max \left\{ d(x_{m_{k-1}}, x_{n_{k-1}}), d(x_{m_{k-1}}, x_{m_k}), d(x_{n_{k-1}}, x_{n_k}), \frac{1}{2b} \left(d(x_{m_{k-1}}, x_{n_k}) + d(x_{n_{k-1}}, x_{m_k}) \right) \right\}$$

$$\leq \max \left\{ d(x_{m_{k-1}}, x_{n_{k-1}}), d(x_{m_{k-1}}, x_{m_k}), d(x_{n_{k-1}}, x_{n_k}), \frac{1}{2b} \left(b(d(x_{m_{k-1}}, x_{m_k}) + d(x_{m_k}, x_{n_k})) + b(d(x_{n_{k-1}}, x_{n_k}) + d(x_{n_k}, x_{m_k})) \right) \right\}$$

$$= \max \left\{ d(x_{m_{k-1}}, x_{n_{k-1}}), d(x_{m_{k-1}}, x_{m_k}), d(x_{n_{k-1}}, x_{n_k}), \frac{1}{2} \left(d(x_{m_{k-1}}, x_{m_k}) + d(x_{m_k}, x_{n_k}) + d(x_{n_k}, x_{m_k}) \right) \right\}.$$

$$(3.12)$$

Letting $k \to \infty$ in (3.12), using Lemma 3.2, (3.10) and (3.11), we have

$$\begin{split} bC &= \lim_{k \to \infty} bd(x_{m_k}, x_{n_k}) \leq \lim_{k \to \infty} M_b(x_{m_k-1}, x_{n_k-1}) \\ &\leq \lim_{k \to \infty} \max \left\{ \begin{array}{c} d(x_{m_k-1}, x_{n_k-1}), d(x_{m_k-1}, x_{m_k}), d(x_{n_k-1}, x_{n_k}), \\ \frac{1}{2} \Big(d(x_{m_k-1}, x_{m_k}) + d(x_{m_k}, x_{n_k}) + d(x_{n_k-1}, x_{n_k}) + d(x_{n_k}, x_{m_k}) \Big) \end{array} \right\} \\ &= C, \end{split}$$

then

$$bC \le \liminf_{k \to \infty} M_b(x_{m_k-1}, x_{n_k-1}) \le \limsup_{k \to \infty} M_b(x_{m_k-1}, x_{n_k-1}) \le C.$$
 (3.13)

From (3.13) we see that, Since C > 0 that b = 1. Then by the property ($\xi 2$) with $t_k = d(x_{m_k}, x_{n_k})$ and $s_k = M_b(x_{m_k-1}, x_{n_k-1})$, we get

$$0 \le \limsup_{k \to \infty} \xi \Big(bd(x_{m_k}, x_{n_k}), M_b(x_{m_k - 1}, x_{n_k - 1}) \Big) < 0,$$

which is a contradiction. Thus C = 0, that is,

$$\lim_{n\to\infty} C_n = 0 \text{ for all } b \ge 1.$$

This proves that $\{x_n\}$ is a Cauchy sequence.

Theorem 3.5. Let (X,d) be a complete b-metric space with constant $b \geq 1$ and let $T: X \to X$ be a generalized \mathcal{Z}_b -contraction with respect to $\xi \in \mathcal{Z}_b$. Then T has a fixed point.

Proof. Let $x_0 \in X$ and $\{x_n\}$ be a Picard sequence with initial point x_0 . if $x_m = x_{m+1}$ for some $m \in \mathbb{N}$, then $x_m = x_{m+1} = Tx_m$, that is x_m is a fixed point of T. In this case, the existence of a fixed point is proved. So, we can suppose that $x_n \neq x_{n+1}$ for every $n \in \mathbb{N}$. Now by Lemma 3.4, the sequence $\{x_n\}$ is Cauchy and since (X, d) is complete, then there exists some $z \in X$ such that

$$\lim_{n \to \infty} x_n = z. \tag{3.14}$$

We shall prove that z is a fixed point of T. Assume $z \neq Tz$, then d(z, Tz) = k > 0 for some $k \in \mathbb{R}$.

Since

$$d(z,Tz) \leq M_b(x_n,z) = \max \left\{ \begin{array}{l} d(x_n,z), d(x_n,Tx_n), d(z,Tz), \\ \frac{1}{2b} \Big(d(x_n,Tz) + d(z,Tx_n) \Big) \end{array} \right\}$$

$$\leq \max \left\{ \begin{array}{l} d(x_n,z), d(x_n,Tx_n), d(z,Tz), \\ \frac{1}{2b} \Big(b(d(x_n,z) + d(z,Tz)) + b(d(z,x_n) + d(x_n,Tx_n)) \Big) \end{array} \right\}$$

$$= \max \left\{ \begin{array}{l} d(x_n,z), d(x_n,Tx_n), d(z,Tz), \\ \frac{1}{2} \Big(d(x_n,z) + d(z,Tz) + d(z,x_n) + d(x_n,Tx_n) \Big) \end{array} \right\}$$
(3.15)

taking $n \to \infty$, we get

$$\lim_{n \to \infty} M_b(x_n, z) = d(z, Tz) = k > 0.$$

Using (3.1), (3.15) and property ($\xi 1$), we obtain

$$0 \le \xi(bd(Tx_n, Tz), M_b(x_n, z))$$

$$< M_b(x_n, z) - bd(Tx_n, Tz)$$
(3.16)

$$bd(Tx_n, Tz) < M_b(x_n, z)$$

$$d(Tx_n, Tz) < \frac{M_b(x_n, z)}{b}. (3.17)$$

By (b3) of Definition (2.2), we get

$$d(z,Tz) \le b[d(z,Tx_n) + d(Tx_n,Tz)]$$

$$\frac{d(z,Tz)}{b} \le d(Tx_n,Tz). \tag{3.18}$$

Letting $n \to \infty$ in (3.17) and (3.18), we have

$$\frac{k}{b} = \lim_{n \to \infty} \frac{d(z, Tz)}{b} \le \lim_{n \to \infty} d(Tx_n, Tz) \le \lim_{n \to \infty} \frac{M_b(x_n, z)}{b} = \frac{k}{b}$$

Then

$$\lim_{n \to \infty} d(Tx_n, Tz) = \frac{k}{b} > 0.$$

Therefore by (3.16) and property ($\xi 2$), with $t_n = d(Tx_n, Tz)$ and $s_n = M_b(x_n, z)$. Then

$$0 \le \limsup_{n \to \infty} \xi \Big(bd(Tx_n, Tz), M_b(x_n, z) \Big) < 0,$$

which is a contradiction, we get d(z, Tz) = 0, that is z is a fixed point of T. This complete the proof.

Corollary 3.6. Let (X,d) be a complete b-metric space with a constant $b \ge 1$ and let $T: X \to X$ be a mapping. Suppose that there exists $\lambda \in (0,1)$ such that

$$bd(Tx, Ty) \leq \lambda M_b(x, y)$$
 for all $x, y \in X$.

Then T has a fixed point.

Proof. The result follows from Theorem 3.5, by taking as b-simulation function

$$\xi(t,s) = \lambda s - t$$

for all $t, s \leq 0$.

Note If $M_b(x,y) = d(x,y)$, this corollary gives a result of Banach type [12].

Corollary 3.7. [7] Let (X,d) be a complete metric space, $T: X \to X$ be a mapping. Suppose that there exists a simulation function ξ such that

$$\zeta(d(Tx,Ty),M(x,y)) \ge 0 \text{ for all } x,y \in X,$$

where

$$M(x,y) = \max \left\{ d(x,y), d(x,Tx), d(y,Ty), \frac{1}{2} \left(d(x,Ty) + d(y,Tx) \right) \right\}.$$

Then T has a fixed point.

Proof. It follows from Theorem 3.5 with b = 1.

Example 3.8. Let X = [0,1] and $d: X \times X \to \mathbb{R}$ defined by $d(x,y) = (x-y)^2$. Then (X,d) is a complete b-metric space with b=2. Define $T: X \to X$ by

$$Tx = \frac{ax}{1+x}$$
 for all $x \in X$ and $a \in (0, \frac{1}{\sqrt{2}}]$.

Let $\xi:[0,\infty)\times[0,\infty)\to\mathbb{R}$ be defined by $\xi(t,s)=\frac{s}{s+1}-t$. Then ξ is a b-simulation function. Indeed, we obtain

$$\xi(2d(Tx,Ty),M_b(x,y)) = \frac{M_b(x,y)}{M_b(x,y)+1} - 2d(Tx,Ty)$$

$$\geq \frac{d(x,y)}{d(x,y)+1} - 2d(Tx,Ty)$$

$$= \frac{(x-y)^2}{(x-y)^2+1} - 2\left[\frac{ax}{1+x} - \frac{ay}{1+y}\right]^2$$

$$= \frac{(x-y)^2}{(x-y)^2+1} - \frac{2a^2(x-y)^2}{[(1+x)(1+y)]^2}$$

$$\geq \frac{(x-y)^2}{(x-y)^2+1} - \frac{2a^2(x-y)^2}{(x-y)^2+1}$$

$$= \frac{(x-y)^2 - 2a^2(x-y)^2}{(x-y)^2+1}$$

$$= \frac{(x-y)^2 - 2a^2(x-y)^2}{(x-y)^2+1}$$

$$= \frac{(1-2a^2)(x-y)^2}{(x-y)^2+1} \geq 0, \text{ for all } x,y \in X.$$

Thus all the conditions of Theorem 3.5 are satisfied. Hence T has a fixed point (at x = 0).

ACKNOWLEDGEMENTS

We were indebted Prof. Suthep Suantai for his kindly support and encouragement. Also thank you very much for all references for many useful suggestions.

References

- [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math. 3 (1922) 133–181.
- [2] S. Kumar, Some applications of fixed point theorems, Eng. Math. Lett. 2014 (2014) Available online at http://scik.org.
- [3] A.B. Amar, A. Jeribi, M. Mnif, Some fixed point theorems and application to biological model, Numerical Functional Analysis and Optimization, Taylor & Francis. 29 (2008) 1–23.
- [4] I.A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal, Unianowsk Gos. Ped. Inst. 30 (1989) 26–37.
- [5] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. inform. Univ. Ostraviensis 1 (1993) 5–11.
- [6] F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat 29 (6) (2015) 1189–1194.
- [7] M. Olgun, O. Bicer, T. Alyildiz, A new aspect to Picard operators with simulation functions, Turk. J. Math. 40 (2016) 832–837.
- [8] A. Roldán, E. Karapinar, C. Roldán, J. Martińez-Moreno, Coincidence point theorems on metric spaces via simulation functions, J. Comput. Appl. Math., 275 (2015) 345–355.
- [9] M. Demma, R. Saadati, P. Vetro, Fixed point results on b-metric space via Picard sequences and b-simulation functions, Iranian Journal of Mathematical Sciences and Informatics 11 (2016) 123–136.
- [10] M. Fréchet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo 22 (1906) 1–72.
- [11] V. Ozturk, D. Turkoglu, Common fixed point theorems for mappings satisfying (E.A) property in b-metric spaces, J. Nonlinear Sci. Appl. 8 (2015) 1127–1133.
- [12] M. Jovanovic, Z. Kadelburg, S. Radenović, Common fixed point results in metrictype spaces, Fixed Point Theory Appl. 2010 (2010) Article ID 978121.