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Abstract In this paper, we study augmented normal cone and investigate relation between weak sub-

differential and augmented normal cone. we define augmented normal cone via weak subdifferential and

vice versa. The necessary condition for having the global maximum is given in the paper. We find the

preliminary properties of augmented normal cones including investigating them for Fréchet differentiable

functions. In the sequel , some properties of Weak subdifferential and Fréchet subdifferentil are con-

sidered. It is also compared optimality condition via weak subifferential and optimality condition via

Fréchet subifferential.
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1. Introduction

Recall that, a convex set has a supporting hyperplane at each boundary point [1]. This
leads to one of the central notions in convex analysis, that of a subgradient of a possible
nonsmooth even extended real valued function [2, 3]. Subgradient plays an important role
in the deriving of optimality conditions and duality theorems [4–8]. Since a nonconvex
set has no supporting hyperplane at each boundary point, the notion of subgradient have
been generalized by most researchers on optimality conditions for nonconvex problems,for
more details on this study see [2, 9, 10]. The variety of different subdifferentials can be
divided into two large groups:

• “simple” subdifferentials
• “strict” subdifferentials.

A simple subdifferential is defined at a given point and it does not take into account ”dif-
ferential” properties of a function in its neighborhood. They are not widely used directly
because of rather poor calculus. Contrary to the simple subdifferentials, the definitions of
strict subdifferentials incorporate differential properties of a function near a given point.
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The notion of weak subdifferential which is a generalization of the classic subdifferen-
tial, is introduced by Azimov and Gasimov [11, 12]. It uses explicitly defined supporting
conic surfaces instead of supporting hyperplanes. The main reason of difficulties arising
when passing from the convex analysis to the nonconvex one is that, the nonconvex cases
may arise in many different forms and each case may require special approach. The main
ingredient is the method of supporting the given nonconvex set. Subgradient plays an im-
portant role in deriving of optimality conditions and duality theorems. The first canonical
generalized gradient introduced by Clarke [2, 3]. He applied this generalized gradient sys-
tematically to study nonsmooth problems in a variety of problems. Since a nonconvex set
has no supporting hyperplane at each boundary point , the notion of subgradient have
been generalized by most researchers on optimality conditions for nonconvex problems
[2, 3, 13]. By using the notion of subgradients, a collection of zero duality gap conditions
for a wise class of nonconvex optimization problems was derived [11, 12]. Augmented
normal cone via weak subdifferential defined by Kasimbeyli and Mammadov in [14, 15].
In this study some important properties of the augmented normal cones via the weak
subdifferentials are given. Some theorems, by using the definition and properties of the
weak subdifferential which are described in [1, 7, 10, 14–21], concerning the augmented
normal cone and weak subdifferential in nonsmooth and nonconvex analysis are presented.

2. Preliminaries

Let X be a real normed space and let X∗ be the topological dual of X. By ‖ · ‖ we
denote the norm of X and by 〈x∗, x〉 the value of the linear functional x∗ ∈ X∗ at the
point x ∈ X. Let S be a nonempty subset of X and x̄ ∈ S.

Definition 2.1 ([14, 15]). Let f : X → R be a function and x̄ ∈ X be a given point. The
set

∂f(x̄) =
{
x∗ ∈ X∗ : (∀x ∈ X) f(x)− f(x̄) ≥ 〈x∗, x− x̄〉

}
,

is called the subdifferential of f at x̄ ∈ X.

The next definition generalized the notion of subdifferential.

Definition 2.2 ([14, 15]). Let f : X → R be a function and x̄ ∈ X be a given point.
A pair (x∗, c) ∈ X∗ × R+ where R+, the set of nonnegative real numbers, is called weak
subgradient of f at x̄ ∈ X if the following inequality holds:

(∀x ∈ X) f(x)− f(x̄) ≥ 〈x∗, x− x̄〉 − c‖x− x̄‖.
The set

∂wf(x̄) =
{

(x∗, c) ∈ X∗ × R+ : (∀x ∈ X) f(x)− f(x̄) ≥ 〈x∗, x− x̄〉 − c‖x− x̄‖
}

of all weak subgradients of f at x̄ ∈ X is called the weak subdifferential of f at x̄ ∈ X. If
∂wf(x̄) 6= ∅ , then f is called weakly subdifferentiable at x̄.

Remark 2.3 ([9]). It is clear when f is subdifferentiable at x̄, then f is also weakly
subdifferentiable at x̄ ; that is, if x∗ ∈ ∂f(x̄), then by the definition of weak subgradient
we get (x∗, c) ∈ ∂wf(x̄) for every c ≥ 0. Note that the converse may fail (consider
f(x) = − | x |, X = R).

The next definition is needed in the sequel.
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Definition 2.4 ([22]). Let f : X → R be a function. If there is a continuous linear map
f ′(x̄) : X → R with the property

lim
‖h‖→0

|f(x̄+ h)− f(x̄)− (f ′(x̄))(h)|
‖h ‖

= 0,

then f ′(x̄) : X → R is called the Fréchet derivative of f at x̄ ∈ X and f is called the
Fréchet differentiable at x̄.

Remark 2.5 ([9]). It follows from Definition 2.2 that the pair (x∗, c) ∈ X∗ × R+ is a
weak subdifferential of f at x̄ ∈ X if and only if there exists the continuous (super linear)
concave function g : X → R defined by g(x) = f(x̄) + 〈x∗, x − x̄〉 − c‖x − x̄‖, x ∈ X,
satisfies

(∀x ∈ X) g(x) ≤ f(x) and g(x̄) = f(x̄).

This condition means that g supports f from below. Hence , it follows that , if f is
weakly subdifferentiable at x̄ and (x∗, c) ∈ ∂wf(x̄), then the graph of function g becomes
a supporting surface to epigraph of f on X at the point (x̄, f(x̄)).

Theorem 2.6 ([14]). Let the weak subdifferential of f : X → R at x̄ be nonempty. Then
the set ∂wf(x̄) is closed and convex.

3. Main Results

In this section we first recall the definition of augmented normal cone that presented
in [6] and then we state the main results.

Definition 3.1. The set

NS(x̄) = {x∗ ∈ X∗ : 〈x∗, x− x̄〉 ≤ 0 (∀x ∈ S)}
is called a normal cone to S at x̄.

Definition 3.2. The set

NS
a(x̄) = {(x∗, c) ∈ X∗ × R+; 〈x∗, x− x̄〉 − c ‖ x− x̄ ‖≤ 0 (∀x ∈ S)}

is called an augmented normal cone to S at x̄. Note that if there exists x∗ ∈ X∗ such
that (x∗, 0) ∈ NS

a(x̄), then x∗ ∈ NS(x̄).

Remark 3.3. From the definitions of normal and augmented normal cones , we have

x∗ ∈ NS(x̄) =⇒ (x∗, c) ∈ NS
a(x̄) (∀c ≥ 0).

Remark 3.4. If (x∗, c) ∈ NS
a(x̄) with ‖ x∗ ‖≤ c, then it is obvious for all x ∈ S that

〈x∗, x− x̄〉 − c ‖ x− x̄ ‖≤ 0.

This means that (x∗, c) ∈ NS
a(x̄). An augmented normal cone consisting of only such

elements is called trivial and denoted by NS
triv(x̄). Obviously

NS
triv(x̄) ⊂ NS

a(x̄).

Note: If x̄ ∈ X then

NX
a(x̄) = {(x∗, c) ∈ X∗ × R+; 〈x∗, x− x̄〉 − c ‖ x− x̄ ‖≤ 0 (∀x ∈ S)} =

{(x∗, c) ∈ X∗ × R+; ‖ x∗ ‖≤ c} = NX
triv(x̄).
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Proposition 3.5. If c1 ≤ c2, then

(x∗, c1) ∈ NS
a(x̄) =⇒ (x∗, c2) ∈ NS

a(x̄).

Proof. Let (x∗, c1) ∈ NS
a(x̄), then by the definition of augmented normal cone, we have

〈x∗, x− x̄〉 − c1 ‖ x− x̄ ‖≤ 0 (∀ x ∈ S)

so that by assumption c1 ≤ c2, we obtain

〈x∗, x− x̄〉 − c2 ‖ x− x̄ ‖≤ 0 (∀ x ∈ S).

Therefore (x∗, c1) ∈ NS
a(x̄) which is the desired result.

Note: If x̄ ∈ S, then it is clear that (0, 0) ∈ NS
a(x̄) and so the augmented normal cone

is a nonempty.

Proposition 3.6. The set NS
a(x̄) is a closed convex cone.

Proof. The proof directly follows from the definition of NS
a(x̄) .

Proposition 3.7. (x∗, c) ∈ NS
a(x̄) if and only if the function g : X −→ R defined by

g(x) = 〈x∗, x− x̄〉 − c ‖ x− x̄ ‖

satisfied in:

g(x) ≤ 0 (∀x ∈ S), g(x̄) = 0.

Proof. The proof is straightforward from the definition of NS
a(x̄).

The next proposition states the necessary condition for having the global maximum.

Proposition 3.8. Let f : X −→ R be a function that attains a global maximum at x̄,
then we have

∂wf(x̄) ⊂ NX
triv(x̄) ⊂ NX

a(x̄).

Proof. If ∂wf(x̄) 6= ∅, then there exists a pair (x∗, c) such that

f(x)− f(x̄) ≥ 〈x∗, x− x̄〉 − c ‖ x− x̄ ‖ (∀ x ∈ X).

With assumption f attains a global maximum at x̄, therefore

〈x∗, x− x̄〉 − c ‖ x− x̄ ‖≤ 0 (∀ x ∈ X).

So that

‖ x∗ ‖≤ c
and we have (x∗, c) ∈ NX

triv(x̄) and proof is completed by NS
triv(x̄) ⊂ NS

a(x̄).

Corollary 3.9. Let f : X −→ R be a function that attains a global minimum at x̄, then
we have

∂w(−f(x̄)) ⊂ NX
triv(x̄).

The following example shows that the inclusion in the Proposition 3.4 can be strict.
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Example 3.10. Let X = R, f(x) = − | x |, then we have

∂wf(0) = {(α, c); | α |≤ c− 1}

and

NR
triv(0) = {(α, c); | α |≤ c}.

Therefore ∂wf(x̄) 6= NX
triv(x̄), and we note that f has a global maximum at x̄ = 0.

The following example shows that the converse of the Proposition 3.4 may fail.

Example 3.11. Let

f(x) =

{
0 x ∈ Q
1 x ∈ Qc.

,

then

∂wf(0) = NX
triv(0) = {(α, c); | α |≤ c}

while f attains a global minimum at x̄ = 0.

Proposition 3.12. Let f : X −→ R be a function that attains a global minimum at x̄,
then we have

NX
a(x̄) ⊂ ∂wf(x̄).

Proof. Let (x∗, c) ∈ NX
a(x̄), then we have

〈x∗, x− x̄〉 − c ‖ x− x̄ ‖≤ 0 (∀ x ∈ X).

Since f attains a global minimum at x̄, then we obtain

f(x)− f(x̄) ≥ 0 (∀ x ∈ X),

from the above inequalities, we get

f(x)− f(x̄) ≥ 〈x∗, x− x̄〉 − c ‖ x− x̄ ‖≤ 0 (∀ x ∈ X)

so that (x∗, c) ∈ ∂wf(x̄) and proof is completed.

The next proposition states a link between weak subdifferential of f , −f and aug-
mented normal cone at x̄ for the functions that attain a global minimum at x̄. This is a
necessary condition in optimality conditions.

Proposition 3.13. Let f : X −→ R be a function that attains a global minimum at x̄,
then we have

∂w(−f(x̄)) ⊂ NX
a(x̄) ⊂ ∂wf(x̄).

Proof. The proof directly follows from the Corollary 3.1 and the Proposition 3.5.

Corollary 3.14. Let f is a constant function . Then we have

NX
c(x̄) = ∂wf(x̄) = ∂w(−f(x̄)).

Proof. The proof follows from the Propositions 3.6.
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As a particular case , consider the weak subdifferentiability of an indicator function.
Let δS be an indicator function of a set S ⊂ X, such that

δS(x) =

{
0 x ∈ S
∞ o.w.

,

Kasimbeily in [16] generalized one of the well-known theorems in convex analysis that
stating a relationship between the subdifferentiability of the indicator function and the
supporting hyperplane to a convex set. Now we similarly establish a relationship between
the weak subdifferential of the indicator function of any set and its augmented normal
cone.

Proposition 3.15. Let δS be an indicator function of a set S ⊂ X. Then we have:

NS
a(x̄) = ∂wδS(x̄).

Proof. Assume that (x∗, c) ∈ NS
a(x̄), therefore we have

〈x∗, x− x̄〉 − c ‖ x− x̄ ‖≤ 0 (∀ x ∈ S).

We know that

δS(x)− δS(x̄) = 0 (∀ x ∈ S),

δS(x)− δS(x̄) =∞ (∀ x 6∈ S),

so that we obtain

δS(x)− δS(x̄) ≥ 〈x∗, x− x̄〉 − c ‖ x− x̄ ‖ (∀ x ∈ X)

i.e, (x∗, c) ∈ ∂wδS(x̄). Conversely, if (x∗, c) ∈ ∂wδS(x̄), then we have

δS(x)− δS(x̄) ≥ 〈x∗, x− x̄〉 − c ‖ x− x̄ ‖ (∀ x ∈ X).

If x ∈ S, then we obtain

δS(x)− δS(x̄) = 0 ,

and consequently

〈x∗, x− x̄〉 − c ‖ x− x̄ ‖≤ 0 (∀ x ∈ S).

This means that (x∗, c) ∈ NS
a(x̄), and the proof is completed.

In the sequel we state some important properties of the augmented normal cone.

Proposition 3.16. Let S1 ⊂ S2, then we have

NS2

a(x̄) ⊂ NS1

a(x̄).

Proof. Assume that (x∗, c) ∈ NS2

a(x̄), then

〈x∗, x− x̄〉 − c ‖ x− x̄ ‖≤ 0 (∀ x ∈ S2).

It follows from S1 ⊂ S2 that

〈x∗, x− x̄〉 − c ‖ x− x̄ ‖≤ 0 (∀ x ∈ S1)

i.e, (x∗, c) ∈ NS1

a(x̄). The proof is completed.

Remark 3.17. In Proposition 3.16 , If S1 = S2 then we have NS2

c(x̄) = NS1

c(x̄), while
the following example shows that the converse may drop.



On Weak Subdifferential and Augmented Normal Cone 1619

Example 3.18. Let S1 = [0, 1], S2 = [0, 2]. It is easy to check that

NS1

a(0) = NS2

a(0) = {(α, c) : α ≤ c},
while S1 6= S2.

Proposition 3.19. NS
a(x̄) = NclS

a(x̄).

Proof. Since S ⊂ clS then Proposition 3.16 implies that NclS
a(x̄) ⊂ NS

a(x̄). To see the
the reverse inclusion we take x ∈ cl, S then there exists {xn} ⊂ S such that xn −→ x.
Now assume that (x∗, c) ∈ NS

a(x̄). Hence

〈x∗, xn − x̄〉 − c ‖ xn − x̄ ‖≤ 0 (∀xn ∈ S).

By taking the limit inferior of the both sides of the last inequality when n→∞ we get

〈x∗, x− x̄〉 − c ‖ x− x̄ ‖≤ 0 (∀x ∈ clS).

This means that (x∗, c) ∈ NclS
a(x̄) and so the proof is completed.

Proposition 3.20. Let S be a cone, then

NS
a(λx̄) = NS

a(x̄) (∀λ > 0).

Proof. It follows from the hypothesis that

(x∗, c) ∈ NS
a(λx̄) ⇐⇒ 〈x∗, λx− λx̄〉 − c‖λx− λx̄‖ ≤ 0 (∀ x ∈ S)

⇐⇒ λ(〈x∗, x− x̄〉 − c‖x− x̄‖) ≤ 0 (∀ x ∈ S)

⇐⇒ (x∗, c) ∈ NS
a(x̄).

This completes the proof.

Proposition 3.21. Let S1, S2 ⊂ X, S1 ∩ S2 6= ∅. Then

NS1∪S2

a(x̄) = NS1

a(x̄) ∩NS2

a(x̄) ⊂ NS1∩S2

a(x̄).

Proof. Suppose that (x∗, c) ∈ NS1∪S2

a(x̄), therefore

(x∗, x− x̄)− c ‖ x− x̄ ‖≤ 0 ∀x ∈ S1 ∪ S2

so that we have :
(x∗, x− x̄)− c ‖ x− x̄ ‖≤ 0 ∀x ∈ S1

and
(x∗, x− x̄)− c ‖ x− x̄ ‖≤ 0 ∀x ∈ S2.

This means that (x∗, c) ∈ NS1

a(x̄) ∩NS2

a(x̄). Also we obtain

(x∗, x− x̄)− c ‖ x− x̄ ‖≤ 0 ∀x ∈ S1 ∩ S2

and the last inclusion obtained. Conversely, if (x∗, c) ∈ NS1

a(x̄) ∩NS2

a(x̄), then

(x∗, x− x̄)− c ‖ x− x̄ ‖≤ 0 ∀x ∈ S1

and
(x∗, x− x̄)− c ‖ x− x̄ ‖≤ 0 ∀x ∈ S2.

Hence
(x∗, x− x̄)− c ‖ x− x̄ ‖≤ 0 ∀x ∈ S1 ∪ S2,

so that (x∗, c) ∈ NS1∪S2

a(x̄), and this completes the proof.



1620 Thai J. Math. Vol. 19 (2021) /A. Farajzadeh et al.

The next example indicates that the converse of the last inclusion may fail.

Example 3.22. If X = R, S1 = {0, 1}, S2 = {0, 2}, x̄ = 0, then we get

NS1

a(x̄) = NS2

a(x̄) = {(α, c) ∈ R× R : α ≤ c},
while NS

a(x̄) = R2.

Remark 3.23. Since S1 ∩ S2 ⊂ S1, S2, then by Proposition 3.11 , we have

NS1

c(x̄), NS2

a(x̄) ⊂ NS1

a(x̄) ∩NS2

a(x̄),

and so that
NS1

a(x̄) ∩NS2

a(x̄) ⊂ NS1∩S2

a(x̄),

and similarly
NS1

a(x̄) ∪NS2

a(x̄) ⊂ NS1∩S2

a(x̄).

Proposition 3.24. Let S = S1 ∩ S2 6= ∅. Then

NS1

a(x̄) +NS2

a(x̄) ⊂ NS
a(x̄).

Proof. Assume that (x1
∗, c1) ∈ NS1

a(x̄) and (x2
∗, c2) ∈ NS2

a(x̄), therefore

〈x1∗, x− x̄〉 − c1‖x− x̄‖ ≤ 0 (∀ x ∈ S1),

〈x2∗, x− x̄〉 − c2‖x− x̄‖ ≤ 0 (∀ x ∈ S2),

for any x ∈ S = S1 ∩ S2, we obtain

〈x1∗ + x2
∗, x− x̄〉 − (c1 + c2)‖x− x̄‖ ≤ 0 (∀ x ∈ S),

i.e, (x1
∗ + x2

∗, c1 + c2) ∈ NS
a(x̄) and the proof is completed.

The next example shows that the inclusion in the result of Proposition 3.24 may be
strict.

Example 3.25. Let X = R, S1 = {0, 1}, S2 = {0, 2}, x̄ = 0, then we have

NS1

a(x̄) = NS2

a(x̄) = {(α, c) ∈ R× R : α ≤ c}
while NS1∩S2

a(x̄) = R2.

Proposition 3.26. Let S = S1 + S2 , x̄ = x̄1 + x̄2, x̄i ∈ Si, i = 1, 2. Then

NS
a(x̄) = NS1

a(x̄1) ∩NS2

a(x̄2).

Proof. Assume (x∗, c) ∈ NS
a(x̄), then we have

〈x∗, x− x̄〉 − c ‖ x− x̄ ‖≤ 0 (∀x ∈ S),

therefore

〈x∗, (x1 +x2)− (x̄1 + x̄2)〉− c ‖ (x1 +x2)− (x̄1 + x̄2) ‖≤ 0 (∀x = x1 +x2 ∈ S = S1 +S2),

from the last inequality, with x2 = x̄2 and x1 = x̄1,respectively , we obtain

〈x∗, x1 − x̄1〉 − c ‖ x1 − x̄1 ‖≤ 0 (∀x1 ∈ S1) =⇒ (x∗, c) ∈ NS1

a(x̄1)

〈x∗, x2 − x̄2〉 − c ‖ x2 − x̄2 ‖≤ 0 (∀x2 ∈ S2) =⇒ (x∗, c) ∈ NS2

a(x̄2)

and so
(x∗, c) ∈ NS1

a(x̄1) ∩NS2

a(x̄2).

The converse of the inclusion can be proved by a similar way.
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Proposition 3.27. Let S = {(x, x) : x ∈ S}, x = (x̄, x̄). Then

NS
a(x) = {((x∗, y∗), c) ∈ X∗ ×X∗ × R+ : ((x∗ + y∗), 2c) ∈ NS

a(x̄)}.

Note that ‖ (x, y) ‖=‖ x ‖ + ‖ y ‖,∀x, y ∈ X.

Proof. It follows from the hypothesis that

((x∗, y∗), c) ∈ NS
a(x) ⇐⇒ 〈(x∗, y∗), (x, x)−x〉 − c ‖ (x, x)−x ‖≤ 0 (∀(x, x) ∈S),

⇐⇒ 〈x∗ + y∗, x− x̄〉 − 2c ‖ x− x̄ ‖≤ 0 (∀ x ∈ S)

⇐⇒ (x∗ + y∗, 2c) ∈ NS
a(x̄).

This completes the proof.

Proposition 3.28. Let X = X1 ×X2, S = S1 × S2, x̄ = (x̄1, x̄2), x̄i ∈ Si ⊂ Xi, i = 1, 2 .
Then

π(NS
a(x̄)) = π(NS

a(x̄1))× π(NS
a(x̄2)).

Proof. It is easy to verify the following relations:

((x∗, y∗), c) ∈ NS
a(x̄) ⇐⇒ 〈(x∗, y∗), (x1, x2)− (x̄1, x̄2)〉

−c ‖ (x1, x2)− (x̄1, x̄2) ‖≤ 0 (∀(x1, x2) ∈S),

⇐⇒ 〈x∗, x1 − x̄1〉 − c ‖ x1 − x̄1 ‖≤ 0 (∀ x1 ∈ S1),

〈y∗, x2 − x̄2〉 − c ‖ x2 − x̄2 ‖≤ 0 (∀ x2 ∈ S2)

⇐⇒ ((x∗, c), (y∗, c)) ∈ NS1

a(x̄1)×NS2

a(x̄2).

4. Augmented Normal Cones and Weak Subdifferentials

Kruger in [13] introduced new approach in order to define the normal cone by using
the Fréchet subdifferential of the distance function. Recall that the distance function to
the set S is defined by the formula

dS(x) = infy∈S ‖ x− y ‖ .
We are going to generalize this approach for augmented normal cones related by weak

subdifferential in what follows. Contrary to the indicator function whose weak subdif-
ferential can be used for defining the augmented normal cone, the distance function is
Lipschitz continuous. This makes it more convenient in some situations.

Proposition 4.1.

∂wdS(x̄) ⊂ {(x∗, c) ∈ NS
c(x̄) :‖ x∗ ‖≤ c+ 1}.

Proof. Suppose that (x∗, c) ∈ ∂wdS(x̄), then we have

dS(x)− dS(x̄) ≥ 〈x∗, x− x̄〉 − c ‖ x− x̄ ‖ ∀x ∈ X
Hence if x ∈ S, we obtain

〈x∗, x− x̄〉 − c ‖ x− x̄ ‖≤ 0,
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and so (x∗, c) ∈ NS
c(x̄). Also if x 6∈ S, we get, note x ∈ S,

‖ x− x̄ ‖≥ dS(x) = inf
y∈S
‖ x− y ‖= dS(x) ≥ 〈x∗, x− x̄〉 − c ‖ x− x̄ ‖ ∀x 6∈ S

therefore
〈x∗, x− x̄〉 ≤ (c+ 1) ‖ x− x̄ ‖ .

Consequently, it follows from the above inequalities that

〈x∗, x− x̄〉 ≤ (c+ 1) ‖ x− x̄ ‖ ∀x ∈ X.
Then

‖ x∗ ‖≤ c+ 1.

Remark 4.2. In Proposition 4.1 if we take c = 0 then we obtain:

∂dS(x̄) ⊂ {x∗ ∈ NS(x̄) :‖ x ‖≤ 1},
that is the result found by Kruger in [13] for Fréchet subdifferential.

The following example shows that the inclusion of Proposition 4.1 may be strict.

Example 4.3. Consider S = [0, 1], x̄ = 0 , then we have

∂wdS(0) = ∅, {(x∗, c) ∈ NS
a(0) :‖ x ‖≤ c+ 1} 6= ∅.

It follows from Proposition 3.8 that an augmented normal cone is a particular case of a
weak subdifferential. In the following we establish a link between the weak subdifferential
of an arbitrary function and the augmented normal cone of its epigraph. Recall that the
epigraph of f is the set

epif = {(u, µ) ∈ X × R : f(u) ≤ µ}.
The following result shows that the relationship between weak subdifferential of f and

Augmented normal cone related by epif .

Proposition 4.4. 1) If (x∗, c) ∈ ∂wf(x̄), then ((x∗,−1), c) ∈ N c
epif (x̄, f(x̄)),

2) If µ ≥ f(x̄) and ((x∗, λ), c) ∈ N c
epif (x̄, µ), then | λ |≤ c.

Proof. 1) If (x∗, c) ∈ ∂wf(x̄),then we have

f(x)− f(x̄) ≥ 〈x∗, x− x̄〉 − c ‖ x− x̄ ‖ ∀x ∈ X.
Then

〈(x∗,−1), (x− x̄, f(x)− f(x̄)〉 ≤ c ‖ x− x̄ ‖ .
It is obvious that

c ‖ x− x̄ ‖≤ c ‖ x− x̄ ‖ +c | f(x)− f(x̄) |
and

c ‖ x− x̄ ‖ +c | f(x)− f(x̄) |= c ‖ (x− x̄, f(x)− f(x̄) ‖ ∀x ∈ X.
Thus the above inequalities imply

((x∗,−1), (x− x̄, f(x)− f(x̄)) ≤ c ‖ (x− x̄, f(x)− f(x̄)) ‖ ∀x ∈ X.
This means that ((x∗,−1), c) ∈ N c

epif (x̄, f(x̄)).

2) Suppose that ((x∗, λ), c) ∈ N c
epif (x̄, µ), then we have:

〈(x∗, λ), (x− x̄, u− µ)〉 ≤ c ‖ (x− x̄, u− µ) ‖ ∀(x, u) ∈ epif.
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If we take x = x̄, u = f(x̄) , then

λ(f(x̄)− µ) ≤ c | f(x̄)− µ | .
Therefore

(λ+ c)(f(x̄)− µ) ≤ 0,

and by taking µ ≥ f(x̄), we get λ ≥ −c.

Similarly from

〈(x∗, λ), (x− x̄, u− µ)〉 ≤ c ‖ (x− x̄, u− µ) ‖ ∀(x, u) ∈ epif
and µ = f(x̄) we have:

〈(x∗, λ), (x− x̄, u− f(x̄))〉 ≤ c ‖ (x− x̄, u− f(x̄)) ‖ ∀(x, u) ∈ epif
for arbitrary ε > 0, by taking x = x̄ and u = f(x̄) + ε in the last inequality, we deduce
that

λε ≤ c | ε |,
and so that, λ ≤ c. This completes the proof.
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