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1. Introduction

In this article we study a class of nonlinear hyperbolic equations that one can formulate
in the form (in the case of 1-dimension space)

utt − (f(u)x)x = g(u), (t, x) ∈ R+ × (0, l), l > 0, (1.1)

u(0, x) = u0(x), ut(0, x) = u1(x), u(t, 0) = u(t, l), (1.2)

where u0(x), u1(x) are known functions, f(·), g(·) : R → R are continuous functions and
l > 0 is a number. The equation of type (1.1) describes mathematical model of the prob-
lem from theory of the flow in networks as is affirmed in articles [1–9] (e.g. Aw-Rascle
equations, Antman-Cosserat model, etc.). As in the survey [4] is noted such a study can
find application in accelerating missiles and space crafts, components of high-speed ma-
chinery, manipulator arm, microelectronic mechanical structures, components of bridges
and other structural elements. Balance laws are hyperbolic partial differential equations
that are commonly used to express the fundamental dynamics of open conservative sys-
tems (e.g. [5]). As the survey [4] possess of the sufficiently exact explanations of the
significance of equations of such type therefore we not stop on this theme. It need to note
that most often in these articles in which the being investigated problem descrebe the
hyperbolic equation of second order as mathematical model, then for investigation the
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authors reduce it to the system of equations of first order. As it is explained in the cited
above survey on the mathematical properties of the AntmanCosserat model are similar
to those of the first-order system associated with the nonlinear wave equation.

In this work we use different approach for study of the solvability of the posed problem.
We would like to note that by use of this approach one can investigate of the solvability of
problems for such class of the hyperbolic equations that have of the nonlinear main parts.
Moreover it need to note that in this approach is used the Faedo-Galerkin approximation
method.

This article is organized as follows. In Section 2 we consider the class of the nonlinear
hyperbolic equations of second order of such type that are arisen in the theory of flows
on networks. In Section 3 we investigate the solvability of the considered problems and
in Section 4 the behavior of their solutions.

2. Formulation of Problem and Main Theorem

Consider the following problem

utt − div(f(u)∇u) = g(u), (t, x) ∈ (0, T )× Ω, T ∈ (0,∞), (2.1)

u(0, x) = u0(x), ut = (0, x) = u1(x), u |(0,T )×∂Ω= 0, (2.2)

where Ω ⊂ Rn, n ≥ 1 is a bounded domain with sufficiently smooth boundary ∂Ω, T > 0
is arbitrary fixed number, ∇ ≡ grad, ot = ∂o

∂t , f, g : R → R are a continuous functions
and u0(x), u1(x) are known functions. It is necessary to note the problem (2.1)-(2.2) is
a generalization of the problem (1.1)-(1.2) that studied in the case n ≥ 1, i.e. in the
many-dimensional case. We denote by H of the Lebesgue space L2(Ω) with usual norm

and by H1
0 of Sobolev space W 1,2

0 (Ω) with norm ‖v‖H1
0
≡ ‖∇v‖L2 ≡ ‖∇v‖H , see, e. g.

[10, 11] that are Hilbert spaces. As it is well known Laplace operator −∆ ≡ −divgrad is a
self-adjoint, positive operator densely defined in a Hilbert space H and on H1

0 moreover,
∆ : H1

0 → H−1, where H−1 is the dual to H1
0 . Here we will use some properties of

Laplace operator for study of the posed problem.
Assume that in what follows the following condition is fulfilled:
(i) f(·) is such function that the following function

F (r) =

∫ r

0

f(s)ds, r > 0

is a monotone function, r be a number.
In the other words we will understud the solution of this problem in the following sense

Definition 2.1. A function

u ∈ C0(0, T ;Lp(Ω)), ut ∈ L∞(0, T ;H)

is called a very weak solution of the problem (2.1)-(2.2) if u satisfies the following equation

〈utt −∆F (u), v〉 = 〈g(u), v〉 (2.3)

locally by a. e. t ∈ (0, T ) for any v ∈ W 2,p(Ω)
⋂
H1

0 (Ω), u(t) and ut(t) are weakly
continuous on [0, T ] in the sense of the appropriate spaces.



Existence and Behavior of Solution of Some Nonlinear Equation ... 1603

It need to note the expression 〈o, o〉 denotes the following:

〈v, w〉 =

∫
Ω

v(x) · w(x)dx

for the appropriate functions v ∈ X,w ∈ X∗, where X is Banach space and X∗ is the
dual space of X.

Consider the following conditions
1) Let f, g : R → R are a continuous functions and there are a numbers a0, b0, d >

0, a1, b1 ≥ 0 and p > 2, 0 ≤ 2p0 ≤ p such that the following inequations

| F (r) |≤ a0 | r |p−1 +a1 | r |; F (r) · r ≥ b0 | r |p +b1r
2; | g(r) |≤ d | r |P0 ,

hold for any r ∈ R, moreover g is continuous function (for example, f(r) = k0 | r |p−2

−k1 | r |p1 +k2, k2 > 0, k1, k2 ≥ 0, 0 ≤ p1 < p − 2, moreover k1 = k1(k0, k2) and
g(r) = d | r |p0 .

2) Let the function g : R → R is the Lipschitz function, i.e. there exists such number
d0 > 0 that the following inequality

| g(r)− g(s) |≤ d0 | r − s | (2.4)

holds for any r, s ∈ R.
We can formulate the main theorem on the solvability of the considered problem in

the following form.

Theorem 2.2. (Main Theorem) Let functions F and g satisfy Condition 1 (F is defined
in (i) by f), function g also satisfies Condition 2. Then if u0 ∈ H1

0

⋂
W 1,p(Ω), u1 ∈ Lp(Ω)

then the problem (2.1)–(2.2) possess a very weak solution u(t, x) in the sense of Definition
2.1.

3. Preliminary Results And Approach

It is well known ([10, 12–14]) that under the conditions of this problem the following
problem

−∆v = w, x ∈ Ω ⊂ Rn, v |(0,T )×∂Ω= 0 (3.1)

is solvable for any w ∈ Lp(Ω), p > 1 and has unique solution in W 2,p(Ω)
⋂
W 1,p

0 (Ω), i.e.

the operator −∆ : W 2,p(Ω)
⋂
W 1,p

0 (Ω) → Lp(Ω) is the isomorphism. Consequently if to
set the denotation u ≡ −∆v then of the posed problem one can rewrite in the form

−∆vtt −∇ · (f(−∆v)∇(−∆v)) = g(−∆v), (t, x) ∈ (0, T )× Ω,

or
−∆vtt −∆F (−∆v) = g(−∆v), (t, x) ∈ (0, T )× Ω,

−∆v(0, x) = u0(x), −∆vt(0, x) = u1(x), u |(0,T )×∂Ω= 0.

We will study the solvability of the posed problem in very weak sense therefore for this
aim we will use the following approach. Consider the following dual form for the equation
(2.1) [

utt −∆F (u), (−∆)−1ut
]

=
[
g(u), (−∆)−1ut

]
, (3.2)

where the expression [o, o] denotes the following:

[o, o] =

∫ t

0

〈o, o〉ds
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for functions v(t, x), w(t, x) from the appropriate spaces. It is need to note that here we
will use the approach, which we used in the article [15] for study of the differential-operator
problem in the Banach space.

So from the equation (3.2) we get

1

2

d

dt
‖∇vt‖22 +

d

dt
Φ(−∆v) = 〈g(−∆v), vt〉

here Φ is a nonnegative functional and Φ(u) =
∫ 1

0
〈F (su), u〉ds.

If to bear in mind of these conditions and Condition 1 we get

1

2

d

dt
‖∇vt‖22 +

d

dt
Φ(−∆v) ≤ 1

2
‖vt‖22 +

1

2
‖g(−∆v)‖22(t) ≤ c

[
1

2
‖∇vtt‖22 + Φ(−∆v)

]
+ d̂,

here c > 0, d̂ ≥ 0 are constants that independent of v. Hence follows

‖∇vt‖22(t) + 2Φ(−∆v)(t) ≤ ect
[
‖∇v1‖22 + 2Φ(u0

]
+
d̂

c
(ect − 1).

by virtue of the Gronwalls lemma. Thus we obtain

Lemma 3.1. Let the condition 1 is fulfilled then each solution of the problem (2.1)–(2.2)
satisfy the following inequalities

‖∇vt‖22(t) ≤ ecT
[
‖∇v1‖22 + 2Φ(u0)

]
+
d̂

c
(ecT − 1) (3.3)

Φ(−∆v)(t) ≤ ecT
[
‖∇v1‖22 + 2Φ(u0)

]
+
d̂

c
(ecT − 1)

for every fixed T ∈ (0,∞).

Consequently, from the estimates (3.3) implies that the following a priori estima

vt ∈ L∞(0, T ;H1
0 ), u ∈ L∞(0, T ;Lp(Ω))⇒ v ∈ L∞(0, T ;W 2,p(Ω))

hold, moreover v belong to bounded subset of these spaces, by virtue of Condition 1.

Remark 3.2. It not is difficult to see that if d̂ = 0 then occurs the inequation

‖∇vt‖22(t) + 2Φ(u)(t) ≤ ecT
[
‖∇v1‖22 + 2Φ(u0)

]
for a. e. t ∈ (0, T ].

4. Proof of Main Theorem

Proof. (of Main Theorem) For the proof of the solvability of the problem (2.1)-(2.2) we
will use the Faedo-Galerkin approximation method.

Let the system U ≡ {wj(x)}∞j=1 be a total system of the space

W 2,p(Ω)
⋂
H1

0 (Ω)

where wj(x) be the sufficiently smooth functions. Let functions v0 ∈ H1
0

⋂
W 2,p(Ω), v1 ∈

H1
0

⋂
W 1,p(Ω) that satisfy equations: −∆vk = uk, k = 0, 1.

We will seek out of the approximative solutions um(t, x) in the form

(−∆)−1um(t, x) = vm(t, x) =

m∑
i=1

ci(t)wi(x) or um(t) ∈ span{w1, . . . , wm}
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as the solutions of the considered problem, where ci(t) are as the unknown functions that
will be defined as solutions of the following Cauchy problem for system of ODE

d2

dt2
〈um, wj〉 − 〈F (um),∆wj〉 = 〈g(um), wj〉, j = 1, 2, . . . ,m (4.1)

um(0, x) = u0m(x), utm(0, x) = u1m(x),

where u0m and u1m are contained in span{w1, . . . , wm}, m = 1, 2, . . ., moreover u0m → u0

in H1
0

⋂
W 1,p(Ω); u1m → u1 in H

⋂
Lp(Ω) at m↗∞.

Remark 4.1. We would like to note that if to take into account of the inequation (2.4)
and carry out above mentioned calculations then for approximative solutions um(t, x)
we obtain a priori estimates of same type as the estimates in (3.3) (with appropriate
coefficients).

Thus we obtain the following problem

d2

dt2
〈um, wj〉 = 〈F (um),∆wj〉+ 〈g(um), wj〉, j = 1, 2, . . . ,m (4.2)

〈um(t, x), wj〉 |t=0= 〈u0m(x), wj〉,
d

dt
〈um(t, x), wj〉 |t=0= 〈u1m(x), wj〉

that, as it is well-known, is solvable locally with respect to t.
Moreover, this problem is solvable on (0, T ] for any m = 1, 2, . . . and T > 0 by virtue

of the estimates (3.3). Consequently, with use of the known procedure ([14, 16–18])
we obtain, ∇vmt ∈ L∞(0, T ;H),∇vm ∈ L∞(0, T ;Lp(Ω)). Hence follows that um ∈
L∞(0, T ;Lp(Ω)), umt ∈ L∞(0, T ;H−1(Ω)), moreover they are contained in a bounded
subset of these spaces by definition of vm(t). In the other hand, since um(t), (vm(t))
is the solution of the system of ODEs and F, g are continuous, therefore the following
inclusions

∇vmt ∈ C0(0, T ;H(Ω)),∆vm ∈ C0(0, T ;Lp(Ω))

and

umt ∈ C0(0, T ;H−1(Ω)), um ∈ C0(0, T ;Lp(Ω))

hold1.

Thus from (4.2) we get

umtt ∈ C0
(

0, T ;
(
W 2,p(Ω)

⋂
W 1,p

0 (Ω)
)∗

+H−1(Ω)
)
.

So, for the sequence of the approximate solutions we have: {um}∞m=1 is contained in a
bounded subset of the space2

C0(0, T ;Lp(Ω))
⋂
C2(0, T ;W−2,q(Ω) +H−1(Ω))

and the sequence {vm}∞m=1 is contained in a bounded subset of the space

C0
(

0, T ;W 2,p(Ω)
⋂
H1

0 (Ω)
)⋂

C1(0, T ;H1
0 (Ω))

⋂
C2(0, T ;Lq(Ω))

1Hence follows that um and ∆um are weak continuous over t with respect to the appropriate spaces, e.g.

〈um(t), ω〉 is continuous for any w ∈ Lp(Ω).
2Since one can easily see that all arguments which were reduced here for n ≥ 3 are correct for cases

n = 1, 2 therefore we will not consider here of these cases separately.
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Then the sequence {vm}∞m=1 has a precompact subset in the space

C1
(

0, t;
[
W 2,p(Ω), Lq(Ω)

]
1
2

)
,

by virtue of the known interpolation theorems (see, [11]), and consequently, in the space
C1(0, T ;H1

0 (Ω)) since the imbedding
[
W 2,p(Ω), Lq(Ω)

]
1
2

⊆ H1(Ω) holds.

Thus for us is remained to show the following: if the sequence

{um}∞m=1 ⊂ C0 (0, T ;Lp(Ω))
⋂
C2(0, T ;W−2,q(Ω) +H−1(Ω)

is weakly converging to u in this space and {F (um)}∞m=1 and {g(um)}∞m=1 have an weakly

converging subsequence to η in H and to θ in Lq(Ω)
(
q = p

p−1

)
respectively, for a. e.

t ∈ (0, T ) then η = F (u) and θ = g(u). (Here and in what follows for brevity we dont
changing of indexes of subsequences.)

In the beginning we will show the equation θ = g(u). Let the sequence {um}∞m=1 is
such as above mentioned and −∆vm = um. The for the operator

g : C0 (0, T ;Lp(Ω)) ⊂ C0(0, T ;H)→ C0(0, T ;H)

we have

〈g(um), wj)〉 → 〈θ, wj〉 for∀j : j = 1, 2, . . .

and also

〈g(um), z)〉 → 〈θ, z〉 for∀z ∈W 2,p(Ω) ⊂ H(Ω),

according to the condition (2.4).
Therefore, we consider the expression 〈g(um), vm)〉 under the assumption that um ⇀ u

in Lp(Ω) ⊂ H and vm → v in H1(Ω) and g(um) ⇀ θ in the corresponding spaces. In order
to prove that 〈g(um), vm)〉 is the Cauchy sequence we carry out the following estimations

‖〈g(um), vm〉 − 〈g(um+k), vm+k〉‖ ≤ ‖〈g(um)− g(um+k), vm〉‖+

‖〈g(um+k), vm − vm+k〉‖ ≤ 〈‖g(um)− g(um+k)‖ , ‖vm‖〉+
‖〈g(um+k), vm − vm+k〉‖ ≤ d0〈‖um − um+k‖ , ‖vm‖〉+ ‖〈g(um+k), vm − vm+k〉‖

(4.3)

that shows the correctness of this statement since the right side converge to zero with
respect to m ↗ ∞. If to take account of the above assumpsion we can conduct the
estimation of such type (4.3) for the expression ‖〈g(um), vm〉 − 〈g(u), v〉‖, as g(u) is de-
fined, then we obtain that equation θ = g(u) holds, i.e. g(um) ⇀ g(u) in H. In order to
show the equation η = F (u) we will use the monotonicity condition of F , i. e. for any
v, w ∈ C0

(
0, T ;W 2,p(Ω)

)⋂
C2 (0, T ;Lp(Ω)) occurs the following inequation

〈−∆F (−∆v) + ∆F (−∆ṽ), v − ṽ〉 ≥ 0

and if rewrite it for um = −∆vm and ũ = −∆ṽ then we have

〈(F (um − F (ũ)) , um − ũ〉 ≥ 0.

It is not difficult to see that the following convergence takes

d

dt
〈umt, wj〉 − 〈∆F (um), wj〉 − 〈g(um), wj〉 →

d

dt
〈ut, wj〉 − 〈∆η, wj〉 − 〈θ, wj〉, ∀wj
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then

d2

dt2
〈u,w〉 − 〈∆η, w〉 = 〈g(u), w〉, ∀w ∈ H1

0

⋂
W 2,p(Ω) (4.4)

for a. e. t ∈ (0, T ) by virtue of the obtained above equation θ = g(u). Consequently,

utt −∆η = g(u), in the sense of H−1 +W−2,q(Ω)

for a. e. t ∈ (0, T ).
Let us apply monotonicity of F

0 ≤ 〈F (um)− F (ũ), um − ũ〉 = −〈∆F (um) + ∆F (ũ), vm − ṽ〉 =

−〈∆F (um), vm〉+ 〈∆F (um), ṽ〉+ 〈∆F (ũ), vm − ṽ〉 =

(where ũ = −∆ṽ, ṽ ∈ H1
0

⋂
W 2,p(Ω)) by use here the equation (4.2) we get

〈−g(um +
∂2

∂t2
um, ṽ〉 − 〈∆F (um), vm〉+ 〈∆F (ũ, vm − v)〉 =

−〈g(um), ṽ〉+
∂2

∂t2
〈um, ṽ〉+ 〈F (um), um〉+ 〈∆F (ũ, vm − ṽ)〉 ⇒

whence we obtain

0 ≤ 〈g(u), ṽ〉+
d2

dt2
〈u, ṽ〉+ 〈F (um), ũm〉+ 〈∆F (ũ), v − ṽ〉 (4.5)

If pass to the limit with respect to m : m↗∞ in the inequation (4.5) and to take into
account the following known inequation∫

Ω

lim inf (F (um)um) dx ≤ 〈η, u〉

(by the Fatous lemma, more exactly∫
Ω

lim inf (F (−∆vm)(−∆vm)) dx ≤ 〈η, u〉,

since 〈−∆F (um), vm〉 = 〈F (−∆vm),−∆vm〉 ) then with use of the equation (4.4) we get

0 ≤ −〈g(u), ṽ〉+
d2

ds2
〈∆v, ṽ〉 − 〈∆η, v〉+ 〈∆F (ũ, v − ṽ〉 =

〈−∆η, v − ṽ〉 − 〈−∆F (ũ), v − ṽ〉 = 〈η − F (ũ), u− ũ〉.
Hence we obtain the correctness of the equation η = F (u) by virtue of arbitrariness of

ũ = −∆ṽ. So, we proved that limiting function u(t, x) satisfies of the equation (2.3) in
the sense of Definition 2.1 from the section 2. Now we will show that the function u(t, x)
satisfies of the initial conditions and for this we will consider the following equation

〈umt, vm〉(t) =

∫ t

0

〈umss, vm〉ds+

∫ t

0

〈ums, vms〉ds+ 〈u1m, v0m〉

for t ∈ (0, T ] and um = −∆vm, that is equivalent to the equation

〈∇vmt,∇vm〉(t) =

∫ t

0

〈vmss, um〉ds+

∫ t

0

〈∇vms,∇vms〉ds+ 〈∇v1m,∇v0m〉 (4.6)
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which takes place for each m = 1, 2, . . .. From obtained a priory estimations follow the
boundedness of the right side of (4.6), consequently we get the boundedness of the left
side of (4.6) any t ∈ (0, T ]. Therefore, one can pass to the limit by t→ 0 by virtue of the
a priory estimations. Really since

{vm}∞m=1 ∈ C
0
(
0, T ;W 2,p(Ω)

)⋂
C2 (0, T ;Lq(Ω))

and is bounded in this space we get: the right side is bounded as all terms in the left
side are bounded in respective spaces, therefore one can pass to limit with respect to m
as here vmt are continous with respect to t for any m then vmt strongly converges to vt
in H and ∆vm weakly converges to ∆v in Lp(Ω). Consequently, we obtain the following
equation

〈u, v〉(t) =

∫ t

0

〈vss, u〉ds+

∫ t

0

〈∇vs,∇vs〉ds+ 〈v1, v0〉

for, at least, a. e. t ∈ (0, T ), by virtue of the previous part of theis proof and the our
assumption on the sequences {v0m}∞m=1 , {v1m}∞m=1.

Thus the main theorem completely proved.

Remark 4.2. In particular, from here follows, the solvability of the following nonlinear
equation with the mixed condition such as above, which not were studied earlier

utt −
n∑

i=1

∂

∂xi

(
| u |p−2 ∂u

∂xi

)
= h(t, x), p > 2.

Remark 4.3. It should be noted that by using (3.1) one can reformulate of the considered
problem in the following form: let g(u) ≡ h(t, x) is given function

−∆ (vtt + F (−∆v)) = g(t, x) ≡ −∆g̃, (t, x) ∈ (0, T )× Ω,

−∆v(0, x) = u0(x) = −∆v0(x),

−∆vt(0, x) = u1(x) = −∆v1(x),∆v |(0,T )×∂Ω= 0.

In the other words we get

−∆ (vtt + F (−∆v)− g̃) = 0, (t, x) ∈ (0, T )× Ω (4.7)

hence one can obtain the following equivalent problem if F is the homogeneous operator

vtt + F (−∆v) = g̃, (t, x) ∈ (0, T )× Ω,

v(0, x) = v0(x), vt(0, x) = v1(x), v | (0, T )× ∂Ω = 0

since if the equation (4.7) possess a solution then the expression vtt +F (−∆v)− g̃ is a
harmonic function for each t and also satisfies the homogeneous boundary condition. In
this case we get, that the considered problem is equivalent to the problem

vtt + F (−∆v) = g̃(t, x)

with the mixed conditions of such type as above.
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5. Behavior of Solution of Problem (2.1)-(2.2)

Now we will investigate of the behavior of the solutions of the problem (2.1)-(2.2) under
the following assumption:
g satisfies inequation | g(r) |2≤ d1Φ(r) for any r ∈ R, where d1 > 0. So, we will study

the behavior of solution under t↗∞ of the problem

utt −∆F (u) = g(u), (t, x) ∈ R+ × Ω,

u(0, x) = u0(x), ut(0, x) = u1(x), u |R+×∂Ω= 0

for which behaving as above we get the equation

‖∇vt‖22 (t) + 2Φ(−∆v)(t) = ‖∇v1‖22 + 2Φ(−∆v0) + 2〈g(u), vt〉. (5.1)

Remark 5.1. It not is difficult to see that if g(u) ≡ 0 then the equation (5.1) give
we the energy functional that remain constant for ∀t > 0, i.e. the energy functional is
independent of t > 0.

From (5.1) ensue the following inequality

‖∇vt‖22 (t) + 2Φ(u)(t) ≤ ‖∇v1‖22 + 2Φ(u0) +

∫ t

0

[
‖∇vs‖22 + ‖g(u)‖22

]
(s)ds

then using the condition on g(u) we have

‖∇vt‖22 (t) + 2Φ(u)(t) ≤ ‖∇v1‖22 + 2Φ(u0 + d̃

∫ t

0

[
‖∇vs‖22 + 2Φ(u)

]
(s)ds

Hence follows

‖∇vt‖22 (t) ≤ 1

d̃

[
ed̃t
(

1 + d̃
)
− 1
] (
‖∇v1‖22 + 2Φ(u0)

)
− 2Φ(u)(t) (5.2)

Introduce the function E(t) = ‖∇w‖2H (t) and consider this function on the solution of
the problem (2.1)-(2.2).

For the derivative of functional E(t) = ‖∇v‖22 (t) we get

Et(t) = 2〈∇vt,∇v〉 ≤ ‖∇vt‖22 (t) + ‖∇v‖22 (t)

using here the inequation (5.2)

Et(t) ≤ E(t)− 2Φ(u)(t) +
1

d̃

[
ed̃t(1+d̃) − 1

] (
‖∇v1‖22 + 2Φ(u0)

)
Hence using the condition on F (consequently, on Φ)

Et(t) ≤ E(t)− c ‖−∆v‖p (t) +
1

d̃

[
ed̃t(1+d̃) − 1

] (
‖∇v1‖22 + 2Φ(u0)

)
≤

E(t)− cE
p
2 (t) +

1

d̃

[
ed̃t(1+d̃) − 1

] (
‖∇v1‖22 (0) + 2Φ(−∆v0)

)
⇒

and at last we get

Et(t) ≤ E(t)− cE
p
2 (t) + C1(v0, v1)ed̃t − C2(v0, v1),

by virtue of the condition Φ(r) ≥ c0 | r |p and of the continuity of embeddings Lp(Ω) ⊂
L2(Ω),W 2,p(Ω) ⊂W 1,p(Ω), where Cj(v0, v1) > 0 (j = 1, 2) are constants.
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So, we obtain the Cauchy problem for differential inequality

yt(t) ≤ y(t)− cyr(t) + C1e
d̃t − C2, y(0) = ‖∇v0‖22 (5.3)

where r = p/2. One can replace the problem (5.3) with the following problem in order
to investigate of the behaviour of the solution of considered problem

yt(t) ≤ y(t)− cyr(t) + C1e
d̃T − C2, y(0) = ‖∇v0‖22

since d̃ > 0. The inequation (5.3) one can rewrite in the form

(y(t) + lC(v0, v1))t ≤ y(t) + lC(v0, v1)− ε [y(t) + lC(v0, v1)]
r
,

where l > 1 is a number, ε = ε(c, C, l, r) > 0 is sufficiently small number and C =

C(d̃, T, C1, C2) is a constant.
Then solving this problem we get

y(t) + lC(v0, v1) ≤
[
e(1−r)t (∇y0 + lC(v0, v1))

1−r
+ ε

(
1− e(1−r)t

)] 1
1−r

or

E(t) ≤
[
e(1−r)t

(
〈∇v0〉2H + lC(v0, v1)

)1−r
+ ε

(
1− e(1−r)t

)] 1
1−r − lC(v0, v1)

〈∇v0〉2H(t) ≤
et
(
〈∇v0〉2H + lC(v0, v1)

)[
1 + ε (〈∇v0〉2H + lC(v0, v1))

r−1 (
e(r−1)t − 1

)] 1
r−1

− lC(v0, v1)

(5.4)

here the right side is greater than zero, because ε ≤ l−1
lrCr and 2r = p > 2. It is

necessary to note the dependence of the behavior of the solution at T is essentially, this
follows from the last inequation. It should be noted that if we (roughly) simplify of the
inequation (5.4) then it one can rewrite in the following form

‖∇v‖2H (t) ≤ eT
(
‖∇v0‖2H + lC(v0, v1)

)
− lC(v0, v1).

Thus is proved the result

Theorem 5.2. Let u0 ∈ H1
0

⋂
W 1,p(Ω), u1 ∈ Lp(Ω) and the appropriate functions v0 ∈

H1
0

⋂
W 2,p(Ω), v1 ∈ H1

0

⋂
W 1,p(Ω) satisfy equations −∆vk = uk, k = 0, 1. Then function

v(t, x), defined by the solution u(t, x) of the problem (2.1)–(2.2), for any t ∈ (0, T ) belong

to ball B
H1

0

⋂
W 1,p(Ω)

RT
(0) ⊂ H1

0

⋂
W 1,p(Ω) depending from (v0, v1), consequently from the

inital values u0, u1 ∈ H1
0

⋂
W 1,p(Ω)× Lp(Ω), here RT = RT (u0, u1, p, T ) > 0
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