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1. INTRODUCTION

Czerwik in [1] introduced the concept of b-metric space. Since then, several papers deal
with fixed point theory for single-valued and multivalued operators in b-metric spaces have
been established (see also [2-5] ). Pacurar [(] obtained some results on sequences of almost
contractions and about their fixed points in b-metric spaces. Recently, Hussain and Shah
[7] presented new results on KKM mappings in cone b-metric spaces.

Very recently Aghajani and et al. in [8] proved some common fixed point theorems in
b-meric space and presented some basic property of this spaces. Also in [9] the authors
generalized the concept of G-metric space and introduced the concept of G-metric space.
Furthermore they have proved some fixed point result in such spaces.

The aim of this paper is to present some common fixed point result for two mappings
considering b-simulation functions in b-metric space. The results obtained in this paper
generalize and extend several ones obtained earlier in a lot of papers concerning metric
space such as [10-14].

Consistent with [1] and [5, p. 264], the following definition and results will be needed
in the sequel.
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2. PRELIMINARIES

Definition 2.1 ([1]). Let X be a nonempty set and b > 1 be a given real number. A
function d : X x X — Rt is said to be a b-metric on X if, for all z,y, 2z € X, the following
conditions are satisfied:

(bl) d(z,y) =0iff x =y,

(b2) d('r7 y) = d(yv l‘),

(b3) d(z,2) < bld(z,y) + d(y, z)].

In this case, the triplet (X, d,b) is called a b-metric space.
It should be noted that, the class of b-metric spaces is effectively larger than that of
metric spaces, since a b-metric is a metric when b = 1.

Singh and et al. [5, p. 264] presented an example shows that a b-metric on a nonempty
set X need not be a metric on X.

Example 2.2 ([8]). Let (X,d) be a metric space, and p(x,y) = (d(z,y))?, where p > 1
is a real number. Then p is a b-metric with b = 2P~1. Obviously conditions (b1) and (b2)
of Definition 2.1 are satisfied. If 1 < p < 0o, then the convexity of the function f(z) = z?
(z > 0) implies

o -y
and hence, (a + b)” < 2P71(a? + bP) holds. Thus for each z,y,2 € X we obtain
(d(z,y))?

[d(z, 2) +d(z,y)]

2071 [(d(z, 2))P + (d(2,9))"]
2" p(x, 2) + p(2,y))-

So condition (b3) of Definition 2.1 is hold and so p is a b-metric.

p(x,y)

IAIA

It should be noted that in preceding example, if (X, d) is a metric space, then (X, p)
is not necessarily a metric space.

For example, if X = R be the set of real numbers and d(z,y) = |z — y| be the usual
Euclidean metric, then p(z,y) = (z — y)? is a b-metric on R with b = 2, but is not a
metric on R, because the triangle inequality does not hold.

Example 2.3 ([15]). Let X be a nonempty set, Cp(X) = {f : X = R : ||fllec =
sup,ex | f(x)] < oo} and let ||f|| = /||f3|/cc- Then the function d : Cy(X) x Cy(X) —
[0,00) defined by

d(fag) = ||f _g” for all fvg € Cb(X)
is a b-metric with constant b = /4 and so (Cy(X),d, v/4) is a b-metric space.

Before stating and proving our results, we present some definition and proposition in
b-metric space. We recall first the notions of convergence, closedness and completeness in
a b-metric space.

Definition 2.4 ([4]). Let (X,d,b) be a b-metric space. Then a sequence {z,} in X is
called:
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(a) convergent if and only if there exists € X such that d(x,,2z) — 0 as n — oo.
In this case, we write lim,,_ o T, = .
(b) Cauchy if and only if d(z,,, ;) — 0 as n,m — oc.

A b-metric space (X,d,b) is complete if every Cauchy sequence in X is convergent.

Proposition 2.5 ([1], Remark 2.1). In a b-metric space (X,d,b) the following assertions
hold:

(i) a convergent sequence has a unique limit,
(ii) each convergent sequence is Cauchy,
(iti) in general, a b-metric is not continuous.

Definition 2.6 ([16]). Let (X,d,b) be a b-metric space and f, g be two self mappings of
X. Then the pair {f, g} is said to be compatible if and only if lim,,_, oo d(fg@n, gfz,) = 0,
whenever {z,} is a sequence in X such that lim, o f2, = lim,_, gz, = t for some
te X.

Remark 2.7. Let (X,d,b) be a b-metric space. If there exists two sequences {z,}
and {y,} such that lim, . d(2,,y,) = 0, then we can not necessarily conclude that
lim,, s oo T = limy, 00 Yn, because in general, a b-metric function may not be continuous.
Even it is possible that there is no limit. For example, let X = R and d(x,y) = (z — y)?

1
and z, = (-1)" and y, = (-1)" +—.
n

Lemma 2.8. Let (X,d,b) be a b-metric space. If there exists two sequences {x,} and
{yn} such that lim, o d(zn,y,) = 0, whenever {x,} is a sequence in X such that
lim,, o0 xp, =1t for somet € X, then lim, oo yn = t.

Demmaa and et al. [15] gave the definition of b-simulation function in the setting of
b-metric space as follows:

Definition 2.9. Let (X,d,b) be a b-metric space. A b-simulation function is a function
£ :10,00) x [0,00) — R satistying the following conditions:

(&1) &(t,s) < s—t, forallt,s >0,

(&) if {t,}, {sn} are sequences in (0, 00) such that

0 < lim ¢, <liminfs, < limsups, < b lim t, < oo,
n—oo n—oo n—oo n— oo

then
lim sup€ (bt,,, s,,) < 0.

n—oQ

Following are some examples of b-simulation functions (see [15]).

Example 2.10. Let £ : [0,00) x [0,00) — R, be defined by
o {(t,s) =As—t for all t,s € [0,00), where A € [0, 1).
o £(t,s) = ¥(s) — p(t) for all t,s € [0,00), where p,9 : [0,00) — [0,00) are
two continuous functions such that (t) = ¢(t) = 0 if and only if ¢ = 0 and
P(t) <t < (t) for all t > 0.
o £(t,s) = sﬁéfiit for all ¢,s € [0,00), where f,g :[0,00) x [0,00) = (0,00) are
two continuous functions with respect to each variable such that f(¢,s) > g(t, s)
for all £,s > 0.
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o £(t,s) =s—p(s)—tforall t,s € [0,00), where ¢ : [0,00) — [0,00) is a lower
semi-continuous function such that ¢(¢) = 0 if and only if ¢ = 0.

o ((t,s) = sp(s) —t for all ¢t,s € [0,00), where ¢ : [0,00) — [0,00) is such
that lim ¢(¢) < 1 for all > 0.

t—rt

Definition 2.11. The self-mapping f of a b-metric space (X,d,b) is said to be b-
continuous at z € X if and only if it is b-sequentially continuous at z, that is, whenever
{zn} is b-convergent to z, {f(x,)} is b-convergent to f(x).

3. FIXED POINTS VIA b-SIMULATION FUNCTIONS
The following lemmas, are needed to establish the main result.

Lemma 3.1. Let (X,d,b) be a b-metric space and let f,g : X — X be two mappings.
Suppose that f(X) C g(X) and there exists a b-simulation function & such that

§(bd(fz, fy), d(gz,gy)) 2 0 for all z,y € X. (3.1)
Then there exists a sequence {y,} in X such that lim d(yn—1,yn) = 0.
n— oo

Proof. Let xp € X be arbitrary. Since f(X) C ¢g(X), we can construct two sequences
{z,} and {y,} such that y, = f(z,) = g(xn+1) for every n € N. If there exists ng € N
such that yn, = Yn,+1, then it follows from (3.1) and (&;) that for all n € N
0 S g(bd(fxn0+17f‘r’ﬂ()JrQ)?d(gxno+17gmno+2))

Ebd(Yno+15Yno+2)> A(Yno» Ynoyr))

< d(ynov yn0+1) - bd(yno-‘rla yn0+2)-
Since d(Yng, Yno+1) = 0, the above inequality shows that d(yng+1,Yne+2) = 0, therefore
Ynot1 = Yno+2: THUS, Yng = Ynot1 = Yng+2 = -+ -, which implies that lim d(yn-1,yn) =
0. Now, suppose that y, # yn+1 for all n € N. Then, it follows from (3.1) and (&;) that
for all n € N, we have

0 < &d(frn, frni1), d(gTn, 9Tni1))
= &£(bd(Yn, Yn+1), d(Yn—1,Yn))
< d(Yn—1,Yn) = bd(Yn, Yn+1)-
The above inequality shows that
bd(Yn; Ynt1) < d(Yn—1,yn), for all n € N,

which implies that {d(yn—1,yn)} is a decreasing sequence of positive real numbers. So
there is some r > 0 such that lim d(y,—1,y,) = 7. Suppose that r > 0. It follows from
n— oo

the condition (&3), with ¢, = d(yn, Yn+1) and 8, = d(Yn—1,Yn), that
0 S lim Supg(bd(ynv yn+1)7 d(ynfla yn)) < 07
n— oo

which is a contradiction. Then we conclude that r» = 0, which ends the proof. [

Remark 3.2. Let (X,d,b) be a b-metric space and let f,g: X — X be two mappings.
Suppose that f(X) C g(X) and there exists a b-simulation function £ such that (3.1)
holds. Then there exists a sequence {y,} in X, such that dd(ym, yn) < d(Ym-1,yn—1) for
all m,n € N.
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Proof. By a similar argument of Lemma 3.1 for every n € N we have y,, = f(2,) =g(Tn+1)-
Hence, it follows from (3.1) and (&1) that for all m,n € N, we have

0 < &bd(frm, frn),d(gTm, g7n))
= &(bd(Ym: Yn) A(Ym—1,Yn—1))
< dYm—15Yn—1) = bd(Ym, Yn)-

The above inequality shows that
bd(Yms Yn) < d(Ym—1,Yn—1), for all m;n € N.

Lemma 3.3. Let (X,d,b) be a b-metric space and let f,g : X — X be two mappings.
Suppose that f(X) C g(X) and there exists a b-simulation function & such that (3.1)
holds. Then there exists a sequence {y,} in X, such that {y,} is bounded sequence.

Proof. By a similar argument of Lemma 3.1 for every n € N we have y, = f(z,) =
g(xp41). If there exists ng € N such that yn, = yn,4+1, we have d(y;,y;) < M for all
1,7 =0,1,2,--- , where

M = max{d(y;,y;) : i,j < no}.
Let us assume that y,, # y,+1 for all n € N and suppose {y, } is not a bounded sequence.

Then, there exists a subsequence {y,, } of {yn} such that for n; =1 and for each k € N,
Ngt1 is the minimum integer such that d(yn, +1,yn, ) > 1 and

A(Yms Yn,,) < Mor ng, <m < ngyq — 1.
By the triangle inequality, we obtain
I < d(YnpsrsTny)
< bAYnpy s Yriya—1) +0d(Yny—15Yny)
< bd(Ynyors Ynpor—1) + 0.
Letting k — oo in the above inequality and using Lemma 3.1, we get

1 <liminfd(yn,,,, Yn,) < Hmsupd(Yn, s Yn,) < 0. (3.2)
k—o0 k—o00
Again, from Remark 3.2, we have

d(y"k+1—1? ynk—l)
bd(Ynysr—15Yni) £ 0d(Yny> Yy —1)
b+ bd(Yn,,, Yni—1)
Letting k — oo in the above inequality and using (3.2), we deduce that

bd(ynk+1 9 ynk)

IAINCIA

i d(yn s Y, ) = land im d(yn, -1, Yn.—1) = b-
Then by condition (&), with tx = d(yn,,sYn,,) and sx = d(Yn,1 1, Yn,—1), We obtain
0 S hm Supg(bd(ynkH ) ynk)a d(y’nk+1—1; ynk—l) < Oa

k— o0

which is a contradiction. This ends the proof. L]

Lemma 3.4. Let (X,d,b) be a b-metric space and let f,g : X — X be two mappings.
Suppose that f(X) C g(X) and there exists a b-simulation function £ such that (3.1)
holds. Then there exists a sequence {yn} in X, such that {y,} is a Cauchy sequence.
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Proof. By a similar argument of Lemma 3.1 for every n € N we have y, = f(z,) =
9(Xp41). If there exists ng € N such that y,, = Yn,+1, then we have {y,} is a Cauchy
sequence. Let us assume that y,, # yn+1 for all n € N and let

Cn = Sup{d(yivyj) : Za] > n}

From Lemma 3.3, we know that C,, < oo for every n € N. Since {C,} is a positive
decreasing sequence, there is some C' > 0 such that

lim C,, = C. (3.3)

n—oo

Let us suppose that C > 0. By the definition of {C,}, for every k € N, there exists
ng, mp € N such that my > n, > k and

1
Letting kK — oo in the above inequality, we get
—00
Again, from Remark 3.2 and the definition of {C),}, we deduce

bd(ym;wynk) < d(ymk—lvynk—l) < Ck—l'
Letting k — oo in the above inequality, using (3.3) and (3.4), we get
bC S hkn_kg;fd(ymk—lynk—l) S lim Supd(ymk717ynk—1) S C (35)

k— o0

Now, if b > 1, the previous inequality implies a contradiction since C' > 0. If b = 1, by
the condition (&3), with ty = d(Ym,, Yn,) and sx = d(Ymy_ys Yns_y ), We get

0 < limsup& (bd(Ym,» Yny ) A(Ymy—15 Yny—1)) < 0,

k—o0

which is a contradiction. Thus we have C = 0, that is,

lim C,, =0 for all b > 1.

n—oo

This proves that {y,} is a Cauchy sequence. m
Now, we present our main result.

Theorem 3.5. Let (X,d,b) be a complete b-metric space, f,g: X — X be two mappings
with f(X) C g(X) and the pair {f,g} is compatible. Suppose that there exists a b-
stmulation function € such that (3.1) holds, that is,

§(bd(fx, fy), d(gz, gy)) = 0, for all x,y € X.

If g is continuous, then f and g have a coincidence point, that is, there exists y € X such
that f(y) = g(y). Moreover, if g is one to one, then f and g have unique common fized
point.

Proof. Let z9 € X, since f(X) C g(X), hence for every n € N we have y,, = f(z,,) =
9(Zn11). Now, by Lemma 3.4, the sequence {y,, } is Cauchy and since (X, d,b) is complete,
then there exists some y € X such that lim,,_, y, = y. That is,

y= lim y, = lim f(z,) = lim g(zn). (3.6)
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We claim that y is a coincidence point of f,g. Since, g is continuous, hence we have
Jim gf(zn) = lim gg(zn) = g(y)-

Also, since {f, g} is compatible, we have lim, . d(fg(x,),9f(x»)) = 0. Hence, by
Lemma 2.8 we deduce

Jim fg(zn) = 9(y)-
From (3.1) we have,

E(bd(fy, fgzn),d(gy, g9zn))
d(gy, 9g9zn) — bd(fy, fgzn)).

Letting n — oo in the above inequality, we get

IAIA

0 < liminfd(gy,ggx,)— blimsupd(fy, fgz,))
n—0o0 n—00

= —blimsupd(fy, fgx,)
n—o0
< 0.
Thus,

limsupd(fy, fgz,) = 0.

n—oo
That is
Jim fg(zn) = f(y),

therefore, f(y) = g(y).
Now, assume there exists u € X such that f(u) = g(u) then the (£3) inequality implies

0 < &(bd(fy, fu),d(gy, gu))
< d(gy, gu) — bd(fy, fu)
S O’

hence bd(fy, fu) < d(fy, fu), if b > 1, then f(y) = f(u). If b = 1, by the condition (&),
with tx = d(fy, fu) and s, = d(gy, gu), we get

0 < limsup(bd(fy, fu),d(gy, gu) <0,
k—o0

which is a contradiction. Thus we have f(u) = f(y) = g(u) = g(y).

Now, suppose the map ¢ is one to one. If y,u are two coincidence points of f and g,
in this case by the above argument we have f(y) = g(y) = f(u) = g(u). Since g is one
to one it follows that y = u. Also, since g(y) = f(y) and the pair {f, g} is compatible
we have fg(y) = gf(y). Therefore, gf(y) = fg(y) = ff(y). That is f(y) is a coincidence
point of f and g. Therefore, f(y) = y hence f(y) = g(y) = y. That is f and g have
unique common fixed point y € X. [

Now we give an example to support our main result.

Example 3.6. Let X = [0,1] be endowed with the b-metric d(z,y) = (z —y)*, where
b = 2. Define f and g on X by

f@) = (5)" and g(a) = (5)?
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Obviously f(X) C ¢g(X) and furthermore the pair {f, g} is compatible mappings. Con-
sider the b-simulation function as

() = 351,
for all £,s > 0. Then for each x,y € X we have
dfo, fy) = (o= fy)?= (5"~ (5"
B x y x Yy
= ((5)2 + (5)2)2((5)2 - (5)2)2
< (G pdlgrgy) = Jdlgw,gu).

Thus f and g satisfy all conditions given in Theorem 3.5 and so they have a unique
common fixed point.

We show the unifying power of b-simulation functions by applying Theorem 3.5 to
deduce different kinds of contractive conditions in the existing literature.

Compatible mapping bring a standard fixed point results. See [17-24]. Hence, if we
take g = I (the identity map) in Theorem 3.5, we obtain Theorem 3.4 of [15].

Corollary 3.7. Let (X,d,b) be a complete b-metric space, f,g: X — X be two mappings
with f(X) C g(X) and the pair {f,g} is compatible. Suppose that there exists A € (0,1)
such that

bd(fzx, fy) < Ad(gz, gy) for all z,y € X.

If g is continuous, then f and g have a coincidence point. Moreover, if g is one to one,
then f and g have unique common fized point.

Proof. The result follows from Theorem 3.5, by taking b-simulation function as
f(t, 3) =As— ta
for all £,s > 0. ]

4. AN APPLICATION TO THE INTEGRAL EQUATION

Let C*[a,b] = {f : [a,b] — R : f is continuous and has derivative of orderk}.
For every x € [0, 1], consider the integral equation

F(x) = hiz) + A / " k(a0 (1),

where f,h € C¥[0,1], A # 0 and k(z, t) is continuous on the squared region [0, 1]x [0, 1] —
[—M, M| with |M| < |—}\‘ Then there exists a unique fo € C*[0, 1] such that

fo(z) — h(z) = )\/Om k(x,t) fo(t)dt.

In the following we can show this fact: for every f € C*[0,1], define T : C*[0, 1] — C*[0,1]
by T(f) = Ty, where, for every x € [0,1],

Ty(z) = h(z) + /\/OI k(z, t) f(t)dt.
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If we consider d(f,g) = ||f — g||oo, for every f,g € C¥[0,1], then it is easy to see that d
is a complete metric on C*[0, 1]. Therefore, for all f, g € C*[0, 1], we have,

d(T(f), T(g) = Zﬁyﬂﬂfﬂwl
< sup [ K@D - g(t))dt
z€[0,1] 0

IN

M| / C 15 — g0t

< M sw |f(@) - g(o) / "t

z€[0,1]
< AMI[f = gl
= [AM]d(f,g).

Hence, the assertion follows from using Corollary 3.7, there exists a unique fo € C*[0,1]
such that T'(fo) = fo. That is

fol) — hiz) = A / " k(o 0) fo(t)dr,

for every x € [0,1].
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