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1. Introduction

Czerwik in [1] introduced the concept of b-metric space. Since then, several papers deal
with fixed point theory for single-valued and multivalued operators in b-metric spaces have
been established (see also [2–5] ). Pacurar [6] obtained some results on sequences of almost
contractions and about their fixed points in b-metric spaces. Recently, Hussain and Shah
[7] presented new results on KKM mappings in cone b-metric spaces.

Very recently Aghajani and et al. in [8] proved some common fixed point theorems in
b-meric space and presented some basic property of this spaces. Also in [9] the authors
generalized the concept of G-metric space and introduced the concept of Gb-metric space.
Furthermore they have proved some fixed point result in such spaces.

The aim of this paper is to present some common fixed point result for two mappings
considering b-simulation functions in b-metric space. The results obtained in this paper
generalize and extend several ones obtained earlier in a lot of papers concerning metric
space such as [10–14].

Consistent with [1] and [5, p. 264], the following definition and results will be needed
in the sequel.
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2. Preliminaries

Definition 2.1 ([1]). Let X be a nonempty set and b ≥ 1 be a given real number. A
function d : X×X → R+ is said to be a b-metric on X if, for all x, y, z ∈ X, the following
conditions are satisfied:

(b1) d(x, y) = 0 iff x = y,
(b2) d(x, y) = d(y, x),
(b3) d(x, z) ≤ b[d(x, y) + d(y, z)].

In this case, the triplet (X, d, b) is called a b-metric space.

It should be noted that, the class of b-metric spaces is effectively larger than that of
metric spaces, since a b-metric is a metric when b = 1.

Singh and et al. [5, p. 264] presented an example shows that a b-metric on a nonempty
set X need not be a metric on X.

Example 2.2 ([8]). Let (X, d) be a metric space, and ρ(x, y) = (d(x, y))p, where p > 1
is a real number. Then ρ is a b-metric with b = 2p−1. Obviously conditions (b1) and (b2)
of Definition 2.1 are satisfied. If 1 < p <∞, then the convexity of the function f(x) = xp

(x > 0) implies(
a+ b

2

)p
≤ 1

2
(ap + bp) ,

and hence, (a+ b)
p ≤ 2p−1(ap + bp) holds. Thus for each x, y, z ∈ X we obtain

ρ(x, y) = (d(x, y))p

≤ [d(x, z) + d(z, y)]p

≤ 2p−1[(d(x, z))p + (d(z, y))p]

= 2p−1[ρ(x, z) + ρ(z, y)].

So condition (b3) of Definition 2.1 is hold and so ρ is a b-metric.

It should be noted that in preceding example, if (X, d) is a metric space, then (X, ρ)
is not necessarily a metric space.

For example, if X = R be the set of real numbers and d(x, y) = |x− y| be the usual
Euclidean metric, then ρ(x, y) = (x − y)2 is a b-metric on R with b = 2, but is not a
metric on R, because the triangle inequality does not hold.

Example 2.3 ([15]). Let X be a nonempty set, Cb(X) = {f : X → R : ||f ||∞ =

supx∈X |f(x)| < ∞} and let ||f || = 3
√
||f3||∞. Then the function d : Cb(X) × Cb(X) →

[0,∞) defined by

d(f, g) = ||f − g|| for all f, g ∈ Cb(X)

is a b-metric with constant b = 3
√

4 and so (Cb(X), d, 3
√

4) is a b-metric space.

Before stating and proving our results, we present some definition and proposition in
b-metric space. We recall first the notions of convergence, closedness and completeness in
a b-metric space.

Definition 2.4 ([4]). Let (X, d, b) be a b-metric space. Then a sequence {xn} in X is
called:
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(a) convergent if and only if there exists x ∈ X such that d(xn, x)→ 0 as n→∞.
In this case, we write limn→∞ xn = x.

(b) Cauchy if and only if d(xn, xm)→ 0 as n,m→∞.
A b-metric space (X, d, b) is complete if every Cauchy sequence in X is convergent.

Proposition 2.5 ([4], Remark 2.1). In a b-metric space (X, d, b) the following assertions
hold:

(i) a convergent sequence has a unique limit,
(ii) each convergent sequence is Cauchy,

(iii) in general, a b-metric is not continuous.

Definition 2.6 ([16]). Let (X, d, b) be a b-metric space and f, g be two self mappings of
X. Then the pair {f, g} is said to be compatible if and only if limn→∞ d(fgxn, gfxn) = 0,
whenever {xn} is a sequence in X such that limn→∞ fxn = limn→∞ gxn = t for some
t ∈ X.

Remark 2.7. Let (X, d, b) be a b-metric space. If there exists two sequences {xn}
and {yn} such that limn→∞ d(xn, yn) = 0, then we can not necessarily conclude that
limn→∞ xn = limn→∞ yn, because in general, a b-metric function may not be continuous.
Even it is possible that there is no limit. For example, let X = R and d(x, y) = (x− y)2

and xn = (−1)n and yn = (−1)n +
1

n
.

Lemma 2.8. Let (X, d, b) be a b-metric space. If there exists two sequences {xn} and
{yn} such that limn→∞ d(xn, yn) = 0, whenever {xn} is a sequence in X such that
limn→∞ xn = t for some t ∈ X, then limn→∞ yn = t.

Demmaa and et al. [15] gave the definition of b-simulation function in the setting of
b-metric space as follows:

Definition 2.9. Let (X, d, b) be a b-metric space. A b-simulation function is a function
ξ : [0,∞)× [0,∞)→ R satisfying the following conditions:

(ξ1) ξ(t, s) ≤ s− t, for all t, s ≥ 0,
(ξ2) if {tn}, {sn} are sequences in (0,∞) such that

0 < lim
n→∞

tn ≤ lim inf
n→∞

sn ≤ lim sup
n→∞

sn ≤ b lim
n→∞

tn <∞,

then

lim sup
n→∞

ξ(btn, sn) < 0.

Following are some examples of b-simulation functions (see [15]).

Example 2.10. Let ξ : [0,∞)× [0,∞)→ R, be defined by

• ξ(t, s) = λs− t for all t, s ∈ [0,∞), where λ ∈ [0, 1).
• ξ(t, s) = ψ(s) − ϕ(t) for all t, s ∈ [0,∞), where ϕ,ψ : [0,∞) → [0,∞) are
two continuous functions such that ψ(t) = ϕ(t) = 0 if and only if t = 0 and
ψ(t) < t ≤ ϕ(t) for all t > 0.

• ξ(t, s) = s f(t,s)g(t,s) t for all t, s ∈ [0,∞), where f, g : [0,∞) × [0,∞) → (0,∞) are

two continuous functions with respect to each variable such that f(t, s) > g(t, s)
for all t, s > 0.
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• ξ(t, s) = s− ϕ(s)− t for all t, s ∈ [0,∞), where ϕ : [0,∞) → [0,∞) is a lower
semi-continuous function such that ϕ(t) = 0 if and only if t = 0.
• ξ(t, s) = sϕ(s) − t for all t, s ∈ [0,∞), where ϕ : [0,∞) → [0,∞) is such
that lim

t→r+
ϕ(t) < 1 for all r > 0.

Definition 2.11. The self-mapping f of a b-metric space (X, d, b) is said to be b-
continuous at x ∈ X if and only if it is b-sequentially continuous at x, that is, whenever
{xn} is b-convergent to x, {f(xn)} is b-convergent to f(x).

3. Fixed Points via b-Simulation Functions

The following lemmas, are needed to establish the main result.

Lemma 3.1. Let (X, d, b) be a b-metric space and let f, g : X → X be two mappings.
Suppose that f(X) ⊆ g(X) and there exists a b-simulation function ξ such that

ξ(bd(fx, fy), d(gx, gy)) ≥ 0 for all x, y ∈ X. (3.1)

Then there exists a sequence {yn} in X such that lim
n→∞

d(yn−1, yn) = 0.

Proof. Let x0 ∈ X be arbitrary. Since f(X) ⊆ g(X), we can construct two sequences
{xn} and {yn} such that yn = f(xn) = g(xn+1) for every n ∈ N. If there exists n0 ∈ N
such that yn0

= yn0+1, then it follows from (3.1) and (ξ1) that for all n ∈ N
0 ≤ ξ(bd(fxn0+1, fxn0+2), d(gxn0+1, gxn0+2))

= ξ(bd(yn0+1, yn0+2), d(yn0
, yn0+1

))

≤ d(yn0
, yn0+1)− bd(yn0+1, yn0+2).

Since d(yn0
, yn0+1) = 0, the above inequality shows that d(yn0+1, yn0+2) = 0, therefore

yn0+1 = yn0+2. Thus, yn0
= yn0+1 = yn0+2 = · · · , which implies that lim

n→∞
d(yn−1, yn) =

0. Now, suppose that yn 6= yn+1 for all n ∈ N. Then, it follows from (3.1) and (ξ1) that
for all n ∈ N, we have

0 ≤ ξ(bd(fxn, fxn+1), d(gxn, gxn+1))

= ξ(bd(yn, yn+1), d(yn−1, yn))

≤ d(yn−1, yn)− bd(yn, yn+1).

The above inequality shows that

bd(yn, yn+1) ≤ d(yn−1, yn), for all n ∈ N,
which implies that {d(yn−1, yn)} is a decreasing sequence of positive real numbers. So
there is some r ≥ 0 such that lim

n→∞
d(yn−1, yn) = r. Suppose that r > 0. It follows from

the condition (ξ2), with tn = d(yn, yn+1) and sn = d(yn−1, yn), that

0 ≤ lim sup
n→∞

ξ(bd(yn, yn+1), d(yn−1, yn)) < 0,

which is a contradiction. Then we conclude that r = 0, which ends the proof.

Remark 3.2. Let (X, d, b) be a b-metric space and let f, g : X → X be two mappings.
Suppose that f(X) ⊆ g(X) and there exists a b-simulation function ξ such that (3.1)
holds. Then there exists a sequence {yn} in X, such that bd(ym, yn) ≤ d(ym−1, yn−1) for
all m,n ∈ N.
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Proof. By a similar argument of Lemma 3.1 for every n ∈ N we have yn=f(xn)=g(xn+1).
Hence, it follows from (3.1) and (ξ1) that for all m,n ∈ N, we have

0 ≤ ξ(bd(fxm, fxn), d(gxm, gxn))

= ξ(bd(ym, yn), d(ym−1, yn−1))

≤ d(ym−1, yn−1)− bd(ym, yn).

The above inequality shows that

bd(ym, yn) ≤ d(ym−1, yn−1), for all m,n ∈ N.

Lemma 3.3. Let (X, d, b) be a b-metric space and let f, g : X → X be two mappings.
Suppose that f(X) ⊆ g(X) and there exists a b-simulation function ξ such that (3.1)
holds. Then there exists a sequence {yn} in X, such that {yn} is bounded sequence.

Proof. By a similar argument of Lemma 3.1 for every n ∈ N we have yn = f(xn) =
g(xn+1). If there exists n0 ∈ N such that yn0

= yn0+1, we have d(yi, yj) ≤ M for all
i, j = 0, 1, 2, · · · , where

M = max{d(yi, yj) : i, j ≤ n0}.
Let us assume that yn 6= yn+1 for all n ∈ N and suppose {yn} is not a bounded sequence.
Then, there exists a subsequence {ynk

} of {yn} such that for n1 = 1 and for each k ∈ N,
nk+1 is the minimum integer such that d(ynk+1, ynk

) > 1 and

d(ym, ynk
) ≤ 1for nk ≤ m ≤ nk+1 − 1.

By the triangle inequality, we obtain

1 < d(ynk+1
, xnk

)

≤ bd(ynk+1
, ynk+1−1) + bd(ynk+1−1, ynk

)

≤ bd(ynk+1
, ynk+1−1) + b.

Letting k →∞ in the above inequality and using Lemma 3.1, we get

1 ≤ lim inf
k→∞

d(ynk+1
, ynk

) ≤ lim sup
k→∞

d(ynk+1
, ynk

) ≤ b. (3.2)

Again, from Remark 3.2, we have

bd(ynk+1
, ynk

) ≤ d(ynk+1−1, ynk−1)

≤ bd(ynk+1−1, ynk
) + bd(ynk

, ynk−1)

≤ b+ bd(ynk
, ynk−1)

Letting k →∞ in the above inequality and using (3.2), we deduce that

lim
k→∞

d(ynk+1
, ynk

) = 1and lim
k→∞

d(ynk+1−1, ynk−1) = b.

Then by condition (ξ2), with tk = d(ynk+1
, ynk

) and sk = d(ynk+1−1, ynk−1), we obtain

0 ≤ lim sup
k→∞

ξ(bd(ynk+1
, ynk

), d(ynk+1−1, ynk−1) < 0,

which is a contradiction. This ends the proof.

Lemma 3.4. Let (X, d, b) be a b-metric space and let f, g : X → X be two mappings.
Suppose that f(X) ⊆ g(X) and there exists a b-simulation function ξ such that (3.1)
holds. Then there exists a sequence {yn} in X, such that {yn} is a Cauchy sequence.
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Proof. By a similar argument of Lemma 3.1 for every n ∈ N we have yn = f(xn) =
g(xn+1). If there exists n0 ∈ N such that yn0 = yn0+1, then we have {yn} is a Cauchy
sequence. Let us assume that yn 6= yn+1 for all n ∈ N and let

Cn = sup{d(yi, yj) : i, j ≥ n}.

From Lemma 3.3, we know that Cn < ∞ for every n ∈ N. Since {Cn} is a positive
decreasing sequence, there is some C ≥ 0 such that

lim
n→∞

Cn = C. (3.3)

Let us suppose that C > 0. By the definition of {Cn}, for every k ∈ N, there exists
nk,mk ∈ N such that mk > nk ≥ k and

Ck −
1

k
< d(ymk

, ynk
) ≤ Ck.

Letting k →∞ in the above inequality, we get

lim
k→∞

d(ymk
, ynk

) = C. (3.4)

Again, from Remark 3.2 and the definition of {Cn}, we deduce

bd(ymk
, ynk

) ≤ d(ymk−1, ynk−1) ≤ Ck−1.

Letting k →∞ in the above inequality, using (3.3) and (3.4), we get

bC ≤ lim inf
k→∞

d(ymk−1
ynk−1

) ≤ lim sup
k→∞

d(ymk−1
, ynk−1

) ≤ C. (3.5)

Now, if b > 1, the previous inequality implies a contradiction since C > 0. If b = 1, by
the condition (ξ2), with tk = d(ymk

, ynk
) and sk = d(ymk−1

, ynk−1
), we get

0 ≤ lim sup
k→∞

ξ(bd(ymk
, ynk

), d(ymk−1, ynk−1)) < 0,

which is a contradiction. Thus we have C = 0, that is,

lim
n→∞

Cn = 0 for all b ≥ 1.

This proves that {yn} is a Cauchy sequence.

Now, we present our main result.

Theorem 3.5. Let (X, d, b) be a complete b-metric space, f, g : X → X be two mappings
with f(X) ⊆ g(X) and the pair {f, g} is compatible. Suppose that there exists a b-
simulation function ξ such that (3.1) holds, that is,

ξ(bd(fx, fy), d(gx, gy)) ≥ 0, for all x, y ∈ X.

If g is continuous, then f and g have a coincidence point, that is, there exists y ∈ X such
that f(y) = g(y). Moreover, if g is one to one, then f and g have unique common fixed
point.

Proof. Let x0 ∈ X, since f(X) ⊆ g(X), hence for every n ∈ N we have yn = f(xn) =
g(xn+1). Now, by Lemma 3.4, the sequence {yn} is Cauchy and since (X, d, b) is complete,
then there exists some y ∈ X such that limn→∞ yn = y. That is,

y = lim
n→∞

yn = lim
n→∞

f(xn) = lim
n→∞

g(xn). (3.6)
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We claim that y is a coincidence point of f, g. Since, g is continuous, hence we have

lim
n→∞

gf(xn) = lim
n→∞

gg(xn) = g(y).

Also, since {f, g} is compatible, we have limn→∞ d(fg(xn), gf(xn)) = 0. Hence, by
Lemma 2.8 we deduce

lim
n→∞

fg(xn) = g(y).

From (3.1) we have,

0 ≤ ξ(bd(fy, fgxn), d(gy, ggxn))

≤ d(gy, ggxn)− bd(fy, fgxn)).

Letting n→∞ in the above inequality, we get

0 ≤ lim inf
n→∞

d(gy, ggxn)− blim sup
n→∞

d(fy, fgxn))

= −blim sup
n→∞

d(fy, fgxn)

≤ 0.

Thus,

lim sup
n→∞

d(fy, fgxn) = 0.

That is

lim
n→∞

fg(xn) = f(y),

therefore, f(y) = g(y).
Now, assume there exists u ∈ X such that f(u) = g(u) then the (ξ2) inequality implies

0 ≤ ξ(bd(fy, fu), d(gy, gu))

≤ d(gy, gu)− bd(fy, fu)

≤ 0,

hence bd(fy, fu) ≤ d(fy, fu), if b > 1, then f(y) = f(u). If b = 1, by the condition (ξ2),
with tk = d(fy, fu) and sk = d(gy, gu), we get

0 ≤ lim sup
k→∞

ξ(bd(fy, fu), d(gy, gu) < 0,

which is a contradiction. Thus we have f(u) = f(y) = g(u) = g(y).
Now, suppose the map g is one to one. If y, u are two coincidence points of f and g,

in this case by the above argument we have f(y) = g(y) = f(u) = g(u). Since g is one
to one it follows that y = u. Also, since g(y) = f(y) and the pair {f, g} is compatible
we have fg(y) = gf(y). Therefore, gf(y) = fg(y) = ff(y). That is f(y) is a coincidence
point of f and g. Therefore, f(y) = y hence f(y) = g(y) = y. That is f and g have
unique common fixed point y ∈ X.

Now we give an example to support our main result.

Example 3.6. Let X = [0, 1] be endowed with the b-metric d(x, y) = (x− y)
2
, where

b = 2. Define f and g on X by

f(x) = (
x

2
)4 and g(x) = (

x

2
)2



1582 Thai J. Math. Vol. 19 (2021) /A. Javaher et al.

Obviously f(X) ⊆ g(X) and furthermore the pair {f, g} is compatible mappings. Con-
sider the b-simulation function as

ξ(t, s) =
1

2
s− t,

for all t, s ≥ 0. Then for each x, y ∈ X we have

d(fx, fy) = (fx− fy)2 = ((
x

2
)4 − (

y

2
)4)2

= ((
x

2
)2 + (

y

2
)2)2((

x

2
)2 − (

y

2
)2)2

≤ (
1

4
+

1

4
)2d(gx, gy) =

1

4
d(gx, gy).

Thus f and g satisfy all conditions given in Theorem 3.5 and so they have a unique
common fixed point.

We show the unifying power of b-simulation functions by applying Theorem 3.5 to
deduce different kinds of contractive conditions in the existing literature.

Compatible mapping bring a standard fixed point results. See [17–24]. Hence, if we
take g = I (the identity map) in Theorem 3.5, we obtain Theorem 3.4 of [15].

Corollary 3.7. Let (X, d, b) be a complete b-metric space, f, g : X → X be two mappings
with f(X) ⊆ g(X) and the pair {f, g} is compatible. Suppose that there exists λ ∈ (0, 1)
such that

bd(fx, fy) ≤ λd(gx, gy) for all x, y ∈ X.

If g is continuous, then f and g have a coincidence point. Moreover, if g is one to one,
then f and g have unique common fixed point.

Proof. The result follows from Theorem 3.5, by taking b-simulation function as

ξ(t, s) = λs− t,

for all t, s ≥ 0.

4. An Application to the Integral Equation

Let Ck[a, b] = {f : [a, b]→ R : f is continuous and has derivative of orderk}.
For every x ∈ [0, 1], consider the integral equation

f(x) = h(x) + λ

∫ x

0

k(x, t)f(t)dt,

where f, h ∈ Ck[0, 1], λ 6= 0 and k(x, t) is continuous on the squared region [0, 1]×[0, 1] −→
[−M,M ] with |M | < 1

|λ| . Then there exists a unique f0 ∈ Ck[0, 1] such that

f0(x)− h(x) = λ

∫ x

0

k(x, t)f0(t)dt.

In the following we can show this fact: for every f ∈ Ck[0, 1], define T : Ck[0, 1]→ Ck[0, 1]
by T (f) = Tf , where, for every x ∈ [0, 1],

Tf (x) = h(x) + λ

∫ x

0

k(x, t)f(t)dt.
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If we consider d(f, g) = ||f − g||∞, for every f, g ∈ Ck[0, 1], then it is easy to see that d
is a complete metric on Ck[0, 1]. Therefore, for all f, g ∈ Ck[0, 1], we have,

d(T (f), T (g)) = sup
x∈[0,1]

|Tf (x)− Tg(x)|

≤ sup
x∈[0,1]

|λ|
∫ x

0

|k(x, t)|(|f(t)− g(t)|)dt

≤ |λM |
∫ x

0

|f(t)− g(t)|dt

≤ |λM | sup
x∈[0,1]

|f(x)− g(x)|
∫ x

0

dt

≤ |λM |||f − g||∞
= |λM |d(f, g).

Hence, the assertion follows from using Corollary 3.7, there exists a unique f0 ∈ Ck[0, 1]
such that T (f0) = f0. That is

f0(x)− h(x) = λ

∫ x

0

k(x, t)f0(t)dt,

for every x ∈ [0, 1].
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