Fixed Point Results on b-Metric Space via b-Simulation Functions

Atena Javaher ${ }^{1}$, Shaban Sedghi ${ }^{1, *}$ and Ishak Altun ${ }^{2}$
${ }^{1}$ Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran e-mail : javaheri.a91@gmail.com (A. Javaher); sedghi.gh@qaemiau.ac.ir (S. Sedghi)
${ }^{2}$ Department of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey
e-mail : ishakaltun@yahoo.com (I. Altun)

Abstract

In this paper, we present a common fixed point result for two mappings satisfying generalized contractive condition in b-metric space via b-simulation functions. Our results extend and improve several previous results.

MSC: 54H25; 47H10
Keywords: common fixed point; b-metric space; compatible mappings

Submission date: 16.04.2018 / Acceptance date: 04.12.2019

1. Introduction

Czerwik in [1] introduced the concept of b-metric space. Since then, several papers deal with fixed point theory for single-valued and multivalued operators in b-metric spaces have been established (see also [2-5]). Pacurar [6] obtained some results on sequences of almost contractions and about their fixed points in b-metric spaces. Recently, Hussain and Shah [7] presented new results on KKM mappings in cone b-metric spaces.

Very recently Aghajani and et al. in [8] proved some common fixed point theorems in b-meric space and presented some basic property of this spaces. Also in [9] the authors generalized the concept of G-metric space and introduced the concept of G_{b}-metric space. Furthermore they have proved some fixed point result in such spaces.

The aim of this paper is to present some common fixed point result for two mappings considering b-simulation functions in b-metric space. The results obtained in this paper generalize and extend several ones obtained earlier in a lot of papers concerning metric space such as [10-14].

Consistent with [1] and [5, p. 264], the following definition and results will be needed in the sequel.

[^0]
2. PRELIMINARIES

Definition 2.1 ([1]). Let X be a nonempty set and $b \geq 1$ be a given real number. A function $d: X \times X \rightarrow \mathbb{R}^{+}$is said to be a b-metric on X if, for all $x, y, z \in X$, the following conditions are satisfied:
(b1) $d(x, y)=0$ iff $x=y$,
(b2) $d(x, y)=d(y, x)$,
(b3) $d(x, z) \leq b[d(x, y)+d(y, z)]$.
In this case, the triplet (X, d, b) is called a b-metric space.
It should be noted that, the class of b-metric spaces is effectively larger than that of metric spaces, since a b-metric is a metric when $b=1$.

Singh and et al. [5, p. 264] presented an example shows that a b-metric on a nonempty set X need not be a metric on X.

Example 2.2 ([8]). Let (X, d) be a metric space, and $\rho(x, y)=(d(x, y))^{p}$, where $p>1$ is a real number. Then ρ is a b-metric with $b=2^{p-1}$. Obviously conditions (b1) and (b2) of Definition 2.1 are satisfied. If $1<p<\infty$, then the convexity of the function $f(x)=x^{p}$ $(x>0)$ implies

$$
\left(\frac{a+b}{2}\right)^{p} \leq \frac{1}{2}\left(a^{p}+b^{p}\right)
$$

and hence, $(a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right)$ holds. Thus for each $x, y, z \in X$ we obtain

$$
\begin{aligned}
\rho(x, y) & =(d(x, y))^{p} \\
& \leq[d(x, z)+d(z, y)]^{p} \\
& \leq 2^{p-1}\left[(d(x, z))^{p}+(d(z, y))^{p}\right] \\
& =2^{p-1}[\rho(x, z)+\rho(z, y)] .
\end{aligned}
$$

So condition (b3) of Definition 2.1 is hold and so ρ is a b-metric.
It should be noted that in preceding example, if (X, d) is a metric space, then (X, ρ) is not necessarily a metric space.

For example, if $X=\mathbb{R}$ be the set of real numbers and $d(x, y)=|x-y|$ be the usual Euclidean metric, then $\rho(x, y)=(x-y)^{2}$ is a b-metric on \mathbb{R} with $b=2$, but is not a metric on \mathbb{R}, because the triangle inequality does not hold.

Example 2.3 ([15]). Let X be a nonempty set, $C_{b}(X)=\left\{f: X \rightarrow \mathbb{R}:\|f\|_{\infty}=\right.$ $\left.\sup _{x \in X}|f(x)|<\infty\right\}$ and let $\|f\|=\sqrt[3]{\left\|f^{3}\right\|_{\infty}}$. Then the function $d: C_{b}(X) \times C_{b}(X) \rightarrow$ $[0, \infty)$ defined by

$$
d(f, g)=\|f-g\| \text { for all } f, g \in C_{b}(X)
$$

is a b-metric with constant $b=\sqrt[3]{4}$ and so $\left(C_{b}(X), d, \sqrt[3]{4}\right)$ is a b-metric space.
Before stating and proving our results, we present some definition and proposition in b-metric space. We recall first the notions of convergence, closedness and completeness in a b-metric space.

Definition 2.4 ([4]). Let (X, d, b) be a b-metric space. Then a sequence $\left\{x_{n}\right\}$ in X is called:
(a) convergent if and only if there exists $x \in X$ such that $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$.

In this case, we write $\lim _{n \rightarrow \infty} x_{n}=x$.
(b) Cauchy if and only if $d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$.

A b-metric space (X, d, b) is complete if every Cauchy sequence in X is convergent.
Proposition 2.5 ([4], Remark 2.1). In a b-metric space (X, d, b) the following assertions hold:
(i) a convergent sequence has a unique limit,
(ii) each convergent sequence is Cauchy,
(iii) in general, a b-metric is not continuous.

Definition 2.6 ([16]). Let (X, d, b) be a b-metric space and f, g be two self mappings of X. Then the pair $\{f, g\}$ is said to be compatible if and only if $\lim _{n \rightarrow \infty} d\left(f g x_{n}, g f x_{n}\right)=0$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$ for some $t \in X$.

Remark 2.7. Let (X, d, b) be a b-metric space. If there exists two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$, then we can not necessarily conclude that $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}$, because in general, a b-metric function may not be continuous. Even it is possible that there is no limit. For example, let $X=\mathbb{R}$ and $d(x, y)=(x-y)^{2}$ and $x_{n}=(-1)^{n}$ and $y_{n}=(-1)^{n}+\frac{1}{n}$.
Lemma 2.8. Let (X, d, b) be a b-metric space. If there exists two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=0$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} x_{n}=t$ for some $t \in X$, then $\lim _{n \rightarrow \infty} y_{n}=t$.

Demmaa and et al. [15] gave the definition of b-simulation function in the setting of b-metric space as follows:

Definition 2.9. Let (X, d, b) be a b-metric space. A b-simulation function is a function $\xi:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$ satisfying the following conditions:
$\left(\xi_{1}\right) \xi(t, s) \leq s-t$, for all $t, s \geq 0$,
$\left(\xi_{2}\right)$ if $\left\{t_{n}\right\},\left\{s_{n}\right\}$ are sequences in $(0, \infty)$ such that

$$
0<\lim _{n \rightarrow \infty} t_{n} \leq \liminf _{n \rightarrow \infty} s_{n} \leq \limsup _{n \rightarrow \infty} s_{n} \leq b \lim _{n \rightarrow \infty} t_{n}<\infty
$$

then

$$
\limsup _{n \rightarrow \infty} \xi\left(b t_{n}, s_{n}\right)<0
$$

Following are some examples of b-simulation functions (see [15]).
Example 2.10. Let $\xi:[0, \infty) \times[0, \infty) \rightarrow \mathbb{R}$, be defined by

- $\xi(t, s)=\lambda s-t$ for all $t, s \in[0, \infty)$, where $\lambda \in[0,1)$.
- $\xi(t, s)=\psi(s)-\varphi(t)$ for all $t, s \in[0, \infty)$, where $\varphi, \psi:[0, \infty) \rightarrow[0, \infty)$ are two continuous functions such that $\psi(t)=\varphi(t)=0$ if and only if $t=0$ and $\psi(t)<t \leq \varphi(t)$ for all $t>0$.
- $\xi(t, s)=s \frac{f(t, s)}{g(t, s)} t$ for all $t, s \in[0, \infty)$, where $f, g:[0, \infty) \times[0, \infty) \rightarrow(0, \infty)$ are two continuous functions with respect to each variable such that $f(t, s)>g(t, s)$ for all $t, s>0$.
- $\xi(t, s)=s-\varphi(s)-t$ for all $t, s \in[0, \infty)$, where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a lower semi-continuous function such that $\varphi(t)=0$ if and only if $t=0$.
- $\xi(t, s)=s \varphi(s)-t$ for all $t, s \in[0, \infty)$, where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is such that $\lim _{t \rightarrow r^{+}} \varphi(t)<1$ for all $r>0$.

Definition 2.11. The self-mapping f of a b-metric space (X, d, b) is said to be b continuous at $x \in X$ if and only if it is b-sequentially continuous at x, that is, whenever $\left\{x_{n}\right\}$ is b-convergent to $x,\left\{f\left(x_{n}\right)\right\}$ is b-convergent to $f(x)$.

3. Fixed Points via b-Simulation Functions

The following lemmas, are needed to establish the main result.
Lemma 3.1. Let (X, d, b) be a b-metric space and let $f, g: X \rightarrow X$ be two mappings. Suppose that $f(X) \subseteq g(X)$ and there exists a b-simulation function ξ such that

$$
\begin{equation*}
\xi(b d(f x, f y), d(g x, g y)) \geq 0 \text { for all } x, y \in X \tag{3.1}
\end{equation*}
$$

Then there exists a sequence $\left\{y_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} d\left(y_{n-1}, y_{n}\right)=0$.
Proof. Let $x_{0} \in X$ be arbitrary. Since $f(X) \subseteq g(X)$, we can construct two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that $y_{n}=f\left(x_{n}\right)=g\left(x_{n+1}\right)$ for every $n \in \mathbb{N}$. If there exists $n_{0} \in \mathbb{N}$ such that $y_{n_{0}}=y_{n_{0}+1}$, then it follows from (3.1) and $\left(\xi_{1}\right)$ that for all $n \in \mathbb{N}$

$$
\begin{aligned}
0 & \leq \xi\left(b d\left(f x_{n_{0}+1}, f x_{n_{0}+2}\right), d\left(g x_{n_{0}+1}, g x_{n_{0}+2}\right)\right) \\
& =\xi\left(b d\left(y_{n_{0}+1}, y_{n_{0}+2}\right), d\left(y_{n_{0}}, y_{n_{0+1}}\right)\right) \\
& \leq d\left(y_{n_{0}}, y_{n_{0}+1}\right)-b d\left(y_{n_{0}+1}, y_{n_{0}+2}\right)
\end{aligned}
$$

Since $d\left(y_{n_{0}}, y_{n_{0}+1}\right)=0$, the above inequality shows that $d\left(y_{n_{0}+1}, y_{n_{0}+2}\right)=0$, therefore $y_{n_{0}+1}=y_{n_{0}+2}$. Thus, $y_{n_{0}}=y_{n_{0}+1}=y_{n_{0}+2}=\cdots$, which implies that $\lim _{n \rightarrow \infty} d\left(y_{n-1}, y_{n}\right)=$ 0 . Now, suppose that $y_{n} \neq y_{n+1}$ for all $n \in \mathbb{N}$. Then, it follows from (3.1) and (ξ_{1}) that for all $n \in \mathbb{N}$, we have

$$
\begin{aligned}
0 & \leq \xi\left(b d\left(f x_{n}, f x_{n+1}\right), d\left(g x_{n}, g x_{n+1}\right)\right) \\
& =\xi\left(b d\left(y_{n}, y_{n+1}\right), d\left(y_{n-1}, y_{n}\right)\right) \\
& \leq d\left(y_{n-1}, y_{n}\right)-b d\left(y_{n}, y_{n+1}\right) .
\end{aligned}
$$

The above inequality shows that

$$
b d\left(y_{n}, y_{n+1}\right) \leq d\left(y_{n-1}, y_{n}\right), \text { for all } n \in \mathbb{N}
$$

which implies that $\left\{d\left(y_{n-1}, y_{n}\right)\right\}$ is a decreasing sequence of positive real numbers. So there is some $r \geq 0$ such that $\lim _{n \rightarrow \infty} d\left(y_{n-1}, y_{n}\right)=r$. Suppose that $r>0$. It follows from the condition $\left(\xi_{2}\right)$, with $t_{n}=d\left(y_{n}, y_{n+1}\right)$ and $s_{n}=d\left(y_{n-1}, y_{n}\right)$, that

$$
0 \leq \limsup _{n \rightarrow \infty} \xi\left(b d\left(y_{n}, y_{n+1}\right), d\left(y_{n-1}, y_{n}\right)\right)<0
$$

which is a contradiction. Then we conclude that $r=0$, which ends the proof.
Remark 3.2. Let (X, d, b) be a b-metric space and let $f, g: X \rightarrow X$ be two mappings. Suppose that $f(X) \subseteq g(X)$ and there exists a b-simulation function ξ such that (3.1) holds. Then there exists a sequence $\left\{y_{n}\right\}$ in X, such that $b d\left(y_{m}, y_{n}\right) \leq d\left(y_{m-1}, y_{n-1}\right)$ for all $m, n \in \mathbb{N}$.

Proof. By a similar argument of Lemma 3.1 for every $n \in \mathbb{N}$ we have $y_{n}=f\left(x_{n}\right)=g\left(x_{n+1}\right)$. Hence, it follows from (3.1) and $\left(\xi_{1}\right)$ that for all $m, n \in \mathbb{N}$, we have

$$
\begin{aligned}
0 & \leq \xi\left(b d\left(f x_{m}, f x_{n}\right), d\left(g x_{m}, g x_{n}\right)\right) \\
& =\xi\left(b d\left(y_{m}, y_{n}\right), d\left(y_{m-1}, y_{n-1}\right)\right) \\
& \leq d\left(y_{m-1}, y_{n-1}\right)-b d\left(y_{m}, y_{n}\right) .
\end{aligned}
$$

The above inequality shows that

$$
b d\left(y_{m}, y_{n}\right) \leq d\left(y_{m-1}, y_{n-1}\right), \text { for all } m, n \in \mathbb{N} .
$$

Lemma 3.3. Let (X, d, b) be a b-metric space and let $f, g: X \rightarrow X$ be two mappings. Suppose that $f(X) \subseteq g(X)$ and there exists a b-simulation function ξ such that (3.1) holds. Then there exists a sequence $\left\{y_{n}\right\}$ in X, such that $\left\{y_{n}\right\}$ is bounded sequence.

Proof. By a similar argument of Lemma 3.1 for every $n \in \mathbb{N}$ we have $y_{n}=f\left(x_{n}\right)=$ $g\left(x_{n+1}\right)$. If there exists $n_{0} \in \mathbb{N}$ such that $y_{n_{0}}=y_{n_{0}+1}$, we have $d\left(y_{i}, y_{j}\right) \leq M$ for all $i, j=0,1,2, \cdots$, where

$$
M=\max \left\{d\left(y_{i}, y_{j}\right): i, j \leq n_{0}\right\}
$$

Let us assume that $y_{n} \neq y_{n+1}$ for all $n \in \mathbb{N}$ and suppose $\left\{y_{n}\right\}$ is not a bounded sequence. Then, there exists a subsequence $\left\{y_{n_{k}}\right\}$ of $\left\{y_{n}\right\}$ such that for $n_{1}=1$ and for each $k \in \mathbb{N}$, n_{k+1} is the minimum integer such that $d\left(y_{n_{k}+1}, y_{n_{k}}\right)>1$ and

$$
d\left(y_{m}, y_{n_{k}}\right) \leq 1 \text { for } n_{k} \leq m \leq n_{k+1}-1 .
$$

By the triangle inequality, we obtain

$$
\begin{aligned}
1 & <d\left(y_{n_{k+1}}, x_{n_{k}}\right) \\
& \leq b d\left(y_{n_{k+1}}, y_{n_{k+1}-1}\right)+b d\left(y_{n_{k+1}-1}, y_{n_{k}}\right) \\
& \leq b d\left(y_{n_{k+1}}, y_{n_{k+1}-1}\right)+b .
\end{aligned}
$$

Letting $k \rightarrow \infty$ in the above inequality and using Lemma 3.1, we get

$$
\begin{equation*}
1 \leq \liminf _{k \rightarrow \infty} d\left(y_{n_{k+1}}, y_{n_{k}}\right) \leq \limsup _{k \rightarrow \infty} d\left(y_{n_{k+1}}, y_{n_{k}}\right) \leq b \tag{3.2}
\end{equation*}
$$

Again, from Remark 3.2, we have

$$
\begin{aligned}
b d\left(y_{n_{k+1}}, y_{n_{k}}\right) & \leq d\left(y_{n_{k+1}-1}, y_{n_{k}-1}\right) \\
& \leq b d\left(y_{n_{k+1}-1}, y_{n_{k}}\right)+b d\left(y_{n_{k}}, y_{n_{k}-1}\right) \\
& \leq b+b d\left(y_{n_{k}}, y_{n_{k}-1}\right)
\end{aligned}
$$

Letting $k \rightarrow \infty$ in the above inequality and using (3.2), we deduce that

$$
\lim _{k \rightarrow \infty} d\left(y_{n_{k+1}}, y_{n_{k}}\right)=1 \text { and } \lim _{k \rightarrow \infty} d\left(y_{n_{k+1}-1}, y_{n_{k}-1}\right)=b .
$$

Then by condition $\left(\xi_{2}\right)$, with $t_{k}=d\left(y_{n_{k+1}}, y_{n_{k}}\right)$ and $s_{k}=d\left(y_{n_{k+1}-1}, y_{n_{k}-1}\right)$, we obtain

$$
0 \leq \limsup _{k \rightarrow \infty} \xi\left(b d\left(y_{n_{k+1}}, y_{n_{k}}\right), d\left(y_{n_{k+1}-1}, y_{n_{k}-1}\right)<0\right.
$$

which is a contradiction. This ends the proof.
Lemma 3.4. Let (X, d, b) be a b-metric space and let $f, g: X \rightarrow X$ be two mappings. Suppose that $f(X) \subseteq g(X)$ and there exists a b-simulation function ξ such that (3.1) holds. Then there exists a sequence $\left\{y_{n}\right\}$ in X, such that $\left\{y_{n}\right\}$ is a Cauchy sequence.

Proof. By a similar argument of Lemma 3.1 for every $n \in \mathbb{N}$ we have $y_{n}=f\left(x_{n}\right)=$ $g\left(x_{n+1}\right)$. If there exists $n_{0} \in \mathbb{N}$ such that $y_{n_{0}}=y_{n_{0}+1}$, then we have $\left\{y_{n}\right\}$ is a Cauchy sequence. Let us assume that $y_{n} \neq y_{n+1}$ for all $n \in \mathbb{N}$ and let

$$
C_{n}=\sup \left\{d\left(y_{i}, y_{j}\right): i, j \geq n\right\}
$$

From Lemma 3.3, we know that $C_{n}<\infty$ for every $n \in \mathbb{N}$. Since $\left\{C_{n}\right\}$ is a positive decreasing sequence, there is some $C \geq 0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} C_{n}=C \tag{3.3}
\end{equation*}
$$

Let us suppose that $C>0$. By the definition of $\left\{C_{n}\right\}$, for every $k \in \mathbb{N}$, there exists $n_{k}, m_{k} \in \mathbb{N}$ such that $m_{k}>n_{k} \geq k$ and

$$
C_{k}-\frac{1}{k}<d\left(y_{m_{k}}, y_{n_{k}}\right) \leq C_{k}
$$

Letting $k \rightarrow \infty$ in the above inequality, we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(y_{m_{k}}, y_{n_{k}}\right)=C \tag{3.4}
\end{equation*}
$$

Again, from Remark 3.2 and the definition of $\left\{C_{n}\right\}$, we deduce

$$
b d\left(y_{m_{k}}, y_{n_{k}}\right) \leq d\left(y_{m_{k}-1}, y_{n_{k}-1}\right) \leq C_{k-1} .
$$

Letting $k \rightarrow \infty$ in the above inequality, using (3.3) and (3.4), we get

$$
\begin{equation*}
b C \leq \liminf _{k \rightarrow \infty} d\left(y_{m_{k-1}} y_{n_{k-1}}\right) \leq \limsup _{k \rightarrow \infty} d\left(y_{m_{k-1}}, y_{n_{k-1}}\right) \leq C \tag{3.5}
\end{equation*}
$$

Now, if $b>1$, the previous inequality implies a contradiction since $C>0$. If $b=1$, by the condition $\left(\xi_{2}\right)$, with $t_{k}=d\left(y_{m_{k}}, y_{n_{k}}\right)$ and $s_{k}=d\left(y_{m_{k-1}}, y_{n_{k-1}}\right)$, we get

$$
0 \leq \limsup _{k \rightarrow \infty} \xi\left(b d\left(y_{m_{k}}, y_{n_{k}}\right), d\left(y_{m_{k}-1}, y_{n_{k}-1}\right)\right)<0
$$

which is a contradiction. Thus we have $C=0$, that is,

$$
\lim _{n \rightarrow \infty} C_{n}=0 \text { for all } b \geq 1
$$

This proves that $\left\{y_{n}\right\}$ is a Cauchy sequence.
Now, we present our main result.
Theorem 3.5. Let (X, d, b) be a complete b-metric space, $f, g: X \rightarrow X$ be two mappings with $f(X) \subseteq g(X)$ and the pair $\{f, g\}$ is compatible. Suppose that there exists a bsimulation function ξ such that (3.1) holds, that is,

$$
\xi(b d(f x, f y), d(g x, g y)) \geq 0, \text { for all } x, y \in X
$$

If g is continuous, then f and g have a coincidence point, that is, there exists $y \in X$ such that $f(y)=g(y)$. Moreover, if g is one to one, then f and g have unique common fixed point.
Proof. Let $x_{0} \in X$, since $f(X) \subseteq g(X)$, hence for every $n \in \mathbb{N}$ we have $y_{n}=f\left(x_{n}\right)=$ $g\left(x_{n+1}\right)$. Now, by Lemma 3.4, the sequence $\left\{y_{n}\right\}$ is Cauchy and since (X, d, b) is complete, then there exists some $y \in X$ such that $\lim _{n \rightarrow \infty} y_{n}=y$. That is,

$$
\begin{equation*}
y=\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} g\left(x_{n}\right) . \tag{3.6}
\end{equation*}
$$

We claim that y is a coincidence point of f, g. Since, g is continuous, hence we have

$$
\lim _{n \rightarrow \infty} g f\left(x_{n}\right)=\lim _{n \rightarrow \infty} g g\left(x_{n}\right)=g(y)
$$

Also, since $\{f, g\}$ is compatible, we have $\lim _{n \rightarrow \infty} d\left(f g\left(x_{n}\right), g f\left(x_{n}\right)\right)=0$. Hence, by Lemma 2.8 we deduce

$$
\lim _{n \rightarrow \infty} f g\left(x_{n}\right)=g(y)
$$

From (3.1) we have,

$$
\begin{aligned}
0 & \leq \xi\left(b d\left(f y, f g x_{n}\right), d\left(g y, g g x_{n}\right)\right) \\
& \left.\leq d\left(g y, g g x_{n}\right)-b d\left(f y, f g x_{n}\right)\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$ in the above inequality, we get

$$
\begin{aligned}
0 & \left.\leq \liminf _{n \rightarrow \infty} d\left(g y, g g x_{n}\right)-b \limsup _{n \rightarrow \infty} d\left(f y, f g x_{n}\right)\right) \\
& =-b \limsup _{n \rightarrow \infty} d\left(f y, f g x_{n}\right) \\
& \leq 0
\end{aligned}
$$

Thus,

$$
\limsup _{n \rightarrow \infty} d\left(f y, f g x_{n}\right)=0
$$

That is

$$
\lim _{n \rightarrow \infty} f g\left(x_{n}\right)=f(y)
$$

therefore, $f(y)=g(y)$.
Now, assume there exists $u \in X$ such that $f(u)=g(u)$ then the $\left(\xi_{2}\right)$ inequality implies

$$
\begin{aligned}
0 & \leq \xi(b d(f y, f u), d(g y, g u)) \\
& \leq d(g y, g u)-b d(f y, f u) \\
& \leq 0
\end{aligned}
$$

hence $b d(f y, f u) \leq d(f y, f u)$, if $b>1$, then $f(y)=f(u)$. If $b=1$, by the condition $\left(\xi_{2}\right)$, with $t_{k}=d(f y, f u)$ and $s_{k}=d(g y, g u)$, we get

$$
0 \leq \limsup _{k \rightarrow \infty} \xi(b d(f y, f u), d(g y, g u)<0
$$

which is a contradiction. Thus we have $f(u)=f(y)=g(u)=g(y)$.
Now, suppose the map g is one to one. If y, u are two coincidence points of f and g, in this case by the above argument we have $f(y)=g(y)=f(u)=g(u)$. Since g is one to one it follows that $y=u$. Also, since $g(y)=f(y)$ and the pair $\{f, g\}$ is compatible we have $f g(y)=g f(y)$. Therefore, $g f(y)=f g(y)=f f(y)$. That is $f(y)$ is a coincidence point of f and g. Therefore, $f(y)=y$ hence $f(y)=g(y)=y$. That is f and g have unique common fixed point $y \in X$.

Now we give an example to support our main result.
Example 3.6. Let $X=[0,1]$ be endowed with the b-metric $d(x, y)=(x-y)^{2}$, where $b=2$. Define f and g on X by

$$
f(x)=\left(\frac{x}{2}\right)^{4} \text { and } g(x)=\left(\frac{x}{2}\right)^{2}
$$

Obviously $f(X) \subseteq g(X)$ and furthermore the pair $\{f, g\}$ is compatible mappings. Consider the b-simulation function as

$$
\xi(t, s)=\frac{1}{2} s-t,
$$

for all $t, s \geq 0$. Then for each $x, y \in X$ we have

$$
\begin{aligned}
d(f x, f y) & =(f x-f y)^{2}=\left(\left(\frac{x}{2}\right)^{4}-\left(\frac{y}{2}\right)^{4}\right)^{2} \\
& =\left(\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{2}\right)^{2}\right)^{2}\left(\left(\frac{x}{2}\right)^{2}-\left(\frac{y}{2}\right)^{2}\right)^{2} \\
& \leq\left(\frac{1}{4}+\frac{1}{4}\right)^{2} d(g x, g y)=\frac{1}{4} d(g x, g y) .
\end{aligned}
$$

Thus f and g satisfy all conditions given in Theorem 3.5 and so they have a unique common fixed point.

We show the unifying power of b-simulation functions by applying Theorem 3.5 to deduce different kinds of contractive conditions in the existing literature.

Compatible mapping bring a standard fixed point results. See [17-24]. Hence, if we take $g=I$ (the identity map) in Theorem 3.5, we obtain Theorem 3.4 of [15].

Corollary 3.7. Let (X, d, b) be a complete b-metric space, $f, g: X \rightarrow X$ be two mappings with $f(X) \subseteq g(X)$ and the pair $\{f, g\}$ is compatible. Suppose that there exists $\lambda \in(0,1)$ such that

$$
b d(f x, f y) \leq \lambda d(g x, g y) \text { for all } x, y \in X
$$

If g is continuous, then f and g have a coincidence point. Moreover, if g is one to one, then f and g have unique common fixed point.

Proof. The result follows from Theorem 3.5, by taking b-simulation function as

$$
\xi(t, s)=\lambda s-t
$$

for all $t, s \geq 0$.

4. An Application to the Integral Equation

Let $C^{k}[a, b]=\{f:[a, b] \rightarrow \mathbb{R}: f$ is continuous and has derivative of order $k\}$.
For every $x \in[0,1]$, consider the integral equation

$$
f(x)=h(x)+\lambda \int_{0}^{x} k(x, t) f(t) d t
$$

where $f, h \in C^{k}[0,1], \lambda \neq 0$ and $k(x, t)$ is continuous on the squared region $[0,1] \times[0,1] \longrightarrow$ $[-M, M]$ with $|M|<\frac{1}{|\lambda|}$. Then there exists a unique $f_{0} \in C^{k}[0,1]$ such that

$$
f_{0}(x)-h(x)=\lambda \int_{0}^{x} k(x, t) f_{0}(t) d t
$$

In the following we can show this fact: for every $f \in C^{k}[0,1]$, define $T: C^{k}[0,1] \rightarrow C^{k}[0,1]$ by $T(f)=T_{f}$, where, for every $x \in[0,1]$,

$$
T_{f}(x)=h(x)+\lambda \int_{0}^{x} k(x, t) f(t) d t
$$

If we consider $d(f, g)=\|f-g\|_{\infty}$, for every $f, g \in C^{k}[0,1]$, then it is easy to see that d is a complete metric on $C^{k}[0,1]$. Therefore, for all $f, g \in C^{k}[0,1]$, we have,

$$
\begin{aligned}
d(T(f), T(g)) & =\sup _{x \in[0,1]}\left|T_{f}(x)-T_{g}(x)\right| \\
& \leq \sup _{x \in[0,1]}|\lambda| \int_{0}^{x}|k(x, t)|(|f(t)-g(t)|) d t \\
& \leq|\lambda M| \int_{0}^{x}|f(t)-g(t)| d t \\
& \leq|\lambda M| \sup _{x \in[0,1]}|f(x)-g(x)| \int_{0}^{x} d t \\
& \leq|\lambda M|\|f-g\|_{\infty} \\
& =|\lambda M| d(f, g) .
\end{aligned}
$$

Hence, the assertion follows from using Corollary 3.7, there exists a unique $f_{0} \in C^{k}[0,1]$ such that $T\left(f_{0}\right)=f_{0}$. That is

$$
f_{0}(x)-h(x)=\lambda \int_{0}^{x} k(x, t) f_{0}(t) d t
$$

for every $x \in[0,1]$.

Acknowledgements

The authors are grateful to the referees for their valuable comments in modifying of this paper.

References

[1] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena. 46 (2) (1998) 263-276.
[2] M. Boriceanu, Strict fixed point theorems for multivalued operators in b-metric spaces, International Journal of Modern Mathematics 4 (3) (2009) 285-301.
[3] M. Boriceanu, Fixed point theory for multivalued generalized contraction on a set with two b-metrics, Studia Univ. "Babes-Bolyai", Mathematica, Volume LIV, Number 3, (2009).
[4] M. Boriceanu, M. Bota, A. Petrusel, Multivalued fractals in b-metric spaces, Cent. Eur. J. Math. 8 (2) (2010) 367-377.
[5] S.L. Singh, B. Prasad, Some coincidence theorems and stability of iterative proceders, Comput. Math. Appl. 55 (2008) 2512-2520.
[6] M. Pacurar, Sequences of almost contractions and fixed points in b-metric spaces, Analele Universitatii de Vest, Timisoara Seria Matematica Informatica XLVIII 3 (2010) 125-137.
[7] N. Hussain, M.H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl. 62 (2011) 1677-1684.
[8] A. Aghajani, M. Abbas, J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces, Math. Slovaca. 64 (4) (2014) 941-960.
[9] A. Aghajani, M. Abbas, J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered G_{b}-metric spaces, Filomat 28 (6) (2014) 10871101.
[10] M. Aamri, D. El Moutawakil, Some new fixed point theorems under strict contractive condition, J. Math. Anal. Appl. 270 (2002) 181-188.
[11] Lj.B. Ćirić, A generalization of Banach's contraction principle, Proc. Am. Math. Soc. 45 (1974) 267-273.
[12] K.M. Das, K.V. Naik, Common fixed point theorems for commuting maps on a metric space, Proc. Amer. Math. Soc. 77 (3) (1979) 369-373.
[13] M. Imdad, J. Ali, Jungck's common fixed point theorem and E. A. property, Acta Math. Appl. Sin., Engl. Ser. 24 (1) (2008) 87-94.
[14] G. Jungck, Commuting maps and fixed points, Amer. Math. Monthly 83 (1976) 261-263.
[15] M. Demmaa, R. Saadati, P. Vetro, Fixed point results on b-metric space via Picard sequences and b-simulation functions, Iranian Journal of Mathematical Sciences and Informatics 11 (1) (2016) 123-136.
[16] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci. 9 (4) (1986) 771-779.
[17] H. Afshari, H. Aydi, E. Karapinar, Existence of fixed points of set-valued mappings in b-metric spaces, East Asian Mathematical Journal 32 (3) (2016) 319-332.
[18] H. Aydi, M.F. Bota, E. Karapinar, S. Moradi, A common fixed point for weak- φ Contractions on b-metric spaces, Fixed Point Theory 13 (2) (2012) 337-346.
[19] M.F. Bota, E. Karapinar, A note on some results on multi-valued weakly Jungck mappings in b-metric space, Cent. Eur. J. Math. 11 (9) (2013) 1711-1712.
[20] M.F. Bota, C. Chifu, E. Karapinar, Fixed point theorems for generalized ($\alpha-\psi$)-Cirictype contractive multivalued operators in b-metric spaces, J. Nonlinear Sci. Appl. 9 (2016) 1165-1177.
[21] S.G. Ozyurt, On some α-admissible contraction mappings on Branciari b-metric spaces, Advances in the Theory of Nonlinear Analysis and its Applications 1 (1) (2017) 1-13.
[22] R.H. Haghi, Sh. Rezapour, N. Shahzad, Some fixed point generalizations are not real generalizations, Nonlinear Analysis: Theory, Methods \& Applications 74 (5) (2011) 1799-1803.
[23] S. Phiangsungnoen, P. Kumam, On stability of fixed point inclusion for multivalued type contraction mappings in dislocated b-metric spaces with application, Math. Meth. Appl. Sci. (2018) 1-14.
[24] B. Zada, M. Sarwar, P. Kumam, Fixed point results of rational type contractions in b-metric spaces, Int. J. Anal. Appl. 16 (6) (2018) 904-920.

[^0]: *Corresponding author.

