ISSN 1686-0209

On Measurability of $C[0,1]$

Varayu Boonpogkrong
Department of Mathematics, Division of Computational Science, Faculty of Science
Prince of Songkla University, Hat Yai, 90110, Thailand
e-mail : varayu.b@psu.ac.th, b.varayu@gmail.com

Abstract In classical stochastic calculus, the measurability of the space $C[0,1]$ of all continuous functions on $[0,1]$ is handled by continuous modification. In this note, we shall prove that $C[0,1]$ is measurable in a setting of a dyadic Henstock integral.

MSC: 49K35; 47H10; 20M12
Keywords: McShane integral; McShane-Kurzweil integral; McShane-Wiener integral; Wiener measure; measurability of $C[0,1]$

Submission date: 26.05 .2018 / Acceptance date: 05.05.2020

In stochastic analysis, the measure of the space $C[0,1]$ of all continuous functions defined on $[0,1]$ is handled by continuous modification. In this paper, we shall prove that $C[0,1]$ is measurable and the measure of $C[0,1]$ is one by integrals using the Henstock approach.

1. McShane-Wiener Integral

In this section, we shall define two types of McShane-Wiener integrals.
Let \mathbb{R} denotes the set of real numbers. We define the set

$$
\begin{aligned}
\mathbb{R}^{[0,1]} & =\prod_{t \in[0,1]} \mathbb{R}_{t}, \\
& =\{\xi: t \mapsto \xi(t), t \in[0,1], \xi(t) \in \mathbb{R} \text { with } \xi(0)=0\} .
\end{aligned}
$$

where $\mathbb{R}_{t}=\mathbb{R}$ for each t, i.e., $\mathbb{R}^{[0,1]}$ can also be viewed as a set of real-valued function ξ defined on $[0,1]$ with $\xi(0)=0$. Let $\mathcal{Q}_{2}=\left\{m 2^{-n} \in[0,1]: m, n\right.$ are positive integers $\}$ be the dyadic rational. Clearly that \mathcal{Q}_{2} is a countable dense subset of $[0,1]$. Let $\mathcal{N}\left(\mathcal{Q}_{2}\right)$ be the class of all finite subsets $N=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ of \mathcal{Q}_{2} with $t_{1}<t_{2}<\cdots<t_{n}$.

The following notation shall be used: $\xi_{i}=\xi\left(t_{i}\right)$ and $I_{i}=I_{t_{i}}$ for all $t_{i} \in N$; and $\xi(N)=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$.

The cylindrical intervals (or simply intervals) in $\mathbb{R}^{[0,1]}$, denoted by $I[N]$, are of the form

$$
I[N]=I(N) \times \mathbb{R}^{[0,1] \backslash N}
$$

where $N=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} \in \mathcal{N}\left(\mathcal{Q}_{2}\right)$ and $I(N)=I_{1} \times I_{2} \times \cdots \times I_{n}$ is the n Cartesian product of one-dimensional, compact or unbounded closed, intervals I_{i} in \mathbb{R}. Let $\mathcal{I}\left(\mathcal{Q}_{2}\right)$ be the class of all interval in $\mathbb{R}^{[0,1]}$ with $N \in \mathcal{N}\left(\mathcal{Q}_{2}\right)$.

Let $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$ denote the set of extended real numbers. Denote $\prod_{t \in[0,1]} \overline{\mathbb{R}}_{t}$ by $\overline{\mathbb{R}}^{[0,1]}$, the class of all extended real-valued functions ξ defined on $[0,1]$ with $\xi(0)=0$.

Let $\delta(\xi, N)$ be a positive function defined on $\overline{\mathbb{R}}^{[0,1]} \times \mathcal{N}\left(\mathcal{Q}_{2}\right)$. A point-interval pair $(\xi, I[N])$, where $\xi \in \overline{\mathbb{R}}^{[0,1]}$ and $N \in \mathcal{N}\left(\mathcal{Q}_{2}\right)$, is said to be δ-fine if for each $t_{i} \in N$, we have (i) $I_{i} \subset\left(\xi_{i}-\delta(\xi, N), \xi_{i}+\delta(\xi, N)\right)$ whenever $\xi_{i} \neq \pm \infty$; (ii) $I_{i} \subseteq\left((\delta(\xi, N))^{-1}\right.$, ∞) whenever $\xi_{i}=\infty$; or (iii) $I_{i} \subseteq\left(-\infty,-(\delta(\xi, N))^{-1}\right.$) whenever $\xi_{i}=-\infty$. Let $L(\xi)$ be a set-valued function defined on $\overline{\mathbb{R}}^{[0,1]}$ with values in $\mathcal{N}\left(\mathcal{Q}_{2}\right)$.

Let γ be a pair of functions (δ, L), where $\delta: \overline{\mathbb{R}}^{[0,1]} \times \mathcal{N}\left(\mathcal{Q}_{2}\right) \rightarrow(0, \infty)$ and $L: \overline{\mathbb{R}}^{[0,1]} \rightarrow$ $\mathcal{N}\left(\mathcal{Q}_{2}\right)$. A point-interval pair $(\xi, I[N])$ is said to be γ-fine with respect to \mathcal{Q}_{2} if $N \supseteq L(\xi)$ and $(\xi, I(N))$ is δ-fine, where $\xi=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$. A finite collection of point-interval pairs $D=\{(\xi, I[N])\}$ is said to be a γ-fine partial division of $\mathbb{R}^{[0,1]}$ with respect to \mathcal{Q}_{2} if $\{I[N]\}$ is a partial partition of $\mathbb{R}^{[0,1]}$ and each $(\xi, I[N])$ is γ-fine. In addition, if $\{I[N]\}$ is a partition of $\mathbb{R}^{[0,1]}$, then D is said to be a γ-fine division of $\mathbb{R}^{[0,1]}$ with respect to \mathcal{Q}_{2}. Given a function γ, a γ-fine division of $\mathbb{R}^{[0,1]}$ with respect to \mathcal{Q}_{2} exists, see [1, p.121].

Given $N=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} \in \mathcal{N}\left(\mathcal{Q}_{2}\right)$, let

$$
G(I[N])=\int_{I(N)} h_{N}(u) d u
$$

where $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ and

$$
h_{N}(u)=\left((2 \pi)^{n} \prod_{j=1}^{n}\left(t_{j}-t_{j-1}\right)\right)^{-1 / 2} \exp \left(-\frac{1}{2} \sum_{j=1}^{n} \frac{\left(u_{j}-u_{j-1}\right)^{2}}{t_{j}-t_{j-1}}\right)
$$

with $t_{0}=0$ and $u_{0}=0$, mentioned in $[1-3]$. The n-dimensional integral above is a Riemann or improper Riemann integral. Hence, it is a Henstock integral, see [1-3].
Definition 1.1 (McShane-Wiener Integral on $\mathbb{R}^{[0,1]}$ with respect to \mathcal{Q}_{2}). The functional $f: \overline{\mathbb{R}}^{[0,1]} \rightarrow \mathbb{R}$ is said to be McShane-Wiener integrable (or simply Wiener integrable) to $A \in \mathbb{R}$ on $\mathbb{R}^{[0,1]}$ with respect to \mathcal{Q}_{2} if for each $\epsilon>0$, there exists a pair of functions $\gamma=(\delta, L)$, where $\delta: \overline{\mathbb{R}}^{[0,1]} \times \mathcal{N}\left(\mathcal{Q}_{2}\right) \rightarrow(0, \infty)$ and $L: \overline{\mathbb{R}}^{[0,1]} \rightarrow \mathcal{N}\left(\mathcal{Q}_{2}\right)$, such that whenever $D=\{(\xi, I[N])\}$ is a γ-fine division of $\mathbb{R}^{[0,1]}$ with respect to \mathcal{Q}_{2}, we have

$$
\left|(D) \sum f(\xi) G(I[N])-A\right| \leq \epsilon
$$

where we assume that $f(\xi)=0$ if one of the components of ξ is $\pm \infty$. The number A is called the McShane-Wiener integral (or simply Wiener integral) of f on $\mathbb{R}^{[0,1]}$ with respect to \mathcal{Q}_{2} and is denoted by $\int_{\mathbb{R}^{[0,1]}\left(\mathcal{Q}_{2}\right)} f$.

We remark that the above integrals are mentioned in [1, p. $316-320$]. In his book, Muldowney remarks that this integral is a version of continuous modification of the integral. We use the above integral to show that $C[0,1]$ is integrable. It is known that $C[0,1]$ is not integrable if we use tag points in $[0,1]$ instead of \mathcal{Q}_{2}.

Definition 1.2. In the Definition 1.1, if we replace the interval $[0,1]$ by \mathcal{Q}_{2}, i.e., f : $\overline{\mathbb{R}}^{\mathcal{Q}_{2}} \rightarrow \mathbb{R} ; \gamma=(\delta, L)$ is defined on $\mathbb{R}^{\mathcal{Q}_{2}}$ and $\mathcal{N}\left(\mathcal{Q}_{2}\right) ;$ and $D=\{(\xi, I[N])\}$ is a γ-fine
division of $\mathbb{R}^{\mathcal{Q}_{2}}$, then f is said to be McShane-Wiener integrable (or simply Wiener integrable) to $A \in \mathbb{R}$ on $\mathbb{R}^{\mathcal{Q}_{2}}$ and is denoted by $\int_{\mathbb{R}_{2}} f$.

We note that the basic properties of integrals, such as linear property and the integrability over subinterval hold for the McShane-Wiener Integral on $\mathbb{R}^{[0,1]}$ with respect to \mathcal{Q}_{2} and the McShane-Wiener Integral on $\mathbb{R}^{\mathcal{Q}_{2}}$. The integrals $\int_{\mathbb{R}^{[0,1]}\left(\mathcal{Q}_{2}\right)} f$ and $\int_{\mathbb{R}^{\mathcal{Q}_{2}}} f$ are not equivalent. The first integral is an integration over $\mathbb{R}^{[0,1]}$, while the second is an integration over $\mathbb{R}^{\mathcal{Q}_{2}}$.

2. Measures on $\mathbb{R}^{[0,1]}$

Now we shall discuss the measurability of $C[0,1]$ and $C\left(\mathcal{Q}_{2}\right)$.
Definition 2.1. Let \mathcal{M} be the collection of all subsets M of $\overline{\mathbb{R}}^{[0,1]}$ such that χ_{M} is McShane-Wiener integrable on $\mathbb{R}^{[0,1]}$ with respect to \mathcal{Q}_{2}. If $M \in \mathcal{M}$, then M is said to be a measurable set. Let $\mathcal{M}^{\mathcal{Q}_{2}}$ be the collection of all subsets M of $\overline{\mathbb{R}}^{\mathcal{Q}_{2}}$ such that χ_{M} is McShane-Wiener integrable on $\mathbb{R}^{\mathcal{Q}_{2}}$. If $M \in \mathcal{M}^{\mathcal{Q}_{2}}$, then M is said to be a \mathcal{Q}_{2}-measurable set.
Definition 2.2. Let $\mathcal{P}: \mathcal{M} \rightarrow \mathbb{R}$ and $M \in \mathcal{M}$, define

$$
\mathcal{P}(M)=\int_{\mathbb{R}^{[0,1]}\left(\mathcal{Q}_{2}\right)} \chi_{M}
$$

and $\mathcal{P}^{\mathcal{Q}_{2}}: \mathcal{M}^{\mathcal{Q}_{2}} \rightarrow \mathbb{R}$ and $M \in \mathcal{M}^{\mathcal{Q}_{2}}$, define

$$
\mathcal{P}^{\mathcal{Q}_{2}}(M)=\int_{\mathbb{R}^{\mathcal{Q}_{2}}} \chi_{M}
$$

Lemma 2.3. $\mathbb{R}^{\mathcal{Q}_{2}}$ is \mathcal{Q}_{2}-measurable and $\mathcal{P}^{\mathcal{Q}_{2}}\left(\mathbb{R}^{\mathcal{Q}_{2}}\right)=1 ; \mathbb{R}^{[0,1]}$ is measurable and $\mathcal{P}\left(\mathbb{R}^{[0,1]}\right)=1$.
Proof. Let $\epsilon>0$. Let $L: \overline{\mathbb{R}}^{\mathcal{Q}_{2}} \rightarrow \mathcal{N}\left(\mathcal{Q}_{2}\right)$ and $\delta: \overline{\mathbb{R}}^{\mathcal{Q}_{2}} \times \mathcal{N}\left(\mathcal{Q}_{2}\right) \rightarrow(0, \infty)$ be any functions, and $\gamma=(\delta, L)$.

Let $D=\{(\xi, I[N])\}$ be a γ-fine division of $\mathbb{R}^{\mathcal{Q}_{2}}$. Note that for any $(\xi, I[N]) \in D$, we have $N=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\} \subset \mathcal{Q}_{2}$. Hence

$$
(D) \sum \chi_{\mathbb{R}^{\mathfrak{Q}_{2}}}(\xi) G(I[N])=(D) \sum 1 \cdot G(I[N])=(D) \sum G(I[N])=1
$$

Therefore, $\mathcal{P}^{\mathcal{Q}_{2}}\left(\mathbb{R}^{\mathcal{Q}_{2}}\right)=1$. Similarly, $\mathcal{P}\left(\mathbb{R}^{[0,1]}\right)=1$.
Theorem 2.4. $\mathcal{P}^{\mathcal{Q}_{2}}$ is a probability measure on $\left(\mathbb{R}^{\mathcal{Q}_{2}}, \mathcal{M}^{\mathcal{Q}_{2}}\right)$, that is, $\left(\mathbb{R}^{\mathcal{Q}_{2}}, \mathcal{M}^{\mathcal{Q}_{2}}, \mathcal{P}^{\mathcal{Q}_{2}}\right)$ is a probability measure space; $\left(\mathbb{R}^{[0,1]}, \mathcal{M}, \mathcal{P}\right)$ is a probability measure space.
Proof. The proof is a consequence of the standard properties of Henstock-Wiener integral and Monotone Convergence Theorem, see [1, 2, 4-7].

Theorem 2.5. The probability measure spaces $\left(\mathbb{R}^{\mathcal{Q}_{2}}, \mathcal{M}^{\mathcal{Q}_{2}}, \mathcal{P}^{\mathcal{Q}_{2}}\right)$ and $\left(\mathbb{R}^{[0,1]}, \mathcal{M}, \mathcal{P}\right)$ are complete, i.e., every subset of a set of measure zero is of measure zero.
Proof. Let M be a set of \mathcal{Q}_{2}-measure zero. So, $M \in \mathcal{M}^{\mathcal{Q}_{2}}$ and $\mathcal{P}^{\mathcal{Q}_{2}}(M)=0$. Let $\epsilon>0$, there exists a pair of functions $\gamma=(\delta, L)$ such that whenever $D=\{(\xi, I[N])\}$ is a γ-fine division of $\mathbb{R}^{\mathcal{Q}_{2}}$, we have

$$
\left|(D) \sum \chi_{M}(\xi) G(I[N])\right| \leq \epsilon
$$

Let $M^{\prime} \subseteq M$. Then $\chi_{M^{\prime}}(\xi) \leq \chi_{M}(\xi)$ for all $\xi \in \overline{\mathbb{R}}^{\mathcal{Q}_{2}}$. Thus for every γ-fine division $D=\{(\xi, I[N])\}$ of $\mathbb{R}^{\mathcal{Q}_{2}}$, we have

$$
\left|(D) \sum \chi_{M^{\prime}}(\xi) G(I[N])\right| \leq\left|(D) \sum \chi_{M}(\xi) G(I[N])\right| \leq \epsilon
$$

Therefore, $\chi_{M^{\prime}}$ is integrable to zero on $\mathbb{R}^{\mathcal{Q}_{2}}$, that is, M^{\prime} is a set of \mathcal{Q}_{2}-measure zero. Similarly for $\left(\mathbb{R}^{[0,1]}, \mathcal{M}, \mathcal{P}\right)$.

A function ξ is said to be uniformly continuous on X, where X is a metric space with metric $|\cdot|$, if for any $\epsilon>0$ there exists $\delta>0$ such that for all $x, y \in X$ with $|x-y|<\delta$ we have

$$
|\xi(x)-\xi(y)| \leq \epsilon
$$

Let $C(X)$ be the set of all uniform continuous function on X and $D(X)=\mathbb{R}^{X} \backslash C(X)$. We note that if X is compact then the set of all uniform continuous function on X and the set of all continuous function on X are coincide.

The following is a well-known result, see [8].
Lemma 2.6. Suppose ξ^{*} is a uniform continuous function on \mathcal{Q}_{2}. Then there exists unique continuous function ξ on $[0,1]$ such that

$$
\xi(x)=\xi^{*}(x)
$$

for all $x \in \mathcal{Q}_{2}$.
In this note, $C[0,1]$ and $C\left(\mathcal{Q}_{2}\right)$ are the sets of all uniform continuous function ξ on $[0,1]$ and \mathcal{Q}_{2}, respectively, with $\xi(0)=0$. Hence $C[0,1] \subseteq \mathbb{R}^{[0,1]}$ and $C\left(\mathcal{Q}_{2}\right) \subseteq \mathbb{R}^{\mathcal{Q}_{2}}$.

Notice that, the corresponding function $\xi^{*} \in C\left(\mathcal{Q}_{2}\right)$ of $\xi \in C[0,1]$ is the restriction function of ξ on \mathcal{Q}_{2}.

Let $\wp: \mathbb{R}^{[0,1]} \rightarrow \mathbb{R}^{\mathcal{Q}_{2}}$ be a projection of $\mathbb{R}^{[0,1]}$ onto $\mathbb{R}^{\mathcal{Q}_{2}}$. We note that

$$
\wp^{-1}\left(C\left(\mathcal{Q}_{2}\right)\right) \supset C[0,1] ;
$$

but, by Lemma 2.6, if $\xi^{*} \in C\left(\mathcal{Q}_{2}\right)$, then there exists unique $\xi \in C[0,1]$, such that

$$
\wp(\xi)=\xi^{*}
$$

Theorem 2.7. Suppose $\chi_{C\left(\mathcal{Q}_{2}\right)}$ is McShane-Wiener integrable on $\mathbb{R}^{\mathcal{Q}_{2}}$. 2Then the McShaneWiener integral of $\chi_{C[0,1]}$ on $\mathbb{R}^{[0,1]}$ with respect to \mathcal{Q}_{2} exists and

$$
\int_{\mathbb{R}^{[0,1]}\left(\mathcal{Q}_{2}\right)} \chi_{C[0,1]}=\int_{\mathbb{R}^{\mathcal{Q}_{2}}} \chi_{C\left(\mathcal{Q}_{2}\right)}
$$

Proof. Let $\epsilon>0$ be given. There exists $\gamma^{*}=\left(\delta^{*}, L^{*}\right)$ defined on $\mathbb{R}^{\mathcal{Q}_{2}}$ and $\mathcal{N}\left(\mathcal{Q}_{2}\right)$ such that whenever $D^{*}=\left\{\left(\xi^{*}, I^{*}[N]\right)\right\}$ is a γ^{*}-fine division of $\mathbb{R}^{\mathcal{Q}_{2}}$, we have

$$
\left|\left(D^{*}\right) \sum \chi_{C\left(\mathcal{Q}_{2}\right)}\left(\xi^{*}\right) G\left(I^{*}[N]\right)-\int_{\mathbb{R}^{\mathcal{Q}_{2}}} \chi_{C\left(\mathcal{Q}_{2}\right)}\right| \leq \epsilon
$$

For each $\xi \in \mathbb{R}^{[0,1]}$, let ξ^{*} be the restriction function of ξ on \mathcal{Q}_{2}, i.e., $\xi^{*}=\wp(\xi)$. Now, we shall choose $\gamma=(\delta, L)$ defined on $\mathbb{R}^{[0,1]}$ so that for every γ-fine division D of $\mathbb{R}^{[0,1]}$ with respect to \mathcal{Q}_{2} the corresponding division D^{*} of $\mathbb{R}^{\mathcal{Q}_{2}}$ is γ^{*}-fine.

Case I. If $\xi \in C[0,1]$, then $\xi^{*}=\wp(\xi) \in C\left(\mathcal{Q}_{2}\right)$. Choose
$\delta(\xi, N)=\delta^{*}\left(\xi^{*}, N\right)$ and $L(\xi)=L^{*}\left(\xi^{*}\right)$.
For this case, obviously, $\chi_{C[0,1]}(\xi)=1=\chi_{C\left(\mathcal{Q}_{2}\right)}\left(\xi^{*}\right)$.
Case II. If $\xi \in D[0,1]$ and $\xi^{*}=\wp(\xi) \in D\left(\mathcal{Q}_{2}\right)$, then we choose
$\delta(\xi, N)=\delta^{*}\left(\xi^{*}, N\right)$ and $L(\xi)=L^{*}\left(\xi^{*}\right)$.
For this trivial case, we have $\chi_{C[0,1]}(\xi)=0=\chi_{C\left(\mathcal{Q}_{2}\right)}\left(\xi^{*}\right)$.
Case III. If $\xi \in D[0,1]$ but $\xi^{*}=\wp(\xi) \in C\left(\mathcal{Q}_{2}\right)$. We choose a fixed $\eta^{*} \in D\left(\mathcal{Q}_{2}\right)$. We replace the ξ^{*} with η^{*} for this case. Thus η^{*} become the corresponding tag point of all ξ for this case and
$\delta(\xi, N)=\delta^{*}\left(\eta^{*}, N\right)$ and $L(\xi)=L^{*}\left(\eta^{*}\right)$.
Thus, we have $\chi_{C[0,1]}(\xi)=0=\chi_{C\left(\mathcal{Q}_{2}\right)}\left(\eta^{*}\right)$.
We note that the above replacement in this case can be done because the divisions we use in the definition of the integrals are McShane, not Henstock.
Let $D=\{(\xi, I[N])\}$ be a γ-fine division of $\mathbb{R}^{[0,1]}$ with respect to \mathcal{Q}_{2}. The corresponding division $D^{*}=\left\{\left(\xi^{*}, I^{*}[N]\right)\right\}$ to the division D form a γ^{*}-fine division of $\mathbb{R}^{\mathcal{Q}_{2}}$ (recall in case III, $\xi^{*}=\eta^{*}$) because $N \subseteq \mathcal{Q}_{2}$,

$$
\cup_{\left(\xi^{*}, I^{*}[N]\right) \in D^{*}} I^{*}[N] \times \mathbb{R}^{[0,1] \backslash \mathcal{Q}_{2}}=\cup_{(\xi, I[N]) \in D} I[N]=\mathbb{R}^{[0,1]}=\mathbb{R}^{\mathcal{Q}_{2}} \times \mathbb{R}^{[0,1] \backslash \mathcal{Q}_{2}}
$$

that is, $\cup_{\left(\xi^{*}, I^{*}[N]\right) \in D^{*}} I^{*}[N]=\mathbb{R}^{\mathcal{Q}_{2}}$. Notice that the value of $G(I[N])$ only depends on $I[N]$. Hence $G(I[N])=G\left(I^{*}[N]\right)$. By the choice of function γ chosen as above, we have

$$
\chi_{C[0,1]}(\xi)=\chi_{C\left(\mathcal{Q}_{2}\right)}\left(\xi^{*}\right)
$$

for all $\xi \in \mathbb{R}^{[0,1]}$. Thus

$$
(D) \sum \chi_{C[0,1]}(\xi) G(I[N])=\left(D^{*}\right) \sum \chi_{C\left(\mathcal{Q}_{2}\right)}\left(\xi^{*}\right) G\left(I^{*}[N]\right) .
$$

Therefore, we have

$$
\begin{aligned}
& \left|(D) \sum \chi_{C[0,1]}(\xi) G(I[N])-\int_{\mathbb{R}_{2}} \chi_{C\left(\mathcal{Q}_{2}\right)}\right| \\
& =\left|\left(D^{*}\right) \sum \chi_{C\left(\mathcal{Q}_{2}\right)}\left(\xi^{*}\right) G\left(I^{*}[N]\right)-\int_{\mathbb{R}^{\mathcal{Q}_{2}}} \chi_{C\left(\mathcal{Q}_{2}\right)}\right| \leq \epsilon .
\end{aligned}
$$

That is, the McShane-Wiener integral of $\chi_{C[0,1]}$ on $\mathbb{R}^{[0,1]}$ with respect to \mathcal{Q}_{2} exists and

$$
\int_{\mathbb{R}^{[0,1]}\left(\mathcal{Q}_{2}\right)} \chi_{C[0,1]}=\int_{\mathbb{R}^{\mathcal{Q}_{2}}} \chi_{C\left(\mathcal{Q}_{2}\right)}
$$

We shall prove that $\mathcal{P}^{\mathcal{Q}_{2}}\left(C\left(\mathcal{Q}_{2}\right)\right)=1$ in Section 3, Theorem 3.11. By Theorem 2.7, $\mathcal{P}(C[0,1])=1$. Hence, we have the following theorem:

Theorem 2.8. $\mathcal{P}^{\mathcal{Q}_{2}}\left(C\left(\mathcal{Q}_{2}\right)\right)=1$ and $\mathcal{P}(C[0,1])=1$.
We remark that using the same ideas, Theorem 2.7 is true for $\mathcal{H}_{\alpha}\left(\mathcal{Q}_{2}\right)$ and $\mathcal{H}_{\alpha}[0,1]$, where $0<\alpha<\frac{1}{2}$. For the definition of $\mathcal{H}_{\alpha}\left(\mathcal{Q}_{2}\right)$ see Definition 3.1.

3. Hölder Continuous of Exponential α Over \mathcal{Q}_{2}

In this section, we follow the ideas in [9, Section 8.1] of the proofs of Lemmas 3.2, 3.3 and Theorem 3.8. Similar results can be found in [1, Section 6.9]. We prove the results in the setting of the McShane-Wiener integral.

Definition 3.1. For every real number $\alpha>0$, a function $\xi \in \mathbb{R}^{\mathcal{Q}_{2}}$ is said to be Hölder continuous with exponent α in the set \mathcal{Q}_{2} if there exists a constant C such that for all $q, r \in \mathcal{Q}_{2}$,

$$
|\xi(q)-\xi(r)| \leq C|q-r|^{\alpha}
$$

The space of all Hölder continuous with exponent α in the set \mathcal{Q}_{2} is denoted by $\mathcal{H}_{\alpha}\left(\mathcal{Q}_{2}\right)$.
We remark that if $0<\alpha<\beta$, then $\mathcal{H}_{\beta}\left(\mathcal{Q}_{2}\right) \subseteq \mathcal{H}_{\alpha}\left(\mathcal{Q}_{2}\right)$. Hence, if $0<\alpha<\frac{1}{2}$, we have $\mathcal{H}_{1 / 2}\left(\mathcal{Q}_{2}\right) \subseteq \mathcal{H}_{\alpha}\left(\mathcal{Q}_{2}\right)$.
Lemma 3.2. Let $\xi \in \mathbb{R}^{\mathcal{Q}_{2}}$ and $0<\alpha<1$. Suppose there exists $N=N(\xi)$ such that

$$
|\xi(q)-\xi(r)| \leq C|q-r|^{\alpha}
$$

for all $q, r \in \mathcal{Q}_{2}$ with $|q-r|<2^{-N}$. Then $\xi \in \mathcal{H}_{\alpha}\left(\mathcal{Q}_{2}\right)$.
Proof. Let $q, r \in \mathcal{Q}_{2}$. If $|q-r|<2^{-N}$, then we get the required result. Suppose $|q-r| \geq$ 2^{-N}, let $0 \leq q=s_{0}<s_{1}<\ldots<s_{n}=r \leq 1$ with $s_{0}, s_{1}, \ldots, s_{n} \in \mathcal{Q}_{2}, s_{i}-s_{i-1}<2^{-N}$ and $n \leq 2^{N+1}$. Hence,

$$
|\xi(q)-\xi(r)| \leq \sum_{i=1}^{n}\left|\xi\left(s_{i}\right)-\xi\left(s_{i-1}\right)\right| \leq C \sum_{i=1}^{n}\left(s_{i}-s_{i-1}\right)^{\alpha} \leq C \cdot 2^{N+1}|q-r|^{\alpha}
$$

Therefore,

$$
|\xi(q)-\xi(r)| \leq C \cdot 2^{N+1}|q-r|^{\alpha}
$$

i.e., $\xi \in \mathcal{H}_{\alpha}\left(\mathcal{Q}_{2}\right)$.

To show that $\int_{\mathbb{R}^{\mathcal{Q}_{2}}} \chi_{\mathcal{H}_{1 / 2}\left(\mathcal{Q}_{2}\right)}=0$. We define the following sets.
Let β be any fixed positive number. For fixed positive integer n and $\alpha>0$, let

$$
G_{\alpha, n}=\left\{\xi \in \overline{\mathbb{R}}^{\mathcal{Q}_{2}}:\left|\xi\left(\frac{m}{2^{n}}\right)-\xi\left(\frac{m-1}{2^{n}}\right)\right|^{\beta} \leq 2^{-\alpha \beta n} \text { for all } m=1,2, \ldots, 2^{n}\right\}
$$

Hence

$$
G_{\alpha, n}^{c}=\left\{\xi \in \overline{\mathbb{R}}^{\mathcal{Q}_{2}}:\left|\xi\left(\frac{m}{2^{n}}\right)-\xi\left(\frac{m-1}{2^{n}}\right)\right|^{\beta}>2^{-\alpha \beta n} \text { for some } m \text { with } 0<m \leq 2^{n}\right\}
$$

i.e., if $\xi \in G_{\alpha, n}^{c}$, then there exists m such that

$$
1<2^{\alpha \beta n}\left|\xi\left(\frac{m}{2^{n}}\right)-\xi\left(\frac{m-1}{2^{n}}\right)\right|^{\beta}
$$

Let $H_{\alpha, N}=\cap_{n=N}^{\infty} G_{\alpha, n}$. If $\xi \in H_{\alpha, N}$, then $\xi \in G_{\alpha, n}$ for all $n \geq N$, i.e.,

$$
\left|\xi\left(\frac{m}{2^{n}}\right)-\xi\left(\frac{m-1}{2^{n}}\right)\right|^{\beta} \leq 2^{-\alpha \beta n} \text { for all } m=1,2, \ldots, 2^{n}
$$

for all $n \geq N$. Note that $H_{\alpha, N}$ is increasing and $H_{\alpha, N}^{c}$ decreasing as $N \rightarrow \infty$.
Next we shall show that $H_{\alpha, N} \subseteq \mathcal{H}_{\alpha}\left(\mathcal{Q}_{2}\right)$.

Lemma 3.3. Let $\alpha>0$ be fixed. For any $\xi \in H_{\alpha, N}$, we have

$$
|\xi(q)-\xi(r)| \leq \frac{3}{1-2^{-\alpha}}|q-r|^{\alpha}
$$

for $q, r \in \mathcal{Q}_{2}$ with $|q-r|<2^{-N}$.
Proof. Let $\xi \in H_{\alpha, N}$ and $q, r \in \mathcal{Q}_{2}$ with $0<q-r<2^{-N}$. Choose some $n \geq N$ such that $2^{-n} \leq q-r<2^{-n+1}$. We can write $q=\frac{m}{2^{n}}+\frac{1}{2^{s_{1}}}+\frac{1}{2^{s_{2}}}+\ldots+\frac{1}{2^{s_{k}}}$ and $r=\frac{m-1}{2^{n}}-\frac{1}{2^{t_{1}}}-\frac{1}{2^{t_{2}}}-\ldots-\frac{1}{2^{t_{l}}}$, where $n<s_{1}<s_{2}<\cdots<s_{k}$ and $n<t_{1}<t_{2}<\cdots<t_{l}$. Observe that $\frac{m}{2^{n}}$ and $\frac{m}{2^{n}}+\frac{1}{2^{s_{1}}}+\frac{1}{2^{s_{2}}}+\ldots+\frac{1}{2^{s_{j}}}, j=1,2, \ldots, k$ are all in \mathcal{Q}_{2} and the distance between any two consecutive points is $\frac{1}{2^{s_{j}}}$. Hence

$$
\left|\xi(q)-\xi\left(\frac{m}{2^{n}}\right)\right| \leq \sum_{j=1}^{k} 2^{-\alpha s_{j}} \leq \sum_{j=1}^{\infty}\left(2^{-\alpha}\right)^{s_{j}} \leq \sum_{u=n}^{\infty}\left(2^{-\alpha}\right)^{u}=\frac{2^{-\alpha n}}{1-2^{-\alpha}}
$$

Similarly, we have

$$
\left|\xi\left(\frac{m-1}{2^{n}}\right)-\xi(r)\right| \leq \frac{2^{-\alpha n}}{1-2^{-\alpha}}
$$

Hence

$$
\begin{aligned}
|\xi(q)-\xi(r)| & \leq\left|\xi(q)-\xi\left(\frac{m}{2^{n}}\right)\right|+\left|\xi\left(\frac{m}{2^{n}}\right)-\xi\left(\frac{m-1}{2^{n}}\right)\right|+\left|\xi\left(\frac{m-1}{2^{n}}\right)-\xi(r)\right| \\
& \leq \frac{2^{-\alpha n}}{1-2^{-\alpha}}+2^{-\alpha n}+\frac{2^{-\alpha n}}{1-2^{-\alpha}} \\
& \leq \frac{3}{1-2^{-\alpha}} 2^{-\alpha n} \leq \frac{3}{1-2^{-\alpha}}|q-r|^{\alpha}
\end{aligned}
$$

Lemma 3.4. If $\xi \in H_{\alpha, N}$, then $\xi \in \mathcal{H}_{\alpha}\left(\mathcal{Q}_{2}\right)$, i.e.,

$$
|\xi(q)-\xi(r)| \leq \frac{3 \cdot 2^{N+1}}{1-2^{-\alpha}}|q-r|^{\alpha}
$$

for $q, r \in \mathcal{Q}_{2}$.
Proof. It follows from Lemmas 3.2 and 3.3.
Next, we shall estimate $\int_{\mathbb{R}^{\mathfrak{Q}_{2}}} \chi_{G_{\alpha, n}^{c}}$ using the MsShane-Wiener integral.
Lemma 3.5. [4, p. 56] For fixed $p, n \in \mathbb{N}$, for each $0<m<2^{n}$, let $f: \overline{\mathbb{R}}^{\mathcal{Q}_{2}} \rightarrow \mathbb{R}$ be defined by $f(\xi):=\left|\xi\left(\frac{m}{2^{n}}\right)-\xi\left(\frac{m-1}{2^{n}}\right)\right|^{2 p}$. Then f is McShane-Wiener integrable on $\mathbb{R}^{\mathcal{Q}_{2}}$ and

$$
\int_{\mathbb{R}^{\mathcal{Q}_{2}}}\left|\xi\left(\frac{m}{2^{n}}\right)-\xi\left(\frac{m-1}{2^{n}}\right)\right|^{2 p}=K_{p} 2^{-p n}
$$

where $K_{p}=\left(\frac{2}{\pi}\right)^{p} \Gamma\left(p+\frac{1}{2}\right)$.
Lemma 3.6. $G_{\alpha, n}$ is \mathcal{Q}_{2}-measurable, i.e., $\chi_{G_{\alpha, n}}$ is McShane-Wiener integrable on $\mathbb{R}^{\mathcal{Q}_{2}}$.

Proof. For $m=1,2, \ldots, 2^{n}$, let

$$
G_{\alpha, n, m}=\left\{\xi \in \overline{\mathbb{R}}^{\mathcal{Q}_{2}}:\left|\xi\left(\frac{m}{2^{n}}\right)-\xi\left(\frac{m-1}{2^{n}}\right)\right|^{\beta} \leq 2^{-\alpha \beta n}\right\} .
$$

Then

$$
\int_{\mathbb{R}^{\mathfrak{Q}_{2}}} \chi_{G_{\alpha, n, m}}=\int_{\mathbb{R}^{2}} \chi_{W},
$$

where $W=\left\{(u, v):|u-v| \leq 2^{-\alpha n}\right\}$. Note that $G_{\alpha, n}=\cap_{m=1}^{2^{n}} G_{\alpha, n, m}$. Hence $G_{\alpha, n}$ is \mathcal{Q}_{2}-measurable.

Let $p>0$ be fixed and $0<\alpha<\frac{1}{2}-\frac{1}{p}$. Then $\lambda=p-1-2 \alpha p>0$. We shall use this properties in Lemma 3.7 and Theorem 3.8.
Lemma 3.7. Let $p>0$ be fixed and $0<\alpha<\frac{1}{2}-\frac{1}{p}$. Then

$$
\int_{\mathbb{R}^{\mathcal{Q}_{2}}} \chi_{G_{\alpha, n}^{c}} \leq K_{p} 2^{-\lambda n}
$$

where $K_{p}=\left(\frac{2}{\pi}\right)^{p} \Gamma\left(p+\frac{1}{2}\right)$, where $\lambda=p-1-2 \alpha p$.
Proof. By Lemma 3.5, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{\mathcal{Q}_{2}}} \chi_{G_{\alpha, n}^{c}} & \leq \sum_{i=1}^{2^{n}} 2^{\alpha(2 p) n} \int_{\mathbb{R}^{\mathcal{Q}_{2}}}\left|\xi\left(\frac{i}{2^{n}}\right)-\xi\left(\frac{i-1}{2^{n}}\right)\right|^{2 p} \\
& =\sum_{i=1}^{2^{n}} 2^{2 \alpha p n} K_{p} 2^{-p n} \\
& =K_{p} 2^{n} 2^{2 \alpha p n} 2^{-p n} \\
& =K_{p} 2^{(1+2 \alpha p-p) n} \\
& =K_{p} 2^{-\lambda n} .
\end{aligned}
$$

Notice that $\lambda=p-1-2 \alpha p>0$.
Theorem 3.8. Let $p>0$ be fixed and $0<\alpha<\frac{1}{2}-\frac{1}{p}$. Then

$$
\sum_{N=1}^{\infty} \int_{\mathbb{R}^{\mathfrak{Q}_{2}}} \chi_{H_{\alpha, N}^{c}}<\infty
$$

Proof. By Lemma 3.7, we have

$$
\int_{\mathbb{R}^{\mathcal{Q}_{2}}} \chi_{H_{\alpha, N}^{c}} \leq \sum_{n=N}^{\infty} \int_{\mathbb{R}^{\mathcal{Q}_{2}}} \chi_{G_{\alpha, n}^{c}} \leq K_{p} \sum_{n=N}^{\infty} 2^{-\lambda n}=\frac{K_{p} 2^{-\lambda N}}{1-2^{-\lambda}}
$$

where $K_{p}=\left(\frac{2}{\pi}\right)^{p} \Gamma\left(p+\frac{1}{2}\right)$ and $\lambda=p-1-2 \alpha p$. The above equality holds because $\lambda=p-1-2 \alpha p>0$. Then

$$
\sum_{N=1}^{\infty} \int_{\mathbb{R} \mathfrak{Q}_{2}} \chi_{H_{\alpha, N}^{c}} \leq \sum_{N=1}^{\infty} \frac{K_{p} 2^{-N \lambda}}{1-2^{-\lambda}}=\frac{K_{p} 2^{-\lambda}}{\left(1-2^{-\lambda}\right)^{2}}<\infty
$$

Let

$$
E=\bigcap_{n=1}^{\infty} \bigcup_{N=n}^{\infty} H_{\alpha, N}^{c}
$$

Then

$$
E^{c}=\left(\bigcap_{n=1}^{\infty} \bigcup_{N=n}^{\infty} H_{\alpha, N}^{c}\right)^{c}=\bigcup_{n=1}^{\infty} \bigcap_{N=n}^{\infty} H_{\alpha, N}
$$

Theorem 3.9. Let $p>0$ be fixed and $0<\alpha<\frac{1}{2}-\frac{1}{p}$, i.e., $0<\alpha<\frac{1}{2}$. Then $\int_{\mathbb{R}^{\mathcal{Q}_{2}}} \chi_{E}=0$ and $\int_{\mathbb{R}^{\mathcal{Q}_{2}}} \chi_{E^{c}}=1$.
Proof. First

$$
0 \leq \int_{\mathbb{R}^{\mathfrak{Q}_{2}}} \chi_{E} \leq \sum_{N=n}^{\infty} \int_{\mathbb{R}^{Q_{2}}} \chi_{H_{\alpha, N}^{c}}
$$

for all n. By Theorem 3.8, $\int_{\mathbb{R}^{\mathfrak{Q}_{2}}} \chi_{E}=0$. Therefore, $\int_{\mathbb{R}^{\mathfrak{Q}_{2}}} \chi_{E^{c}}=1$.
Theorem 3.10. Let $p>0$ be fixed and $0<\alpha<\frac{1}{2}-\frac{1}{p}$. Then $\int_{R^{\mathcal{Q}_{2}}} \chi_{\mathcal{H}_{\alpha}\left(\mathcal{Q}_{2}\right)}=1$.
Proof. First we note that $E^{c}=\cup_{n=1}^{\infty} \cap{ }_{N=n}^{\infty} H_{\alpha, N}$. By Lemma 3.4, $H_{\alpha, N} \subseteq \mathcal{H}_{\alpha}\left(\mathcal{Q}_{2}\right)$ for all N. Hence $E^{c} \subseteq \mathcal{H}_{\alpha}\left(\mathcal{Q}_{2}\right)$. By the completeness of the probability measure space, Theorem 2.5, we get $\int_{R^{\mathcal{Q}_{2}}} \chi_{\mathcal{H}_{\alpha}\left(\mathcal{Q}_{2}\right)}=1$.

By the completeness of the probability measure space $\left(\mathbb{R}^{\mathcal{Q}_{2}}, \mathcal{M}^{\mathcal{Q}_{2}}, \mathcal{P}^{\mathcal{Q}_{2}}\right)$, Theorem 2.5, and $\mathcal{H}_{\alpha}\left(\mathcal{Q}_{2}\right) \subseteq C\left(\mathcal{Q}_{2}\right)$, for $0<\alpha<\frac{1}{2}$, we get the following theorem:
Theorem 3.11. $C\left(\mathcal{Q}_{2}\right)$ is \mathcal{Q}_{2}-measurable and

$$
\mathcal{P}^{\mathcal{Q}_{2}}\left(C\left(\mathcal{Q}_{2}\right)\right)=\int_{R^{\mathcal{Q}_{2}}} \chi_{C\left(\mathcal{Q}_{2}\right)}=1
$$

Acknowledgements

This research was supported by the Faculty of Science Research Fund, Prince of Songkla University, Hat Yai, Thailand.

References

[1] P. Muldowney, A Modern Theory of Random Variation, Wiley Inc., New Jersey, 2012.
[2] R. Henstock, Lectures on the Theory of Integration, World Scientific, Singapore, 1988.
[3] L.P. Yee, R. Výborný, The Integral: An Easy Approach after Kurzweil and Henstock, Cambridge University Press, Cambridge, 2000.
[4] P. Muldowney, A General Theory of Integration in Function Spaces, Pitman Research Notes in Mathematics Series, Longman Scientific, 1987.
[5] C.T. Seng, L.P. Yee, The Henstock Wiener integral, Proceeding of Symposium on Real Analysis (Xiamen 1993), J. Math. Study 27 (1) (1994) 60-65.
[6] Y.C. Hwa, Measure Theory and the Henstock-Wiener Integral, M.Sc. Thesis, NUS, 1998.
[7] Y.C. Hwa, C.T. Seng, On McShane-Wiener integral, Proceeding of International Mathematics Conference (Manila 1998), Matimyas Math. 22 (2) (1999) 39-46.
[8] H.L. Royden, Real Analysis, Maxwell-Macmillan, New York, 1988.
[9] R. Durrett, Probability: Theory and Examples (4th edition), Cambridge University Press, Cambridge, 2010.

