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In stochastic analysis, the measure of the space C[0, 1] of all continuous functions
defined on [0, 1] is handled by continuous modification. In this paper, we shall prove that
C[0, 1] is measurable and the measure of C[0, 1] is one by integrals using the Henstock
approach.

1. McShane–Wiener Integral

In this section, we shall define two types of McShane–Wiener integrals.
Let R denotes the set of real numbers. We define the set

R[0,1] =
∏
t∈[0,1]

Rt,

= {ξ : t 7→ ξ(t), t ∈ [0, 1], ξ(t) ∈ R with ξ(0) = 0}.

where Rt = R for each t, i.e., R[0,1] can also be viewed as a set of real-valued function ξ
defined on [0, 1] with ξ(0) = 0. Let Q2 = {m2−n ∈ [0, 1] : m,n are positive integers} be
the dyadic rational. Clearly that Q2 is a countable dense subset of [0, 1]. Let N (Q2) be
the class of all finite subsets N = {t1, t2, . . . , tn} of Q2 with t1 < t2 < · · · < tn.

The following notation shall be used: ξi = ξ(ti) and Ii = Iti for all ti ∈ N ; and
ξ(N) = (ξ1, ξ2, . . . , ξn).

The cylindrical intervals (or simply intervals) in R[0,1], denoted by I[N ], are of the
form

I[N ] = I(N)× R[0,1]\N ,
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where N = {t1, t2, . . . , tn} ∈ N (Q2) and I(N) = I1 × I2 × · · · × In is the n Cartesian
product of one-dimensional, compact or unbounded closed, intervals Ii in R. Let I(Q2)
be the class of all interval in R[0,1] with N ∈ N (Q2).

Let R̄ = R∪{−∞,∞} denote the set of extended real numbers. Denote
∏
t∈[0,1] Rt by

R[0,1], the class of all extended real-valued functions ξ defined on [0, 1] with ξ(0) = 0.
Let δ(ξ,N) be a positive function defined on R[0,1] × N (Q2). A point-interval pair

(ξ, I[N ]), where ξ ∈ R[0,1] and N ∈ N (Q2), is said to be δ-fine if for each ti ∈ N , we

have (i) Ii ⊂ (ξi − δ(ξ,N), ξi + δ(ξ,N)) whenever ξi 6= ±∞; (ii) Ii ⊆ ((δ(ξ,N))
−1
,∞)

whenever ξi = ∞; or (iii) Ii ⊆ (−∞,− (δ(ξ,N))
−1

) whenever ξi = −∞. Let L(ξ) be a
set-valued function defined on R[0,1] with values in N (Q2).

Let γ be a pair of functions (δ, L), where δ : R[0,1] ×N (Q2)→ (0,∞) and L : R[0,1] →
N (Q2). A point-interval pair (ξ, I[N ]) is said to be γ-fine with respect to Q2 if N ⊇ L(ξ)
and (ξ, I(N)) is δ-fine, where ξ = (ξ1, ξ2, . . . , ξn). A finite collection of point-interval
pairs D = {(ξ, I[N ])} is said to be a γ-fine partial division of R[0,1] with respect to Q2 if
{I[N ]} is a partial partition of R[0,1] and each (ξ, I[N ]) is γ-fine. In addition, if {I[N ]}
is a partition of R[0,1], then D is said to be a γ-fine division of R[0,1] with respect to Q2.
Given a function γ, a γ-fine division of R[0,1] with respect to Q2 exists, see [1, p.121].

Given N = {t1, t2, . . . , tn} ∈ N (Q2), let

G(I[N ]) =

∫
I(N)

hN (u) du,

where u = (u1, u2, . . . , un) and

hN (u) =

(2π)n
n∏
j=1

(tj − tj−1)

−1/2

exp

−1

2

n∑
j=1

(uj − uj−1)2

tj − tj−1


with t0 = 0 and u0 = 0, mentioned in [1–3]. The n-dimensional integral above is a
Riemann or improper Riemann integral. Hence, it is a Henstock integral, see [1–3].

Definition 1.1 (McShane–Wiener Integral on R[0,1] with respect to Q2). The functional
f : R[0,1] → R is said to be McShane–Wiener integrable (or simply Wiener integrable)
to A ∈ R on R[0,1] with respect to Q2 if for each ε > 0, there exists a pair of functions
γ = (δ, L), where δ : R[0,1]×N (Q2)→ (0,∞) and L : R[0,1] → N (Q2), such that whenever
D = {(ξ, I[N ])} is a γ-fine division of R[0,1] with respect to Q2, we have∣∣∣(D)

∑
f(ξ)G(I[N ])−A

∣∣∣ ≤ ε,
where we assume that f(ξ) = 0 if one of the components of ξ is ±∞. The number A
is called the McShane–Wiener integral (or simply Wiener integral) of f on R[0,1] with
respect to Q2 and is denoted by

∫
R[0,1](Q2)

f .

We remark that the above integrals are mentioned in [1, p.316 – 320]. In his book,
Muldowney remarks that this integral is a version of continuous modification of the inte-
gral. We use the above integral to show that C[0, 1] is integrable. It is known that C[0, 1]
is not integrable if we use tag points in [0, 1] instead of Q2.

Definition 1.2. In the Definition 1.1, if we replace the interval [0, 1] by Q2, i.e., f :
RQ2 → R; γ = (δ, L) is defined on RQ2 and N (Q2); and D = {(ξ, I[N ])} is a γ-fine
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division of RQ2 , then f is said to be McShane–Wiener integrable (or simply Wiener
integrable) to A ∈ R on RQ2 and is denoted by

∫
RQ2

f .

We note that the basic properties of integrals, such as linear property and the inte-
grability over subinterval hold for the McShane–Wiener Integral on R[0,1] with respect
to Q2 and the McShane–Wiener Integral on RQ2 . The integrals

∫
R[0,1](Q2)

f and
∫
RQ2

f

are not equivalent. The first integral is an integration over R[0,1], while the second is an
integration over RQ2 .

2. Measures on R[0,1]

Now we shall discuss the measurability of C[0, 1] and C(Q2).

Definition 2.1. Let M be the collection of all subsets M of R[0,1] such that χM is
McShane–Wiener integrable on R[0,1] with respect to Q2. If M ∈ M, then M is said to
be a measurable set. Let MQ2 be the collection of all subsets M of RQ2 such that χM is
McShane–Wiener integrable on RQ2 . If M ∈MQ2 , then M is said to be a Q2-measurable
set.

Definition 2.2. Let P :M→ R and M ∈M, define

P(M) =

∫
R[0,1](Q2)

χM ;

and PQ2 :MQ2 → R and M ∈MQ2 , define

PQ2(M) =

∫
RQ2

χM .

Lemma 2.3. RQ2 is Q2-measurable and PQ2(RQ2)=1; R[0,1] is measurable and
P(R[0,1])=1.

Proof. Let ε > 0. Let L : RQ2 → N (Q2) and δ : RQ2×N (Q2)→ (0,∞) be any functions,
and γ = (δ, L).

Let D = {(ξ, I[N ])} be a γ-fine division of RQ2 . Note that for any (ξ, I[N ]) ∈ D, we
have N = {t1, t2, . . . , tn} ⊂ Q2. Hence

(D)
∑

χRQ2 (ξ)G(I[N ]) = (D)
∑

1 ·G(I[N ]) = (D)
∑

G(I[N ]) = 1.

Therefore, PQ2(RQ2) = 1. Similarly, P(R[0,1]) = 1.

Theorem 2.4. PQ2 is a probability measure on (RQ2 ,MQ2), that is, (RQ2 ,MQ2 ,PQ2)
is a probability measure space; (R[0,1],M,P) is a probability measure space.

Proof. The proof is a consequence of the standard properties of Henstock-Wiener integral
and Monotone Convergence Theorem, see [1, 2, 4–7].

Theorem 2.5. The probability measure spaces (RQ2 ,MQ2 ,PQ2) and (R[0,1],M,P) are
complete, i.e., every subset of a set of measure zero is of measure zero.

Proof. Let M be a set of Q2-measure zero. So, M ∈ MQ2 and PQ2(M) = 0. Let ε > 0,
there exists a pair of functions γ = (δ, L) such that whenever D = {(ξ, I[N ])} is a γ-fine
division of RQ2 , we have∣∣∣(D)

∑
χM (ξ)G(I[N ])

∣∣∣ ≤ ε.
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Let M ′ ⊆ M . Then χM ′(ξ) ≤ χM (ξ) for all ξ ∈ RQ2 . Thus for every γ-fine division
D = {(ξ, I[N ])} of RQ2 , we have∣∣∣(D)

∑
χM ′(ξ)G(I[N ])

∣∣∣ ≤ ∣∣∣(D)
∑

χM (ξ)G(I[N ])
∣∣∣ ≤ ε.

Therefore, χM ′ is integrable to zero on RQ2 , that is, M ′ is a set of Q2-measure zero.
Similarly for (R[0,1],M,P).

A function ξ is said to be uniformly continuous on X, where X is a metric space with
metric | · |, if for any ε > 0 there exists δ > 0 such that for all x, y ∈ X with |x− y| < δ
we have

|ξ(x)− ξ(y)| ≤ ε.

Let C(X) be the set of all uniform continuous function on X and D(X) = RX \ C(X).
We note that if X is compact then the set of all uniform continuous function on X and
the set of all continuous function on X are coincide.

The following is a well-known result, see [8].

Lemma 2.6. Suppose ξ∗ is a uniform continuous function on Q2. Then there exists
unique continuous function ξ on [0, 1] such that

ξ(x) = ξ∗(x)

for all x ∈ Q2.

In this note, C[0, 1] and C(Q2) are the sets of all uniform continuous function ξ on
[0, 1] and Q2, respectively, with ξ(0) = 0 . Hence C[0, 1] ⊆ R[0,1] and C(Q2) ⊆ RQ2 .

Notice that, the corresponding function ξ∗ ∈ C(Q2) of ξ ∈ C[0, 1] is the restriction
function of ξ on Q2.

Let ℘ : R[0,1] → RQ2 be a projection of R[0,1] onto RQ2 . We note that

℘−1(C(Q2)) ⊃ C[0, 1];

but, by Lemma 2.6, if ξ∗ ∈ C(Q2), then there exists unique ξ ∈ C[0, 1], such that

℘(ξ) = ξ∗.

Theorem 2.7. Suppose χC(Q2) is McShane-Wiener integrable on RQ2 . 2Then the McShane-

Wiener integral of χC[0,1] on R[0,1] with respect to Q2 exists and∫
R[0,1](Q2)

χC[0,1] =

∫
RQ2

χC(Q2).

Proof. Let ε > 0 be given. There exists γ∗ = (δ∗, L∗) defined on RQ2 and N (Q2) such
that whenever D∗ = {(ξ∗, I∗[N ])} is a γ∗-fine division of RQ2 , we have∣∣∣∣(D∗)∑χC(Q2)(ξ

∗)G(I∗[N ])−
∫
RQ2

χC(Q2)

∣∣∣∣ ≤ ε.
For each ξ ∈ R[0,1], let ξ∗ be the restriction function of ξ on Q2, i.e., ξ∗ = ℘(ξ). Now,

we shall choose γ = (δ, L) defined on R[0,1] so that for every γ-fine division D of R[0,1]

with respect to Q2 the corresponding division D∗ of RQ2 is γ∗-fine.
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Case I. If ξ ∈ C[0, 1], then ξ∗ = ℘(ξ) ∈ C(Q2). Choose

δ(ξ,N) = δ∗(ξ∗, N) and L(ξ) = L∗(ξ∗).

For this case, obviously, χC[0,1](ξ) = 1 = χC(Q2)(ξ
∗).

Case II. If ξ ∈ D[0, 1] and ξ∗ = ℘(ξ) ∈ D(Q2), then we choose

δ(ξ,N) = δ∗(ξ∗, N) and L(ξ) = L∗(ξ∗).

For this trivial case, we have χC[0,1](ξ) = 0 = χC(Q2)(ξ
∗).

Case III. If ξ ∈ D[0, 1] but ξ∗ = ℘(ξ) ∈ C(Q2). We choose a fixed η∗ ∈ D(Q2). We
replace the ξ∗ with η∗ for this case. Thus η∗ become the corresponding tag point
of all ξ for this case and

δ(ξ,N) = δ∗(η∗, N) and L(ξ) = L∗(η∗).

Thus, we have χC[0,1](ξ) = 0 = χC(Q2)(η
∗).

We note that the above replacement in this case can be done because the
divisions we use in the definition of the integrals are McShane, not Henstock.

Let D = {(ξ, I[N ])} be a γ-fine division of R[0,1] with respect to Q2. The corresponding
division D∗ = {(ξ∗, I∗[N ])} to the division D form a γ∗-fine division of RQ2 (recall in
case III, ξ∗ = η∗) because N ⊆ Q2,

∪(ξ∗,I∗[N ])∈D∗I
∗[N ]× R[0,1]\Q2 = ∪(ξ,I[N ])∈DI[N ] = R[0,1] = RQ2 × R[0,1]\Q2 ,

that is, ∪(ξ∗,I∗[N ])∈D∗I
∗[N ] = RQ2 . Notice that the value of G(I[N ]) only depends on

I[N ]. Hence G(I[N ]) = G(I∗[N ]). By the choice of function γ chosen as above, we have

χC[0,1](ξ) = χC(Q2)(ξ
∗)

for all ξ ∈ R[0,1]. Thus

(D)
∑

χC[0,1](ξ)G(I[N ]) = (D∗)
∑

χC(Q2)(ξ
∗)G(I∗[N ]).

Therefore, we have∣∣∣∣(D)
∑

χC[0,1](ξ)G(I[N ])−
∫
RQ2

χC(Q2)

∣∣∣∣
=

∣∣∣∣(D∗)∑χC(Q2)(ξ
∗)G(I∗[N ])−

∫
RQ2

χC(Q2)

∣∣∣∣ ≤ ε.
That is, the McShane-Wiener integral of χC[0,1] on R[0,1] with respect to Q2 exists and∫

R[0,1](Q2)

χC[0,1] =

∫
RQ2

χC(Q2).

We shall prove that PQ2(C(Q2)) = 1 in Section 3, Theorem 3.11. By Theorem 2.7,
P(C[0, 1]) = 1. Hence, we have the following theorem:

Theorem 2.8. PQ2(C(Q2)) = 1 and P(C[0, 1]) = 1.

We remark that using the same ideas, Theorem 2.7 is true for Hα(Q2) and Hα[0, 1],
where 0 < α < 1

2 . For the definition of Hα(Q2) see Definition 3.1.
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3. Hölder Continuous of Exponential α over Q2

In this section, we follow the ideas in [9, Section 8.1] of the proofs of Lemmas 3.2, 3.3
and Theorem 3.8. Similar results can be found in [1, Section 6.9]. We prove the results
in the setting of the McShane–Wiener integral.

Definition 3.1. For every real number α > 0, a function ξ ∈ RQ2 is said to be Hölder
continuous with exponent α in the set Q2 if there exists a constant C such that for all
q, r ∈ Q2,

|ξ(q)− ξ(r)| ≤ C|q − r|α.
The space of all Hölder continuous with exponent α in the set Q2 is denoted by Hα(Q2).

We remark that if 0 < α < β, then Hβ(Q2) ⊆ Hα(Q2). Hence, if 0 < α < 1
2 , we have

H1/2(Q2) ⊆ Hα(Q2).

Lemma 3.2. Let ξ ∈ RQ2 and 0 < α < 1. Suppose there exists N = N(ξ) such that

|ξ(q)− ξ(r)| ≤ C|q − r|α

for all q, r ∈ Q2 with |q − r| < 2−N . Then ξ ∈ Hα(Q2).

Proof. Let q, r ∈ Q2. If |q− r| < 2−N , then we get the required result. Suppose |q− r| ≥
2−N , let 0 ≤ q = s0 < s1 < . . . < sn = r ≤ 1 with s0, s1, . . . , sn ∈ Q2, si − si−1 < 2−N

and n ≤ 2N+1. Hence,

|ξ(q)− ξ(r)| ≤
n∑
i=1

|ξ(si)− ξ(si−1)| ≤ C
n∑
i=1

(si − si−1)α ≤ C · 2N+1|q − r|α.

Therefore,

|ξ(q)− ξ(r)| ≤ C · 2N+1|q − r|α,
i.e., ξ ∈ Hα(Q2).

To show that
∫
RQ2

χH1/2(Q2) = 0. We define the following sets.

Let β be any fixed positive number. For fixed positive integer n and α > 0, let

Gα,n =

{
ξ ∈ RQ2 :

∣∣∣∣ξ (m2n)− ξ
(
m− 1

2n

)∣∣∣∣β ≤ 2−αβn for all m = 1, 2, . . . , 2n

}
.

Hence

Gcα,n =

{
ξ ∈ RQ2 :

∣∣∣∣ξ (m2n)− ξ
(
m− 1

2n

)∣∣∣∣β > 2−αβn for some m with 0 < m ≤ 2n

}
,

i.e., if ξ ∈ Gcα,n, then there exists m such that

1 < 2αβn
∣∣∣∣ξ (m2n)− ξ

(
m− 1

2n

)∣∣∣∣β .
Let Hα,N = ∩∞n=NGα,n. If ξ ∈ Hα,N , then ξ ∈ Gα,n for all n ≥ N , i.e.,∣∣∣∣ξ (m2n)− ξ

(
m− 1

2n

)∣∣∣∣β ≤ 2−αβn for all m = 1, 2, . . . , 2n

for all n ≥ N . Note that Hα,N is increasing and Hc
α,N decreasing as N →∞.

Next we shall show that Hα,N ⊆ Hα(Q2).
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Lemma 3.3. Let α > 0 be fixed. For any ξ ∈ Hα,N , we have

|ξ(q)− ξ(r)| ≤ 3

1− 2−α
|q − r|α

for q, r ∈ Q2 with |q − r| < 2−N .

Proof. Let ξ ∈ Hα,N and q, r ∈ Q2 with 0 < q − r < 2−N . Choose some n ≥ N
such that 2−n ≤ q − r < 2−n+1. We can write q = m

2n + 1
2s1 + 1

2s2 + . . . + 1
2sk and

r = m−1
2n −

1
2t1 −

1
2t2 − . . .−

1
2tl

, where n < s1 < s2 < · · · < sk and n < t1 < t2 < · · · < tl.

Observe that m
2n and m

2n + 1
2s1 + 1

2s2 + . . . + 1
2sj

, j = 1, 2, . . . , k are all in Q2 and the

distance between any two consecutive points is 1
2sj

. Hence∣∣∣ξ(q)− ξ (m
2n

)∣∣∣ ≤ k∑
j=1

2−αsj ≤
∞∑
j=1

(2−α)sj ≤
∞∑
u=n

(2−α)u =
2−αn

1− 2−α
.

Similarly, we have∣∣∣∣ξ(m− 1

2n

)
− ξ(r)

∣∣∣∣ ≤ 2−αn

1− 2−α
.

Hence

|ξ(q)− ξ(r)| ≤
∣∣∣ξ(q)− ξ (m

2n

)∣∣∣+

∣∣∣∣ξ (m2n)− ξ
(
m− 1

2n

)∣∣∣∣+

∣∣∣∣ξ(m− 1

2n

)
− ξ(r)

∣∣∣∣
≤ 2−αn

1− 2−α
+ 2−αn +

2−αn

1− 2−α

≤ 3

1− 2−α
2−αn ≤ 3

1− 2−α
|q − r|α.

Lemma 3.4. If ξ ∈ Hα,N , then ξ ∈ Hα(Q2), i.e.,

|ξ(q)− ξ(r)| ≤ 3 · 2N+1

1− 2−α
|q − r|α,

for q, r ∈ Q2.

Proof. It follows from Lemmas 3.2 and 3.3.

Next, we shall estimate
∫
RQ2

χGcα,n using the MsShane–Wiener integral.

Lemma 3.5. [4, p. 56] For fixed p, n ∈ N, for each 0 < m < 2n, let f : RQ2 → R be

defined by f(ξ) :=
∣∣ξ (m2n )− ξ (m−12n

)∣∣2p. Then f is McShane–Wiener integrable on RQ2

and ∫
RQ2

∣∣∣∣ξ (m2n)− ξ
(
m− 1

2n

)∣∣∣∣2p = Kp 2−pn,

where Kp =
(
2
π

)p
Γ
(
p+ 1

2

)
.

Lemma 3.6. Gα,n is Q2-measurable, i.e., χGα,n is McShane-Wiener integrable on RQ2 .
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Proof. For m = 1, 2, . . . , 2n, let

Gα,n,m =

{
ξ ∈ RQ2 :

∣∣∣∣ξ (m2n)− ξ
(
m− 1

2n

)∣∣∣∣β ≤ 2−αβn

}
.

Then ∫
RQ2

χGα,n,m =

∫
R2

χW ,

where W = {(u, v) : |u − v| ≤ 2−αn}. Note that Gα,n = ∩2nm=1Gα,n,m. Hence Gα,n is
Q2-measurable.

Let p > 0 be fixed and 0 < α < 1
2 −

1
p . Then λ = p − 1 − 2αp > 0. We shall use this

properties in Lemma 3.7 and Theorem 3.8.

Lemma 3.7. Let p > 0 be fixed and 0 < α < 1
2 −

1
p . Then∫

RQ2

χGcα,n ≤ Kp2
−λn,

where Kp =
(
2
π

)p
Γ
(
p+ 1

2

)
, where λ = p− 1− 2αp.

Proof. By Lemma 3.5, we have∫
RQ2

χGcα,n ≤
2n∑
i=1

2α(2p)n
∫
RQ2

∣∣∣∣ξ( i

2n

)
− ξ

(
i− 1

2n

)∣∣∣∣2p

=

2n∑
i=1

22αpnKp2
−pn

= Kp2
n22αpn2−pn

= Kp2
(1+2αp−p)n

= Kp2
−λn.

Notice that λ = p− 1− 2αp > 0.

Theorem 3.8. Let p > 0 be fixed and 0 < α < 1
2 −

1
p . Then

∞∑
N=1

∫
RQ2

χHcα,N <∞.

Proof. By Lemma 3.7, we have∫
RQ2

χHcα,N ≤
∞∑
n=N

∫
RQ2

χGcα,n ≤ Kp

∞∑
n=N

2−λn =
Kp2

−λN

1− 2−λ
,

where Kp =
(
2
π

)p
Γ
(
p+ 1

2

)
and λ = p − 1 − 2αp. The above equality holds because

λ = p− 1− 2αp > 0. Then
∞∑
N=1

∫
RQ2

χHcα,N ≤
∞∑
N=1

Kp2
−Nλ

1− 2−λ
=

Kp2
−λ

(1− 2−λ)2
<∞.
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Let

E =

∞⋂
n=1

∞⋃
N=n

Hc
α,N .

Then

Ec =

( ∞⋂
n=1

∞⋃
N=n

Hc
α,N

)c
=

∞⋃
n=1

∞⋂
N=n

Hα,N .

Theorem 3.9. Let p > 0 be fixed and 0 < α < 1
2 −

1
p , i.e., 0 < α < 1

2 . Then
∫
RQ2

χE = 0

and
∫
RQ2

χEc = 1.

Proof. First

0 ≤
∫
RQ2

χE ≤
∞∑
N=n

∫
RQ2

χHcα,N

for all n. By Theorem 3.8,
∫
RQ2

χE = 0. Therefore,
∫
RQ2

χEc = 1.

Theorem 3.10. Let p > 0 be fixed and 0 < α < 1
2 −

1
p . Then

∫
RQ2

χHα(Q2) = 1.

Proof. First we note that Ec = ∪∞n=1∩∞N=nHα,N . By Lemma 3.4, Hα,N ⊆ Hα(Q2) for all
N . Hence Ec ⊆ Hα(Q2). By the completeness of the probability measure space, Theorem
2.5, we get

∫
RQ2

χHα(Q2) = 1.

By the completeness of the probability measure space (RQ2 ,MQ2 ,PQ2), Theorem 2.5,
and Hα(Q2) ⊆ C(Q2), for 0 < α < 1

2 , we get the following theorem:

Theorem 3.11. C(Q2) is Q2-measurable and

PQ2(C(Q2)) =

∫
RQ2

χC(Q2) = 1.
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