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Abstract In classical stochastic calculus, the measurability of the space C|0, 1] of all continuous functions
on [0, 1] is handled by continuous modification. In this note, we shall prove that C[0, 1] is measurable in
a setting of a dyadic Henstock integral.
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In stochastic analysis, the measure of the space C0,1] of all continuous functions
defined on [0, 1] is handled by continuous modification. In this paper, we shall prove that
C[0,1] is measurable and the measure of C[0,1] is one by integrals using the Henstock
approach.

1. MCSHANE-WIENER INTEGRAL

In this section, we shall define two types of McShane—Wiener integrals.
Let R denotes the set of real numbers. We define the set

RO =TT Ry,

te[0,1]
={&:t— &(t),t €0,1],£(t) € R with £(0) = 0}.

where R; = R for each t, i.e., RI%! can also be viewed as a set of real-valued function &
defined on [0, 1] with £(0) = 0. Let Qo = {m2~™ € [0, 1] : m,n are positive integers} be
the dyadic rational. Clearly that Qs is a countable dense subset of [0, 1]. Let A(Q2) be
the class of all finite subsets N = {t1,t2,...,t,} of Qo with t; <ty < -+ <.

The following notation shall be used: & = &(¢;) and I; = I, for all t; € N; and
g(N) = (5175% cee agn)

The cylindrical intervals (or simply intervals) in RI%U denoted by I[N], are of the
form

I[N] = I(N) x RO\,
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where N = {t1,t9,...,tn} € N(Q2) and I(N) = I} x I x --- x I, is the n Cartesian
product of one-dimensional, compact or unbounded closed, intervals I; in R. Let Z(Qs)
be the class of all interval in RI%! with N € N(Qy).

Let R = RU{—00, 00} denote the set of extended real numbers. Denote [Licp R; by

RIO1 | the class of all extended real-valued functions ¢ defined on [0, 1] with £(0) = 0.

Let §(¢,N) be a positive function defined on R x A(Qy). A point-interval pair
(¢, I[N]), where ¢ € RO and N € N(Qy), is said to be d-fine if for each t; € N, we
have (i) I; C (& — §(&, N),& + 6(&, N)) whenever &; # +oo; (ii) I; C ((6(§,N))_1 ,00)
whenever & = oo; or (iii) I; € (—oo, — (6(¢, N))™') whenever & = —oco. Let L(€) be a
set-valued function defined on RI* with values in N'(Qy).

Let + be a pair of functions (3, L), where ¢ : R x A (Q3) — (0,00) and L : RO —
N(Q2). A point-interval pair (£, I[N]) is said to be v-fine with respect to Qg if N D L(&)
and (&, I(N)) is d-fine, where £ = (£1,&2,...,&,). A finite collection of point-interval
pairs D = {(&, I[N])} is said to be a y-fine partial division of RI%! with respect to Qs if
{I[N]} is a partial partition of Rl and each (&, I[N]) is y-fine. In addition, if {I[N]}
is a partition of RI%Y, then D is said to be a vy-fine division of RI%! with respect to Q.
Given a function v, a y-fine division of RI%1 with respect to Qy exists, see [I, p.121].

Given N = {t1,t2,...,tn} € N(Q2), let

I(N)
where u = (uy, ug,...,u,) and
—1/2
hy(u) = [ o)™ [ - ti-) exp | =
j=1 j=1 tj-1
with g = 0 and uwg = 0, mentioned in [I-3]. The n-dimensional integral above is a

Riemann or improper Riemann integral. Hence, it is a Henstock integral, see [1-3].

Definition 1.1 (McShane-Wiener Integral on RI% with respect to Qo). The functional
f : RO 5 R is said to be McShane Wiener integrable (or simply Wiener integrable)
to A € R on RO with respect to Qs if for each € > 0, there exists a pair of functions
v = (6, L), where § : RICUx NV(Qq) — (0,00) and L : RI%!U — A(Qs,), such that whenever
D = {(&,I[N])} is a ~y-fine division of RI®! with respect to Qs, we have

(D) FOCUIND - A| <,

where we assume that f(£) = 0 if one of the components of £ is +oo. The number A
is called the McShane-Wiener integral (or simply Wiener integral) of f on RI%! with
respect to Qs and is denoted by f]R[le](Qg) f.

We remark that the above integrals are mentioned in [I, p.316 — 320]. In his book,
Muldowney remarks that this integral is a version of continuous modification of the inte-
gral. We use the above integral to show that C[0, 1] is integrable. It is known that C0, 1]
is not integrable if we use tag points in [0, 1] instead of Qa.

Definition 1.2. In the Definition 1.1, if we replace the interval [0,1] by O, i.e., f :
R92 — R; v = (6, L) is defined on R92 and N (Qy); and D = {(£,I[N])} is a v-fine
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division of R92, then f is said to be McShane-Wiener integrable (or simply Wiener
integrable) to A € R on R92 and is denoted by Jres [

We note that the basic properties of integrals, such as linear property and the inte-
grability over subinterval hold for the McShane-Wiener Integral on R with respect
to Qy and the McShane-Wiener Integral on R92. The integrals fR[OJ](QQ) fand [po, f

are not equivalent. The first integral is an integration over R®1 while the second is an
integration over R92.

2. MEASURES ON RI[0:1]

Now we shall discuss the measurability of C[0,1] and C(Q3).

Definition 2.1. Let M be the collection of all subsets M of RI®! such that xas is
McShane-Wiener integrable on R with respect to Qo. If M € M, then M is said to
be a measurable set. Let M22 be the collection of all subsets M of R22 such that x is
McShane-Wiener integrable on RS2, If M € M22, then M is said to be a Qs-measurable
set.

Definition 2.2. Let P: M — R and M € M, define

P(M) = / Yo
RI0.11(Q,)

and P22 : M2 - R and M € M2, define
PO = [
R92

Lemma 2.3. R is Qy-measurable and P22 (R22)=1; R is measurable and
PROM)=1.
Proof. Let € > 0. Let L : R — N(Qz) and 6 : R92 x N'(Q5) — (0, 00) be any functions,
and v = (0, L).

Let D = {(&,I[N])} be a -fine division of R22. Note that for any (¢, I[N]) € D, we
have N = {t1,t9,...,t,} C Qz. Hence

(D)) xre>(§)GUIN]) = (D)) 1-GUI[N]) = (D) Y G(I[N]) = 1.
Therefore, P22 (R92) = 1. Similarly, P(RI:1) = 1. m
Theorem 2.4. P22 is a probability measure on (R92, M22), that is, (R, M2, P92)
s a probability measure space; (R[o*l],/\/l,’P) s a probability measure space.

Proof. The proof is a consequence of the standard properties of Henstock-Wiener integral
and Monotone Convergence Theorem, see [1, 2, 4-7]. [

Theorem 2.5. The probability measure spaces (R22, M22, P22) and (RO M, P) are
complete, i.e., every subset of a set of measure zero is of measure zero.

Proof. Let M be a set of Qa-measure zero. So, M € M2 and P9(M) = 0. Let € > 0,
there exists a pair of functions v = (4, L) such that whenever D = {(£, I[N])} is a v-fine
division of R22, we have

(D) S (©GUIND| < e.
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Let M’ € M. Then xarr(€) < xa(8) for all ¢ € RS:. Thus for every y-fine division
D = {(& I[N])} of R<2 we have

(D) xar OGUIND| < ()Y xur (OGUINY)| < e

Therefore, xar is integrable to zero on R22, that is, M’ is a set of Qy-measure zero.
Similarly for (R M, P). "

A function £ is said to be uniformly continuous on X, where X is a metric space with
metric | - |, if for any € > 0 there exists § > 0 such that for all z,y € X with |x —y| < d
we have

l§(z) —¢y)l < e

Let C(X) be the set of all uniform continuous function on X and D(X) = RX \ C(X).
We note that if X is compact then the set of all uniform continuous function on X and
the set of all continuous function on X are coincide.

The following is a well-known result, see [3].

Lemma 2.6. Suppose £ is a uniform continuous function on Qo. Then there exists
unique continuous function & on [0,1] such that

{(z) =& (2)
for all x € Qs.

In this note, C[0,1] and C(Q3) are the sets of all uniform continuous function £ on
[0,1] and Qa, respectively, with £(0) = 0 . Hence C[0,1] C RI%Y and C(Q,) C R=.

Notice that, the corresponding function &* € C(Qs) of £ € C[0,1] is the restriction
function of £ on Qs.

Let o : RI%Y — R92 be a projection of R onto R22. We note that

P~ (C(Q2)) D C[0,1];
but, by Lemma 2.6, if £* € C'(Q2), then there exists unique £ € C|0, 1], such that
p(&) =¢"

Theorem 2.7. Suppose xc(qg,) i McShane- Wiener integrable on RS2, 2Then the McShane-
Wiener integral of xcjo,1] on RO with respect to Qo exists and

/ Xclo,1] = / XC(Q2)"
RIO:11(Q7) R<2

Proof. Let € > 0 be given. There exists v* = (6%, L*) defined on R92 and N (Qs) such
that whenever D* = {(&*, I*[N])} is a v*-fine division of R92, we have

(D) S xei@n€IGIIN) = [ v

For each ¢ € RI%U | let £* be the restriction function of € on Qy, i.e., £* = p(£). Now,
we shall choose v = (4, L) defined on R:1 5o that for every 4-fine division D of R[]
with respect to Qs the corresponding division D* of R92 is v*-fine.

<e.
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Case L. If £ € C[0, 1], then & = p(&) € C(Q2). Choose
(&, N) = 67(&", N) and L(£) = L*(£7).

For this case, obviously, x¢0,1)(§) = 1 = xc(0,)(§*)-
Case II. If £ € D[0,1] and £* = p(&) € D(Qz), then we choose

(&, N) = 67(&", N) and L(£) = L*(£7).

For this trivial case, we have x¢0,1](§) = 0 = X¢(g,)(£¥)-

Case III. If £ € D[0,1] but £&* = p(§) € C(Q2). We choose a fixed n* € D(Qz). We
replace the £* with n* for this case. Thus n* become the corresponding tag point
of all £ for this case and

(&, N) = 6"(n", N) and L(§) = L*(n").

Thus, we have xc10,1(§) = 0 = xc(0,) (")
We note that the above replacement in this case can be done because the
divisions we use in the definition of the integrals are McShane, not Henstock.

Let D = {(&, I[N])} be a ~-fine division of RI%! with respect to Q,. The corresponding
division D* = {(¢*,I*[N])} to the division D form a ~*-fine division of R92 (recall in
case III, £&* = n*) because N C Qo,

Uges 1-vpyen- I IN] x ROINC2 =y iy pI[N] = RO = ROz 5 RIOINC2

that is, Uges 7+ (npyep=I*[N] = R92. Notice that the value of G(I[N]) only depends on
I[N]. Hence G(I[N]) = G(I*[N]). By the choice of function + chosen as above, we have

xcio,1(§) = xc(e.)(€")
for all £ € R, Thus

D)) xep()GUIN]) = (D*) Y xo(em) ()G [N)).

Therefore, we have

(D)3 xetwn OGN - /  xo(@)
‘ ZXC 0,)(§")G(I*[N]) - /}RQ2 XC(Qa)| S €

That is, the McShane-Wiener integral of xc(o,1) on RI%! with respect to Qs exists and

/ Xcio,1] =/ XC(Q2)-
RI0.11(Q,) RQ2

We shall prove that P<2(C(Qz)) = 1 in Section 3, Theorem 3.11. By Theorem 2.7,
P(C0,1]) = 1. Hence, we have the following theorem:

Theorem 2.8. P22(C(Qy)) =1 and P(C[0,1]) = 1.

We remark that using the same ideas, Theorem 2.7 is true for H,(Q2) and H[0,1],
where 0 < o < 1. For the definition of H(Q2) see Definition 3.1.
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3. HOLDER CONTINUOUS OF EXPONENTIAL @ OVER Q,

In this section, we follow the ideas in [9, Section 8.1] of the proofs of Lemmas 3.2, 3.3
and Theorem 3.8. Similar results can be found in [, Section 6.9]. We prove the results
in the setting of the McShane—Wiener integral.

Definition 3.1. For every real number a > 0, a function ¢ € R92 is said to be Hélder
continuous with exponent o in the set Qs if there exists a constant C such that for all
q,T S QZa

1€(q) = &(r)| < Clg —r|*.
The space of all Holder continuous with exponent « in the set Qs is denoted by H,(Q2).

We remark that if 0 < o < 3, then Hp(Q2) C Ha(Q2). Hence, if 0 < a < 1, we have
M1 (Q2) € Ha(Q2).

Lemma 3.2. Let £ € R92 and 0 < o < 1. Suppose there exists N = N(£) such that

€(q) = &(r)[ < Clg —r[*
for all g,r € Qo with |qg — 7| <27N. Then £ € Ho(Q2).

Proof. Let q,r € Qo. If | — 7| < 27V, then we get the required result. Suppose |q — 7| >

27N let 0<g==50 <51 <...<8,=r<1with s9,51,...,8, € Qo, §; —55_1 < 27V
and n < 2N*!. Hence,

[€( |<Z|§ 811|<CZ i — Si—1) §C~2N+1|q—r\°‘.
Therefore,

1€(q) = &(r)| < C -2V g — 1|,
i.e.7§€/Ha(Q2). ]

To show that [po, X7, 12(22) = 0. We define the following sets.
Let 8 be any fixed positive number. For fixed positive integer n and a > 0, let

B
— -1
Ga’n:{geRQQ;‘g(;ﬁ)_%m?n )‘ gzaﬁ”foraumzm,...,z"}.
Hence
_ m m—1 A
GS . = geRQQ:‘f(%)—f( o )’ > 279" for some m with 0 < m < 2" 5,

., if & € G, ,,, then there exists m such that

B
m m—1
§ (27) —¢ ( 2n )‘
Let Hon = NS NGan. If & € Hy n, then £ € Gy, for alln > N, ice,,
B
-1
’ﬁ(m)f(m )‘ <27 forallm =1,2,...,2"
2n A
for all n > N. Note that H, y is increasing and H&N decreasing as N — oo.
Next we shall show that Hy, v € Ho(Q2).

1 < 2B
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Lemma 3.3. Let o > 0 be fized. For any { € Hy N, we have

1§(q) = &(r)] <

| < mk]*ﬂa

for q,r € Qy with |qg—r| <27V,

Proof. Let ¢ € Hony and q,r € Qs with 0 < ¢ —r < 27N, Choose some n > N
such that 27" < ¢ —r < 2771 We can write ¢ = 2% 4+ 31 + 557 + ... + 77 and
r—mQ;l—Q%—Q%z—... 2tl,wheren<51<32< < spand n <tp <tg < - <1y
Observe that 7% and 2% + 5k + 7 —|—...—|—2],j 1,2,...,k are all in Q5 and the

distance between any two consecutive points is 55-. Hence

k 0o
’f(q)—f(;)‘S;Z_O‘S gra GJ<2_:2_ T 12

Similarly, we have
m—
]

Iﬂm—fvﬂs‘ﬂ@—f(;D‘+F(;)—§<m_1)w4€<m_l>—ﬂﬂ

Hence

n 2n
2—(171/ 2—0{71
< S yoom
_172*0‘+ +172*0‘
<3 g g —rl°.
1—-—2-« 1—2-«
n
Lemma 3.4. If£ € Hy N, then € € Ho(Q2), i.e.,
3 2N+1 N
€(q) = &(r)] = 7= la =%
for q,r € Qs.
Proof. 1t follows from Lemmas 3.2 and 3.3. (]

Next, we shall estimate fRQZ Xae , using the MsShane-Wiener integral.

Lemma 3.5. [4, p. 56] For fived p,n € N, for each 0 < m < 2", let f : R2> — R be
defined by f(§) := f{ () —¢ (m*1)|2p. Then f is McShane—Wiener integrable on R<2

and -
LG (")

where K, = (%)pf (p—|— %)

2p
_ —pn
=K,?2 ,

Lemma 3.6. G, is Q2-measurable, i.e., Xg,., 5 McShane-Wiener integrable on R<=.
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Proof. For m=1,2,...,2", let

B
_ R . e (MY _ e (M= - g-apn
G = [o () ¢ (5) <2}
/ XGa,n,m:/ XW,
R22 R2

where W = {(u,v) : |[u —v| < 27*"}. Note that Gon = ﬂ%gGa,n,m Hence G p, is
Qs-measurable. n

Then

Let p > 0 be fixed and 0 < a < %—%. Then A = p—1— 2ap > 0. We shall use this
properties in Lemma 3.7 and Theorem 3.8.

Lemma 3.7. Let p > 0 be fized and 0 < o < % —

/ Xge < K272
RQZ a,n

where K, = (g)pr (er %), where A =p — 1 — 2ap.

() (%)

. Then

=

Proof. By Lemma 3.5, we have

2’7’L
/ xas, < 320t /
RS2 o i—1 R22

gn

— Z 22ocanp2—pn
=1

_ Kp2n22apn2fpn

_ Kp2(1+2ap—p)n

2p

= K27\
Notice that A=p—1—2ap > 0. =

Theorem 3.8. Let p > 0 be fized and 0 < a < % —

o0
> [ g, <
N=1/R®2

. Then

1
P

Proof. By Lemma 3.7, we have
oo (oo}
K 27/\N
c < c < K 27)\’” - pi,
AQQ XHQ’N B 7;\[/1%Q2 XGOLY” B p’l’;\[ 1 - 27/\

where K, = (g)pf‘ (p+ %) and A = p— 1 — 2ap. The above equality holds because

T

A=p—1—2ap > 0. Then

oo o0
K,2-NA K,27*
e < P = P )
NZ_/ X S 2 T gE T <
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Let

Theorem 3.9. Let p > 0 be fized and 0 < a < %— %, e, 0 <a< % Then fRQ2 xe =0
and [po, Xpe = 1.
Proof. First

o0
0 S/ XE < Z/ XHE
RS2 Nep /R92 '

for all n. By Theorem 3.8, fRQ2 xg = 0. Therefore, fRQ2 XEe = 1. [

Theorem 3.10. Let p > 0 be fized and 0 < v < § — %. Then [po, X1a(0s) = 1.

Proof. First we note that E° = U2, N_,, Hon. By Lemma 3.4, Hy v € Ha(Q2) for all
N. Hence E€ C H,(Q2). By the completeness of the probability measure space, Theorem
2.5, we get [po, X#a(Qs) = L. n

By the completeness of the probability measure space (R92, M 22, P<92), Theorem 2.5,
and Ho(Q2) € C(Qs), for 0 < a < 3, we get the following theorem:

Theorem 3.11. C(Q3) is Qz-measurable and

Po(C(Qa) = [ | xeron =1L

R22
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