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1. Introduction

It is well-known that the fixed point theory is an important and powerful tool to study
nonlinear analysis and the Banach contraction principle which is a fundamental result in
fixed point theory has been extended by some authors, see, for instance, [1–8] and the
references therein.
The concept of weak contraction was introduced by Alber and Guerre Dlabriere [9] for
single valued maps on Hilbert spaces in 1997. The study of fixed point in the setting of
a partially ordered metric space was first started in 2004 by Ran and Reurings [10] and
then by Nieto and López [11]. Subsequently, many authors obtained several interesting
results in ordered metric spaces, for example, see [12–16].
During the last few decades many mathematical researchers have obtained a lot of results
in common fixed point theory in ordered metric spaces, for example, see [11, 17–20].
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In 2010, Radenovic and Kadelberg [20] studied generalized weak contractions in partially
ordered metric spaces and extended results of Dorić [3], Harjani and Sadarangani [21] as
well as Zhang and Song [8].
Suzuki [22] obtained a powerful generalization of Banach contraction theorem in 2008.
Using the idea of the Suzuki contraction, various fixed point results have been extended
in many directions; see for instance [21–27]. Particularly, Singh et al [26] gave a weakly
contractive version of Suzuki type in 2015 and generalized some results of Dorić [3], Zhang
et al [8]. In this paper, a new version of Suzuki type contraction is introduced which class
is larger than the class of weakly increasing maps in ordered metric spaces. The results
of this paper extend and improve some famous results in this area, specially the results
given in [10].

2. Preliminaries

In sequel, the following definitions and notations will be used in this paper.

Definition 2.1. [28] Let (X,�) be a partially ordered set and let T and S be two self-
maps on X. then

1) the elements x, y ∈ X are comparable if x � y or y � x holds and we denote
it by x �� y.
2) a subset A of X is said to be well ordered if any two elements of A are compa-
rable .
3) X is called regular if a nondecreasing sequence {xn} in (X,�) converges to
x ∈ X, then xn � x, for all n ∈ N.
4) T is called nondecreasing w.r.t. � if x � y implies Tx � Ty .
5) the mappings T and S are called weakly increasing if Tx � STx and Sx � TSx
for all x ∈ X. In particular, if ix is the identity function, T and ix are weakly
increasing maps if and only if x � Tx for each x ∈ X. In this case, T is called
dominating.
If T and T are weakly increasing maps, then T is called weakly increasing map.
It is clear that, T is a weakly increasing map if and only if Tx � T 2x for each x ∈
X.
There are some examples of weakly increasing maps (see [12]) when neither of
such mappings T and S is nondecreasing w.r.t. �.
6) T is said to be S-weakly isotone increasing if Tx � STx � TSTx for all x ∈ X.
Some examples of S-weakly isotone increasing maps can be found in [12].

The control functions were introduced by Doric [3] as follows:

Definition 2.2. A pair (ψ,ϕ) of self-maps on [0,∞) is called control functions if the
following items are satisfied:

(1) ψ is a continuous nondecreasing function and ψ(t) = 0 if and only if t = 0.
(2) ϕ is lower semi-continuous with ϕ(t) = 0 if and only if t = 0.

So far, many authors have studied fixed point theorems which are based on control func-
tions (see, e.g. [13, 29]).
For the sake of reader, we follow the following notations:

• m(x, y) = max{d(x, y), d(x, Tx), d(y, Sy), d(x,Sy)+d(y,Tx)2 }
• n(x, y) = max{d(x, y), d(x,Tx)+d(y,Sy)2 , d(x,Sy)+d(y,Tx)2 }
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• mT (x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)2 }
• nT (x, y) = max{d(x, y), d(x,Tx)+d(y,Ty)2 , d(x,Ty)+d(y,Tx)2 }

for all x, y ∈ X, where T and S are two self-maps on the metric space (X, d).
We state the following lemma which is useful in proving our first main result.

Lemma 2.3 ([30]). Let (X,d) be a metric space, and {xn} be a sequence in X such
that limn→∞ d(xn, xn+1) = 0. If {xn} is not a Cauchy sequence then there exists ε > 0 and
two sequences of positive integers {nk} and {mk} with nk > mk > k such that d(xmk

, xnk
)

> ε, d(xmk
, xnk−1) < ε and

(1) limk→∞ d(xmk
, xnk

) = ε.
(2) limk→∞ d(xmk−1, xnk

) = ε.
(3) limk→∞ d(xmk

, xnk+1) = ε.
(4) limk→∞ d(xmk−1, xnk+1) = ε.

3. Main Results

In this section, a new concept of weakly increasing maps in ordered spaces is introduced.
A common fixed point theorem and two uniqueness theorems are presented. These results
can be viewed as a generalization and improvement of some results which have been
appeared in this area, for instance, Radenovic and Kadelberg’s results in ordered metric
spaces in [20].

The following definition is a new version of the definition of weakly increasing maps.

Definition 3.1. Let (X,�) be an ordered set and (T, S) be a pair of self-maps on X.
For any x ∈ X and n ≥ 0 put:

f0(T, S;x) = Tx and fn+1(T, S;x) = T δnS1−δnfn(T, S;x)

where δ2m = 1 and δ2m+1 = 0, ∀m ≥ 0 .
The maps T and S are called partially-weakly isotone if there exist x0 ∈ X such that, at
least one of the sequences {fn(T, S;x0)}n≥0 and {fn(S, T ;x0)}n≥0 is nondecreasing w.r.t.
� .

In particular, if T and T are partially-weakly isotone maps, then T is called a partially-
weakly isotone map. It is clear that T is a partially-weakly isotone map if and only if
Tn(x0) � Tn+1(x0) for some x0 ∈ X and for any n ∈ N.

Example 3.2. Let (X,�) be an ordered set.

(1) every two weakly increasing maps on X are partially-weakly isotone maps.
Indeed, if (T, S) is a weakly increasing pair of self-maps on X, then both of the
sequences {fn(T, S;x)}n≥0 and {fn(S, T ;x)}n≥0 are nondecreasing w.r.t. �, for
any x ∈ X.
It is clear that, the converse is false.

(2) if T is S-weakly isotone increasing, then T and S are partially-weakly isotone
maps. Indeed, For any x ∈ X, the sequence {fn(T, S;x0)}n≥0 is nondecreasing
w.r.t. �.

(3) let T : X → X be a nondecreasing map such that x0 � Tx0 for some x0 ∈ X,
then T is a partially-weakly isotone map. clearly,the converse is false.

Now, we present our first result.



1540 Thai J. Math. Vol. 19 (2021) /Gh. H. Joonaghany et al.

Theorem 3.3. Let (X,�, d) be an ordered complete metric space and (T, S) be a pair of
partially-weakly isotone maps on X

such that, for any x, y ∈ X,

(
x �� y and 1

2 min{d(x, Tx), d(y, Sy)} ≤ d(x, y)

)
implies

ψ(d(Tx, Sy)) ≤ ψ(m(x, y))− φ(m(x, y)) (3.1)

where (ψ,ϕ) is a pair of control functions. Then T and S have a common fixed point
provided that at least one of the following cases holds:

(i): T or S is continuous.
(ii): X is regular.

Proof. Since (T, S) is partially-weakly isotone, there exists x0 ∈ X such that, at least
one of the sequences {fn(T, S;x0)}n≥0 or {fn(S, T ;x0)}n≥0 is nondecreasing w.r.t. �, for
instance, the first one. We construct a recursive sequence {xn}n≥1 as follows:
For any n ≥ 0, define:

xn+1 = fn(T, S;x0).

So {xn} is nondecreasing w.r.t. � and for all n ≥ 0, we have:

x2n+1 = f2n(T, S;x0)
= T δ2nS1−δ2nf2n−1(T, S;x0)
= T 1S0f2n−1(T, S;x0)
= Tx2n.

Also

x2n+2 = f2n+1(T, S;x0)
= T δ2n+1S1−δ2n+1f2n+1(T, S;x0)
= T 0S1f2n+1(T, S;x0)
= Sx2n+1.

Now, We clam that if there exists k0 ∈ N such that xk0 = xk0+1, then xk = xk0 for all
k ≥ k0.
To see this, at first suppose that k0 = 2n for some n ∈ N. In this case we have x2n = x2n+1

so
x2n � x2n+1 and

1
2 min{d(x2n, Tx2n), d(x2n+1, Sx2n+1)} = 1

2 min{d(x2n, x2n+1), d(x2n+1, x2n+2)}
≤ d(x2n, x2n+1).

hence, by (3.1) we have:

ψ(d(x2n+1, x2n+2))=ψ(d(Tx2n, Sx2n+1)) ≤ ψ(m(x2n, x2n+1))−φ(m(x2n, x2n+1)).

Since x2n = x2n+1, we have:

m(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n, Tx2n), d(x2n+1, Sx2n+1),
d(x2n,Sx2n+1)+d(x2n+1,Tx2n)

2 }
= max{d(x2n+1, x2n+2), d(x2n,x2n+2)

2 }
= d(x2n+1, x2n+2).

Thus

ψ(d(x2n+1, x2n+2)) ≤ ψ(d(x2n+1, x2n+2))− φ(d(x2n+1, x2n+2))
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which is a contradiction unless d(x2n+1, x2n+2) = 0 i.e. x2n+1 = x2n+2.
Hence xk0 = xk0+1 = xk0+2.
Similarly, if k0 = 2n+ 1 for some n ≥ 0, we can prove that xk0+1 = xk0+2.
Therefore, xk0 is a common fixed point of T and S. we can then suppose that d(xn, xn+1) >
0 for all n ≥ 0 .
For convenience, we divide the rest of the proof into three steps.

Step (1): We prove that {xn} is asymptotically regular, i.e. lim
k→∞

d(xk, xk+1) = 0.

To prove it, at first we claim that

d(xk+1, xk+2) ≤ m(xk, xk+1) = d(xk, xk+1), ∀k ∈ N. (3.2)

To see this, suppose that k = 2n for some n ∈ N. Since x2n+1 �� x2n+2 and

1
2 min{d(x2n, Tx2n), d(x2n+1, Sx2n+1)} = 1

2 min{d(x2n, x2n+1), d(x2n+1, x2n+2)}
≤ d(x2n, x2n+1),

from (3.1) we have:

ψ(d(x2n+2, x2n+1)) = ψ(d(Sx2n+1, Tx2n))
≤ ψ(m(x2n, x2n+1))− φ(m(x2n, x2n+1))
≤ ψ(m(x2n, x2n+1)).

(3.3)

So that

d(x2n+2, x2n+1) ≤ m(x2n, x2n+1). (3.4)

On the other hand,

m(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n, Tx2n), d(x2n+1, Sx2n+1)

, d(x2n,Sx2n+1+d(x2n+1,Tx2n))
2 }

= max{d(x2n, x2n+1), d(x2n+1, x2n+2), d(x2n,x2n+2)
2 }

≤ max{d(x2n,x2n+1), d(x2n+1,x2n+2), d(x2n,x2n+1)+d(x2n+1,x2n+2)
2 }

≤ max{d(x2n, x2n+1), d(x2n+1, x2n+2)}.

So if d(x2n0+1, x2n0+2) ≥ d(x2n0 , x2n0+1) for some n0 ∈ N, then

m(x2n0 , x2n+1) ≤ d(x2n0+1, x2n0+2).

So, by (3.4)

m(x2n0
, x2n0+1) = d(x2n0+1, x2n0+2).

But in this case (3.3) yields

ψ(d(x2n0+2, x2n0+1)) ≤ ψ(d(x2n0+1, x2n0+2))− φ(d(x2n0+1, x2n0+2)).

Which is a contradiction (because d(x2n0+1, x2n0+2) > 0).

Hence d(x2n+1, x2n+2) < d(x2n, x2n+1) and so m(x2n, x2n+1) ≤ d(x2n, x2n+1).
Also we have

m(x2n, x2n+1) ≥ d(x2n, x2n+1).

Consequently, (3.2) is proved when k > 0 is an even number. By the same
argument, one can verify that (3.2) holds when k is an odd number. Thus, the
sequence {d(xn, xn+1)}n≥1 is nondecreasing and bounded below, so it converges
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to a real number r ≥ 0 .
We have:

lim
n→∞

d(xn, xn+1) = lim
n→∞

m(xn, xn+1) = r.

Taking limit(upper limit) on both side of (3.3), one can conclude that

ψ(r) ≤ ψ(r)− φ(r).

Which is a contradiction unless r = 0.
Consequently, we showed that:

lim
n→∞

d(xn, xn+1) = lim
n→∞

m(xn, xn+1) = 0. (3.5)

Step (2): {xn} is a Cauchy sequence.
At first, note that (X,�) is partially ordered and xn � xn+1, for all n ∈ N.
Thus xn � xm for all m ≥ n and so xm �� xn for any m,n ∈ N.
Now, to show that {xn} is a Cauchy sequence, because of (3.5), it is enough to
show that the subsequence {x2n} is a Cauchy sequence.
On contrary, Suppose that {x2n} is not a Cauchy sequence. Then by Lemma 2.3
there exists ε0 > 0 and subsequences {x2mk

} and {x2nk
} of {xn} such that nk is

the smallest index for which nk > mk > k and d(x2mk
, x2nk)) ≥ ε0 and

(l1) limk→∞ d(x2mk
, x2nk

) = ε0.
(l2) limk→∞ d(x2mk−1, x2nk

) = ε0.
(l3) limk→∞ d(x2mk

, x2nk+1) = ε0.
(l4) limk→∞ d(x2mk−1, x2nk+1) = ε0.

Therefore, from the definition of m(x, y) we have:

lim
k→∞

m(x2nk
, x2mk−1) = lim

k→∞
max{d(x2nk

, x2mk−1), d(x2nk
, x2nk+1), d(x2mk−1, x2mk

)

,
d(x2nk

,x2mk
+d(x2mk−1,x2nk+1))

2 }

= max{ε0, 0, 0, ε0+ε02 }
= ε0.

So

lim
k→∞

d(x2mk
, x2nk+1) = lim

k→∞
m(x2nk

, x2mk−1) = ε0. (3.6)

Now we claim that for sufficiently large k ∈ N, if nk > mk > k then

1

2
min{d(x2nk

, Tx2nk
), d(x2mk−1, Sx2mk−1)} ≤ d(x2nk

, x2mk−1). (3.7)

Indeed, since nk > mk and {d(xn, xn+1)} is non-increasing we have

d(x2nk
, Tx2nk

) = d(x2nk
, x2nk+1)

≤ d(x2mk+1, x2mk
) ≤ d(x2mk

, x2mk−1) = d(x2mk−1, Sx2mk−1).

And so, the left hand side of inequality (3.7) is equal to 1
2d(x2nk

, Tx2nk
) =

1
2d(x2nk

, x2nk+1).
Therefore we must show that, for sufficiently large k ∈ N, if nk > mk > k then

d(x2nk
, x2nk+1) ≤ d(x2nk

, x2mk−1)
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According to (3.5), there exist k1 ∈ N such that for any k > k1,

d(x2nk
, x2nk+1) <

1

2
ε0.

Also, there exist k2 ∈ N such that for any k > k2,

d(x2mk−1, x2mk
) <

1

2
ε0.

Hence for any k > max{k1, k2} and nk > mk > k,

ε0 ≤ d(x2nk
, x2mk

)
≤ d(x2nk

, x2mk−1) + d(x2mk−1, x2mk
)

≤ d(x2nk
, x2mk−1) + ε0

2 .

So one conclude that
ε0
2
≤ d(x2nk

, x2mk−1)

Thus we obtain that for any k > max{k1, k2} and nk > mk > k

d(x2nk
, x2nk+1) ≤ ε0

2
≤ d(x2nk

, x2mk−1).

And (3.7) is prove. beside, we know that x2nk
�� x2mk−1, so, (3.1) implies that

ψ(d(x2nk+1, x2mk
)) = ψ(d(Tx2nk

, Sx2mk−1))
≤ ψ(m(x2nk

, x2mk−1))− φ(m(x2nk
, x2mk−1)).

(3.8)

Taking upper limit on both side of (3.8) and applying (3.6), one can conclude
that

ψ(ε0) ≤ ψ(ε0)− φ(ε0).

Which contradicts ε0 > 0. So {xn} is a Cauchy sequence and since X is complete,
there exists u ∈ X such that xn → u, as n→∞.

Step (3): u is a common fixed point of T and S.
We shall distinguish the cases (i) and (ii) of the theorem.

(i): Suppose that S is continuous. Since xn → u, we have Sx2n+1 → Su,
i.e. x2n+2 → Su.
On the other hand, since xn → u, so x2n+2 → u . Hence Su = u. Now, we
have u �� u, also

1
2 min{d(u, Tu), d(u, Su)} = 1

2 min{d(u, Tu), 0}
= 0
≤ d(u, u).

(3.9)

Thus, (3.1) implies that

ψ(d(Tu, Su)) ≤ ψ(m(u, u))− φ(m(u, u)).

Where

m(u, u) = max{d(u, u), d(u, Tu), d(u, Su), d(u,Su)+d(u,Tu)
2 }

= max{0, d(u, Tu), 0, d(u,Tu)
2 }

= d(u, Tu).

Consequently

ψ(d(Tu, u)) = ψ(d(Tu, Su)) ≤ ψ(d(Tu, u))− φ(d(Tu, u)).



1544 Thai J. Math. Vol. 19 (2021) /Gh. H. Joonaghany et al.

This is a contradiction unless d(Tu, u) = 0 i.e. Tu = u. So we obtain that
Su = Tu = u.
Similarly, If T is continuous, one can prove that Su = Tu = u.

(ii): Assume that X is regular. Then, since the sequence {xn} is nonde-
creasing with respect to �, and xn → u as n → ∞, it follows that xn � u,
for all n ≥ 0 Now, at first we want to prove that

lim
n→∞

m(u, x2n) = d(Su, u). (3.10)

For this purpose, notice that

m(x2n, u) = max{d(x2n, u), d(x2n, Tx2n), d(u, Su),
d(x2n, Su) + d(u, Tx2n)

2
}.

Hence

d(u, Su) ≤ m(x2n, u)

= max{d(x2n, u), d(x2n, x2n+1), d(u, Su),
d(x2n, Su) + d(u, x2n+1)

2
}.

Letting n→∞ we obtain that

d(u, Su) ≤ limn→∞m(u, x2n)

≤ max{0, 0, d(u, Su), d(u,Su)+0
2 }

= d(u, Su).

Thus, (3.10) is proved. In the same manner, one can conclude that

lim
n→∞

m(u, x2n+1) = d(Tu, u) (3.11)

Now, we claim that for all n ≥ 0

1

2
d(x2n, x2n+1) ≤ d(x2n, u) or

1

2
d(x2n+1, x2n+2) ≤ d(x2n, u).

If, for some n0 ≥ 0, both of them are false we will have

d(x2n0
, x2n0+1) ≤ d(x2n0

, u) + d(u, x2n0+1)
< 1

2d(x2n0
, x2n0+1) + 1

2d(x2n0+1, x2n0+2)
≤ 1

2d(x2n0
, x2n0+1) + 1

2d(x2n0
, x2n0+1)

= d(x2n0
, x2n0+1).

Which is a contradiction and the claim is proved.
Now suppose that

1

2
d(x2n, x2n+1) ≤ d(x2n, u).

Therefore
1
2 min{d(x2n, Tx2n), d(u, Su)} = 1

2 min{d(x2n, x2n+1), d(u, Su)}
≤ 1

2d(x2n, x2n+1)
≤ d(x2n, u).

Furthermore xn � u,∀n ≥ 0. So (3.1) implies that

ψ(d(x2n+1Su)) = ψ(d(Tx2n, Su))
≤ ψ(m(x2n, u))− φ(m(x2n, u)).

Letting n→∞, taking into account (3.10), one can conclude that

ψ(d(u, Su)) ≤ ψ(d(u, Su))− φ(d(u, Su)).
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Which is a contradiction unless d(u, Su) = 0. i.e. Su = u
Also, we have u � u and

1
2 min{d(u, Tu), d(u, Su)} = 1

2 min{d(u, Tu), 0}
= 0
≤ d(u, u).

Thus, from (3.1) we obtain that

ψ(d(Tu, u)) = ψ(d(Tu, Su))
≤ ψ(m(u, u))− φ(m(u, u)).

Where

m(u, u) = max{d(u, u), d(u, Tu), d(u, Su), d(u,Su)+d(u,Tu)
2 }

= max{0, d(u, Tu), 0, d(u,Tu)
2 }

= d(u, Tu).

Therefor, we observe that

ψ(d(Tu, u)) ≤ ψ(d(u, Tu))− φ(d(u, Tu)).

Which is a contradiction unless Tu = u. Hence we obtain that Tu = Su = u.
Similarly, if we consider (3.11), we can proved that the second part of our clam
leads to contradiction, unless Su = Tu = u.
So in any case, u is a common fixed point of T and S. And proof is completed.

Corollary 3.4. Let all the conditions of Theorem 3.4 be satisfied, except (3.1) which is
replaced by the following condition :
There exists a positive Lebesque integrable function f on R+ such that

∫ ε
0
f(t)dt > 0

for each ε > 0, and for every x, y ∈ X,

(
x �� y and 1

2 min{d(x, Tx), d(y, Sy)} ≤

d(x, y)

)
implies

∫ ψ(d(Tx,Sy))

0

f(t)dt ≤
∫ ψ(m(x,y))

0

f(t)dt−
∫ ϕ(m(x,y))

0

f(t)dt.

Then T and S have at least one common fixed point.

Proof. Let G(u) :=
∫ u
0
f(t)dt ∀u > 0. Then(

x �� y and 1
2 min{d(x, Tx), d(y, Sy)} ≤ d(x, y)

)
implies

Goψ(d(Tx, Sy)) ≤ Goψ(m(x, y))−Goϕ(m(x, y)).

It is easy verify that ψ1 := Goψ and ϕ1 := Goϕ are control functions and all conditions of
Theorem 3.4 are satisfied (for ψ1 and ϕ1 ). Therefore T and S have at least one common
fixed point.

If we take S = T in Theorem 3.4 then we can obtain a fixed point theorem for T .
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Corollary 3.5. Let (X,�, d) be an ordered complete metric space and T : X → X be a
partially-weakly isotone map such that,

for any x, y ∈ X,

(
x �� y and 1

2d(x, Tx) ≤ d(x, y)

)
implies

ψ(d(Tx, Ty)) ≤ ψ(mT (x, y))− φ(mT (x, y)). (3.12)

Where ( ψ,ϕ ) is a pair of control functions .
Then, in each of the following two cases, T has a fixed point.

(i): T is continuous.
(ii): X is regular.

Taking into account part (3) of Example 3.1, one can obtain the following corollary:

Corollary 3.6. Let T : X → X be a nondecreasing map such that x0 � Tx0 for some
x0 ∈ X and other conditions of Corollary 3.5 be fulfilled. Then T has a fixed point.

The following two results are immediately derived from Theorem 3.4.

Corollary 3.7 ([10] Theorem 3.1). Let (X,�, d) be an ordered complete metric space
and (T, S) be a pair of weakly increasing maps on X such that for any two comparable
elements x, y ∈ X

ψ(d(Tx, Sy)) ≤ ψ(m(x, y))− φ(m(x, y)).

where (ψ,ϕ) is a pair of control functions. Then T and S have a common fixed point
provided by at least one of the following cases hold:

(i): T or S is continuous.
(ii): X is regular.

Corollary 3.8 ([10] Corollary 3.3). Let (X,�, d) be an ordered complete metric space
and T : X → X be a nondecreasing map such that x0 � Tx0 , for some x0 ∈ X. If for
every comparable elements x, y ∈ X the following inequality holds

ψ(d(Tx, Ty)) ≤ ψ(mT (x, y))− φ(mT (x, y)). (3.13)

Where ( ψ,ϕ ) is a pair of control functions .
Then, in each of the following two cases, T has a fixed point.

(i): T is continuous.
(ii): X is regular.

Theorem 3.9. Assume that all the conditions of Corollary 3.5 are satisfied. Then T has
a unique fixed point if and only if the set of all fixed points of T is well ordered.

Proof. By Corollary 3.5, T has at least a fixed point. Now, if the fixed point of T is
unique then the set of all fixed points of T is a singleton and so is well ordered.

Conversely, suppose that the set of all fixed points of T is well ordered, and u and v
are two distinct fixed point of T . Then u �� v and

1

2
d(u, Tu) = 0 ≤ d(u, v).

Hence

ψ(d(u, v)) = ψ(d(Tu, Tv)
≤ ψ(mT (u, v))− φ(mT (u, v)).
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Where

mT (u, v) = max{d(u, v), d(u, Tu), d(v, Tv), d(u,Tv)+d(v,Tu)
2 }

= max{d(u, v), 0, 0, d(u,v)+d(v,u)
2 }

= d(u, v).

Thus we obtain that

ψ(d(u, v)) ≤ ψ(d(u, v))− φ(d(u, v))

Which is a contradiction unless d(u, v) = 0 .i.e. u = v .

The next result establishes a sufficient condition for uniqueness of fixed point.

Theorem 3.10. If the nondecreasing map T : X → X satisfies the conditions of Corol-
lary 3.5 and the following assumption:
(a) for arbitrary non-comparable two points x, y ∈ X there exists z ∈ X which is compa-
rable with x and y, and also z � Tz.
Then T has a unique fixed point.

Proof. At first, we claim that there exists x0 ∈ X such that x0 � Tx0.
Actually, if X is a singleton, say X = {x0}, then x0 = T (x0) and x0 is the unique fixed
point of T . Also if any two elements of X are comparable then x � Tx for any x ∈ X.
In other wise, our claim is proved by the condition (a).
So, By Corollary 3.5, T has a fixed point.
Now let u and v be two fixed points of T . One of the following two cases can occur:

(1) u �� v .
Similarly as in the proof of Theorem 3.11, it can be shown that u = v.

(2) u and v are not comparable .
In this case by the hypothesis, there exists z ∈ X such that z �� u, z �� v and
z � Tz.
Put yn := Tny, for any y ∈ X and n ≥ 0 .
Since T is nondecreasing, we obtain that u = un �� zn, v = vn �� zn for each
n ≥ 0.
If there exists n0 ≥ 0 such that, zn0

= u then v �� zn0
= u and so from item

(1), u = v.
Thus, we can assume zn 6= u, ∀n ≥ 0.

Since z � Tz, similarly as in the proof of Theorem 3.4, it can be shown that

lim
n→∞

d(zn−1, zn) = 0, (3.14)

and {zn} is a convergent sequence.
Now, we claim that

lim
n→∞

d(u, zn) = 0.

Indeed, for any n ≥ 1, we have u = un �� zn and 1
2d(u, Tu) = 0 ≤ d(u, zn−1),

hence,

ψ(d(u, zn)) = ψ(d(Tun−1, T zn−1)
≤ ψ(mT (un−1, zn−1))− φ(mT (un−1, zn−1))
≤ ψ(mT (u, zn−1))− φ(mT (u, zn−1)).
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Where

mT (u, zn−1) = max{d(u, zn−1), d(u, Tu), d(zn−1, T zn−1),
d(u,Tzn−1)+d(zn−1,Tu)

2 }
= max{d(u, zn−1), d(zn−1, zn), d(u,zn)+d(zn−1,u)

2 }.
And since ψ is nondecreasing we obtain that

d(u, zn) ≤ max{d(u, zn−1), d(zn−1, zn),
d(u, zn) + d(zn−1, u)

2
}.

One can consider the following two cases:
(a) there exists a sequence{nk}k≥0 of distinct positive integers that

d(u, znk−1) ≤ d(znk−1, znk
).

In this case, (3.14) implies that

lim
k→∞

d(u, znk−1) = 0

and since {zn} is a convergent sequence, one can conclude that

lim
n→∞

d(u, zn) = 0.

(b) there exists n0 ≥ 1 such that, for any n ≥ n0
d(u, zn) > d(zn−1, zn).

In this case, for any n ≥ n0, we have

d(u, zn) ≤ max{d(u, zn−1), d(u,zn)+d(zn−1,u)
2 }

≤ max{d(u, zn−1), d(u, zn)}.
It is easily seen that,

d(u, zn) ≤ mT (u, zn−1) = d(u, zn−1)

Thus, for any n ≥ n0, the sequence {d(u, zn)} is non-increasing and so, it
has a limit l ≥ 0. In addition, we have:

lim
n→∞

mT (u, zn−1) = l.

Passing to (upper)limit in the relation

ψ(d(u, zn)) ≤ ψ(mT (u, zn−1))− φ(mT (u, zn−1))

we obtain that

ψ(l)) ≤ ψ(l)− φ(l).

Which is a contradiction unless l = 0.
So, in any case, we proved that

lim
n→∞

d(u, zn) = 0.

In the same way, one can show that

lim
n→∞

d(v, zn) = 0.

Finally, for any n ≥ 0, we have

0 ≤ d(u, v) ≤ d(u, zn) + d(v, zn).
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Letting n→∞ , we obtain that d(u, v) = 0 i.e. u = v .

Hence, in any case, the fixed point of T is unique.

It is clear that the Theorem 3.4 is a real generalization of Corollary 3.7. The following
example shows that Corollary 3.6 is a generalization of the Corollary 3.8.

Example 3.11. Let X = {(0, 0), (0, 4), (5, 0), (4, 5), (5, 4)} be endowed with the metric d
defined by

d((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2| .

Suppose that relation � is defined on X as follows:

(5, 0) � (0, 4) , (4, 5) � (5, 4),

(0, 0) � (x, y) � (x, y) ∀(x, y) ∈ X.
It is easy to see that (X,�, d) is an regular ordered complete metric space.
Furthermore, suppose that T : X → X is defined as follows :

T (0, 0) = T (5, 0) = T (0, 4) = (0, 0),

T (4, 5) = (5, 0) , T (5, 4) = (0, 4).

It is obvious that T is nondecreasing with respect to � and (0, 0) � (0, 0) = T (0, 0).
Now, we can verify that for any pair of control functions, T does not satisfy the condition
(3.13) of Corollary 3.8, at u = (4, 5) and v = (5, 4).
Indeed, we have u �� v and

d(Tu, Tv) = d((5, 0), (0, 4)) = 9.

Also

mT (u, v) = max{d(u, v), d(u, Tu), d(v, Tv), d(u,Tv)+d(v,Tu)2 }
= max{d((4, 5), (5, 4)), d((4, 5), (5, 0)), d((5, 4), (0, 4))

, d((4,5),(0,4))+d((5,4),(5,0))2 }
= max{2, 6, 5, 5+4

2 }
= 6.

And it is obvious that

ψ(9) 
 ψ(6)− ϕ(6),

because ψ is nondecreasing and ϕ(t) > 0 ∀t > 0. Thus T does not satisfy the condition
(3.13) of Corollary 3.8, at u = (4, 5) and v = (5, 4) .
However, all the hypotheses of Corollary 3.6 are satisfied for T , with ψ(t) = t and
ϕ(t) = 1

10 t. In fact, for u = (4, 5) and v = (5, 4) we have

1

2
d(u, Tu) =

1

2
d((4, 5), (5, 0)) = 3.

But d(u, v) = d((4, 5), (5, 4)) = 2. So, we obtain that

1

2
d(u, Tu) � d(u, v).
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Also

1

2
d(v, Tv) =

1

2
d((5, 4), (0, 4)) =

5

2
.

But d(u, v) = 2. So, we obtain that

1

2
d(v, Tv) � d(u, v).

It is easily seen that, for every two comparable elements x, y ∈ X
1

2
d(x, Tx) ≤ d(x, y) implies ψ(d(Tx, Ty)) ≤ ψ(mT (x, y))− φ(mT (x, y)).

For example, for u = (4, 5) and z = (0, 0), which are comparable, we have:

ψ(d(Tu, Tz)) = ψ(d((5, 0), (0, 0))) = 5.

On the other hand

mT (u, z) = max{d(u, z), d(u, Tu), d(z, Tz), d(u,Tz)+d(z,Tu)2 }
= max{d((4, 5), (0, 0)), d((4, 5), (5, 0)), d((0, 0), (0, 0))

, d((4,5),(0,0))+d((0,0),(5,0))2 }
= max{9, 6, 0, 9+5

2 }
= 9.

and we have:

ψ(mT (u, z))− ϕ(mT (u, z)) = ψ(9)− ϕ(9)
= 9− 9

10
≥ 5

Consequently we have:

ψ(d(Tu, Tz)) ≤ ψ(mT (u, z))− ϕ(mT (u, z))

Similarly, one can obtain the same inequalities for other comparable elements of X.
Therefore all the hypotheses of Corollary 3.6 are satisfied.

Remark 3.12. In the Example 3.11, all the conditions of Theorem 3.11 and Theorem
3.10 are satisfied too, so by this theorems, the fixed point of T must be unique, and we
see that (0, 0) is the unique fixed point of T .

The following example shows that the extra conditions in these theorems, are essential in
order to guarantee the uniqueness of the fixed point. Furthermore, This example shows
that, in Theorem 3.10 even if the inequality

ψ(d(Tx, Ty)) ≤ ψ(mT (x, y))− φ(mT (x, y)),

is yield for all comparable elements x, y ∈ X, the condition (a) can not be replaced with
the following:
(b) there exists x0 ∈ X such that x0 � Tx0, and for arbitrary non-comparable two points
x, y ∈ X there exists z ∈ X which is comparable with x and y.

Example 3.13. Let X = {O(0, 0), A(2, 2), B(0, 2), C(2, 0)} ⊆ R2 be endowed with the
metric d defined by

d((x1, x2), (y1, y2)) =
√
|x1 − y1|2 + |x2 − y2|2 .
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Suppose that relation � is defined on X as follows:

� = {(O,O), (A,A), (B,B), (C,C), (B,O), (B,A), (C,O), (C,A)}.

Then (X,�, d) is a regular ordered complete metric space.
Suppose that T : X → X is defined as follow :

T (O) = O, T (A) = A, T (B) = C, T (C) = B.

Then, T is nondecreasing with respect to � and O � O = TO.
Choosing ψ(t) = t and ϕ(t) = t

a for any t ≥ 0, where a ≥ 2 +
√

2 is a real number, one
can verify that, all conditions of Theorem 3.10 are satisfied, except condition (a) which
is not established.
Indeed, for A and B, notice that A �� B and

ψ(d(TA, TB)) = ψ(d(A,C)) = 2.

On the other hand

mT (A,B) = max{d(A,B), d(A,A), d(B,C), d(A,C)+d(B,A)
2 }

= max{2, 0, 2
√

2, 2}
= 2

√
2.

Thus

ψ(mT (A,B))− ϕ(mT (A,B)) = ψ(2
√

2)− ϕ(2
√

2)

= 2
√

2− 2
√
2

a

≥ 2 (because a ≥ 2 +
√

2)

Consequently

ψ(d(TA, TB)) ≤ ψ(mT (A,B))− ϕ(mT (A,B)).

Similarly, the same inequalities for other comparable elements of X can be obtained .
Hence, all conditions of Theorem 3.10 are satisfied, except condition (a) which is not
established. (because, there is no Z ∈ X
comparable with O and A and TZ).
However, it is clear that the condition (b) of Remark 3.12 is reliable, and O and A are
distinct fixed points of T .
Also it is clear that the set of all fixed points of T is not well ordered, so conditions of
Theorem 3.11 are not satisfied too.

Remark 3.14. In a similar way as in the proof of Theorem 3.4, one can prove that,
Theorem 3.4 and its corollaries remain valid if m(x, y) and mT (x, y) are replaced with
n(x, y) and nT (x, y), respectively.
Furthermore, it is interesting that, if mT (x, y) is replaced with nT (x, y) in the Theorem
3.10, then we can replace the condition (a) with the condition (b) of Remark 3.12. i.e.
we have the following theorem:

Theorem 3.15. Let (X,�, d) be an ordered complete metric space and T : X → X be a
nondecreasing map such that x0 � Tx0 , for some x0 ∈ X. And for any x, y ∈ X,(
x �� y and 1

2d(x, Tx) ≤ d(x, y)

)
implies

ψ(d(Tx, Ty)) ≤ ψ(nT (x, y))− φ(nT (x, y)) (3.15)
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Where ( ψ,ϕ ) is a pair of control functions.

Furthermore, let the following condition hold:
(b) for arbitrary non-comparable x, y ∈ X there exists z ∈ X which is comparable with x
and y.
If T is continuous or X is regular, then T has a unique fixed point.

Proof. Firstly, by Remark 3.14, T has a fixed point.
Now, let u and v be two fixed points of T . One can consider the following two cases:

(1) u �� v .
In this case, similarly as in the proof of Theorem 3.11, it can be shown that u = v.

(2) u and v are not comparable . In this case by the hypothesis, there exist z ∈ X
such that z �� u and z �� v .
By using the notations which have been employed in the proof of Theorem 3.10,
one can see that u = un �� zn and v = vn �� zn for each n ≥ 0, and zn 6=
u, ∀n ≥ 0.
Now, for any n ≥ 1, u = un �� zn and 1

2d(u, Tu) = 0 ≤ d(u, zn−1),
hence,

ψ(d(u, zn)) = ψ(d(Tun−1, T zn−1)
≤ ψ(nT (un−1, zn−1))− φ(nT (un−1, zn−1))
≤ ψ(nT (u, zn−1))− φ(nT (u, zn−1))

Where

nT (u, zn−1) = max{d(u, zn−1), d(u,Tu)+d(zn−1,Tzn−1)
2 ,

d(u,Tzn−1)+d(zn−1,Tu)
2 }

= max{d(u, zn−1), d(zn−1,zn)
2 , d(u,zn)+d(zn−1,u)

2 }
≤ max{d(u, zn−1), d(zn−1,u)+d(u,zn)

2 , d(u,zn)+d(zn−1,u)
2 }

≤ max{d(u, zn−1), d(zn−1,u)+d(u,zn)
2 }

≤ max{d(u, zn−1), d(u, zn)}

And the proof is completed similar to the proof of Theorem 3.10.
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