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1. Introduction

Let A(p) denote the class of functions

f(z) = zp +

∞∑
n=1

an+pz
n+p, (p ∈ N = {1, 2, ...}), (1.1)

which are analytic and p-valent in the open unit disk E = {z : |z| < 1}. Clearly for p = 1,
then A(p) = A, the class of normalized analytic functions. The subclass Rp of multivalent
functions was defined and studied by Noor et-al. [1] as follows:

Rp =

{
f ∈ A : <

(
f (p)(z) + zf (p+1)(z)

p!

)
> 0

}
, (1.2)

where f (p)(z) denotes pth derivative of f(z). The class R1 = R was studied by Singh and
Singh [2] in 1989.
Moreover, the subclass of A(p) consisting of all analytic functions and has positive real
part in E is denoted by P. An analytic description of P is given by

h(z) = 1 +

∞∑
n=1

Bnz
n, z ∈ E.
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If f and g are analytic functions in E, we say that the function f is said to be subordinate
to the function g and written as:

f ≺ g or f(z) ≺ g(z),

if there exists a Schwarz function w in E with w(0) = 0, and |w(z)| < 1 for all z ∈ E,
such that

f(z) = g(w(z)), z ∈ E.
Furthermore, if the function g is univalent in E, then the subordination is equivalent to

f(z) ≺ g(z)⇒ f(0) = g(0) and f(E) ⊂ g(E).

In 1970, Robertson [3] introduced the concept of quasi-subordination. For two analytic
functions f and g, the function f is quasi-subordinate to g in an open unit disc E, if there

exist analytic functions ϕ(z) with |ϕ(z)| ≤ 1 such that f(z)
ϕ(z) is analytic in E and

f(z)

ϕ(z)
≺ g(z), z ∈ E. (1.3)

The expression (1.3) can also be written as:

f(z) ≺q g(z), z ∈ E. (1.4)

Note that the quasi-subordination (1.4) is equivalent to f(z) = ϕ(z)g(w(z)). We also note
that if ϕ(z) = 1, then the quasi-subordination ≺q becomes a usual subordination that is

f(z) ≺ g(z), so that f(z) = g(w(z)).

Now we define the following definition:

Definition 1.1. A function f(z) defined by (1.1) is said to be in the class Rp(q, φ, ϕ),
p ∈ N = {1, 2, 3, ...}, if the following quasi subordination holds:(

f (p)(z) + zf (p+1)(z)

p!

)
− 1 ≺q (φ(z)− 1) , z ∈ E. (1.5)

where φ ∈ P be univalent in E.
The above subordination condition (1.5) can also be written as:(

f(p)(z)+zf(p+1)(z)
p!

)
− 1

ϕ(z)
≺ (φ(z)− 1) , z ∈ E. (1.6)

In the subordination condition (1.6), if ϕ(z) ≡ 1, then the class Rp(q, φ, ϕ) denoted by
Rp(φ) and satisfy the condition(

f (p)(z) + zf (p+1)(z)

p!

)
≺ φ(z), z ∈ E. (1.7)

Special Cases:
i) For ϕ(z) ≡ 1 and φ(z) = 1+z

1−z , the class Rp(q, φ, ϕ) = Rp, defined and studied in [1].

ii) For ϕ(z) ≡ 1, p = 1 and φ(z) = 1+z
1−z , the class Rp(q, φ, ϕ) = R, defined and studied in

[2].

iii) For ϕ(z) ≡ 1, p = 1 and φ(z) = 1+(1−2α)z
1−z , (0 ≤ α < 1) the class Rp(q, φ, ϕ) = Nα,0

Σ ,

defined and studied in [4].
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It is well known that the Fekete-Szegö functional is
∣∣a3 − a2

2

∣∣ was obtained by Fekete

and Szegö [5]. Fekete and Szegö further generalized the estimate
∣∣a3 − µa2

2

∣∣ where µ is real
and f ∈ S, the class of univalent functions. Since then, the problem of finding the sharp
bounds for this functional of any compact family of function f ∈ S with any complex µ is
generally knows as the classical Fekete and Szegö problems inequality. Fekete and Szegö
problem for several subclasses of A have been studied by many authors (see, e.g [6–11])
also recently by [12–14].

In this paper we mainly concentrate in determining the coefficient estimates including
a Fekete and Szegö inequality of functions belonging to the classes Rp(q, φ, ϕ), Rp(φ) and
R1(q, φ, ϕ). Some consequences of our main results are also given.
Throughout in this paper it is assumed that φ ∈ P is analytic in E, and ϕ(z) is also
analytic in E and has the form given by:

ϕ(z) = d0 + d1z + d2z
2 + ..., (|ϕ(z)| ≤ 1; z ∈ E). (1.8)

2. Preliminary Results

Lemma 2.1 ([15]). Let the Schwarz function w(z) be given by

w(z) = w1z + w2z
2 + w3z

3 + ... (z ∈ E). (2.1)

Then

|w1| ≤ 1,
∣∣w2 − tw2

1

∣∣ ≤ 1 + (|t| − 1) |w1|2 ≤ max {1, |t|} .

Where t ∈ C, the result is sharp for the function w(z) = z or w(z) = z2.

Lemma 2.2 ([16]). If w is analytic in E, then

∣∣w2 − µw2
1

∣∣ ≤
 −µ, if µ ≤ −1,

1, if − 1 ≤ µ ≤ 1,
µ, if µ ≥ 1.

(2.2)

When µ < −1 or µ > 1, equality holds if and only if w(z) = z or one of its rotations. If
−1 < µ < 1, then equality holds if and only if w(z) = z2 or one of its rotations. Equality
holds for µ = −1 if and only if

w(z) =
z(t+ z)

1 + tz
(0 ≤ t ≤ 1),

or one of its rotations while for µ = 1, equality holds if and only if

w(z) =
−z(t+ z)

1 + tz
(0 ≤ t ≤ 1),

or one of its rotations.
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3. Main Results

Theorem 3.1. Let the function f(z) ∈ A(p) defined by (1.1) be in the class Rp(q, φ, ϕ),
then

|ap+1| ≤
p!B1

2(p+ 1)!
, (3.1)

∣∣ap+2 − ca2
p+1

∣∣ ≤ 2!p!B1

3(p+ 2)!



B2

B1
− c 3p!(p+2)!B1

2!4((p+1)!)2
, if c ≤ ρ,

1, if ρ ≤ c ≤ σ,

c 3p!(p+2)!B1

2!4((p+1)!)2
− B2

B1
, if c ≥ σ,

(3.2)

where

ρ = 2!

(
4(B2 −B1) ((p+ 1)!)

2

3p!(p+ 2)!B2
1

)
and σ = 2!

(
4(B2 +B1) ((p+ 1)!)

2

3p!(p+ 2)!B2
1

)
.

Proof. Let f ∈ Rp(q, φ, ϕ), then for Schwarz function w(z) given by (2.1) and for an
analytic function ϕ(z) given by (1.8), we have(

f (p)(z) + zf (p+1)(z)

p!

)
− 1 = ϕ(z) (φ(w(z))− 1) , (3.3)

where the series expansions of the right hand side and left hand side of (3.3) are given as:

ϕ(z) (φ(w(z))− 1) =
(
d0 + d1z + d2z

2 + ...
) {
B1w1z + (B1w2 +B2w

2
1)z2 + ...

}
,

= d0B1w1z +
{
d0(B1w2 +B2w

2
1) + d1B1w1

}
z2 + ..., (3.4)

and (
f (p)(z) + zf (p+1)(z)

p!

)
− 1 =

2(p+ 1)!

p!1!
ap+1z +

3(p+ 2)!

p!2!
ap+2z

2 + .... (3.5)

From the expansion (3.4) and (3.5), on equating the coefficients of z and z2 in (3.3), we
have

2(p+ 1)!

p!1!
ap+1 = d0B1w1, (3.6)

3(p+ 2)!

p!2!
ap+2 =

{
d0(B1w2 +B2w

2
1) + d1B1w1

}
. (3.7)

Now from (3.6) we have

ap+1 =
p!d0B1w1

2(p+ 1)!
, (3.8)

Taking modulus on (3.8), we have

|ap+1| ≤
p!B1

2(p+ 1)!
. (3.9)
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Which is required inequality (3.1).
Now in the view of (3.7),

ap+2 =
2!p!B1

3(p+ 2)!

{
d1w1 + d0(w2 +

B2

B1
w2

1)

}
. (3.10)

For some c ∈ C, we obtain from (3.8) and (3.10)

ap+2 − ca2
p+1 =

2!p!B1

3(p+ 2)!

[
d1w1 + d0

{
w2 +

(
B2

B1
− c 3p!(p+ 2)!B1

2!4 ((p+ 1)!)
2 d0

)
w2

1

}]
. (3.11)

Since ϕ(z) given by (1.8) is analytic and bounded in E, therefore using the result given
in [17, page 172], we have some y (|y| ≤ 1).

|d0| ≤ 1 and d1 = (1− d2
0)y. (3.12)

On putting the value of d1 from (3.12) into (3.11), we have

ap+2 − ca2
p+1 =

2!p!B1

3(p+ 2)!

[
(1− d2

0)yw1 + d0

{
w2 +

(
B2

B1
− c 3p!(p+ 2)!B1

2!4 ((p+ 1)!)
2 d0

)
w2

1

}]
(3.13)

If d0 = 0 in (3.13) and using the Lemma 2.1, we have∣∣ap+2 − ca2
p+1

∣∣ ≤ 2!p!B1

3(p+ 2)!
. (3.14)

But if d0 6= 0, let us suppose that

F (d0) = (1− d2
0)yw1 + d0

{
w2 +

(
B2

B1
− c 3p!(p+ 2)!B1

2!4 ((p+ 1)!)
2 d0

)
w2

1

}
,

which is a polynomial in d0 and hence analytic in |d0| ≤ 1 and maximum of |F (d0)| is
attained at d0 = eiθ (0 ≤ θ < 2π). We find that max(0≤θ<2π)

∣∣F (eiθ)
∣∣ = |F (1)| and

∣∣ap+2 − ca2
p+1

∣∣ ≤ 2!p!B1

3(p+ 2)!

∣∣∣∣∣w2 −

(
c

3p!(p+ 2)!B1

2!4 ((p+ 1)!)
2 −

B2

B1

)
w2

1

∣∣∣∣∣ . (3.15)

By using the Lemma 2.2 on (3.15), we have the required inequality (3.2).
Sharpness of this result can be verified for the functions f(z) given by

f (p)(z) + zf (p+1)(z)

p!
= φ(z2), (3.16)

or

f (p)(z) + zf (p+1)(z)

p!
− 1 = z(φ(z)− 1). (3.17)

For p = 1, in Theorem 3.1, we have the following result.
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Corollary 3.2. Let the function f ∈ A be in the class R1(q, φ, ϕ), then

|a2| ≤
B1

4
,

∣∣a3 − ca2
2

∣∣ ≤ B1

9



B2

B1
− c 9B1

16 , c ≤ ρ1,

1, ρ1 ≤ c ≤ σ1,

c 9B1

16 −
B2

B1
, c ≥ σ1,

where

ρ1 =
16(B2 −B1)

9B2
1

and σ1 =
16(B2 +B1)

9B2
1

.

Theorem 3.3. Let the function f ∈ A(p) be in the class Rp(φ) for p ∈ N = {1, 2, 3, ...},
then

|ap+1| ≤
p!B1

2(p+ 1)!
,

∣∣ap+2 − ca2
p+1

∣∣ ≤ 2!p!B1

3(p+ 2)!



B2

B1
− c 3p!(p+2)!B1

2!4((p+1)!)2
, if c ≤ ρ,

1, if ρ ≤ c ≤ σ,

c 3p!(p+2)!B1

2!4((p+1)!)2
− B2

B1
, if c ≥ σ,

where

ρ = 2!

(
4(B2 −B1) ((p+ 1)!)

2

3p!(p+ 2)!B2
1

)
and σ = 2!

(
4(B2 +B1) ((p+ 1)!)

2

3p!(p+ 2)!B2
1

)
.

Proof. The proof of above theorem is similar to that of Theorem 3.1, when we take
ϕ(z) ≡ 1, then (1.8) evidently implies that d0 = 1 and dn = 0, n ∈ N, hence in view
of (3.8), (3.11) and using Lemma 2.2, we obtain the required result. Sharpness can be
verified for the function given by (3.16) or (3.17).

For p = 1 and ϕ(z) ≡ 1 in Theorem 3.3, then we have the following result.

Corollary 3.4. Let the function f ∈ A, be in the class R(φ), then

|a2| ≤
B1

4
,

∣∣a3 − ca2
2

∣∣ ≤ B1

9



B2

B1
− c 9B1

16 , c ≤ ρ1,

1, ρ1 ≤ c ≤ σ1,

c 9B1

16 −
B2

B1
, c ≥ σ1,

where

ρ1 =
16(B2 −B1)

9B2
1

and σ1 =
16(B2 +B1)

9B2
1

.
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Theorem 3.5. Let the function f ∈ A, be in the class Rp(q, φ, ϕ), then

∣∣ap+2 − ca2
p+1

∣∣ ≤ 2!p!B1

3(p+ 2)!
max

{
1,

∣∣∣∣∣c 3p!(p+ 2)!B1

2!4 ((p+ 1)!)
2 −

B2

B1

∣∣∣∣∣
}
.

Proof. Let f ∈ Rp(q, φ, ϕ), then we have from (3.15).

∣∣ap+2 − ca2
p+1

∣∣ ≤ 2!p!B1

3(p+ 2)!

∣∣∣∣∣w2 −

(
c

3p!(p+ 2)!B1

2!4 ((p+ 1)!)
2 −

B2

B1

)
w2

1

∣∣∣∣∣ . (3.18)

Applying the Lemma 2.1 on (3.18), we have

∣∣ap+2 − ca2
p+1

∣∣ ≤ 2!p!B1

3(p+ 2)!
max

{
1,

∣∣∣∣∣c 3p!(p+ 2)!B1

2!4 ((p+ 1)!)
2 −

B2

B1

∣∣∣∣∣
}
. (3.19)

This complete the proof. Sharpness of this result can be verified in (3.16) and (3.17).

Theorem 3.6. Let the function f ∈ A(p) be in the class Rp(φ), then

∣∣ap+2 − ca2
p+1

∣∣ ≤ 2!p!B1

3(p+ 2)!
max

{
1,

∣∣∣∣∣c 3p!(p+ 2)!B1

2!4 ((p+ 1)!)
2 −

B2

B1

∣∣∣∣∣
}
.

Proof. The proof of above theorem is similar to that of Theorem 3.5, when we take
ϕ(z) ≡ 1, then (1.8) evidently implies that d0 = 1 and dn = 0, hence in view of (3.18) and
using Lemma 2.1, we obtain the desired result. Sharpness can be verified for the function
f given by (3.16).

For p = 1 in the Theorem 3.5, then we have the following result:

Corollary 3.7. Let the function f ∈ A be in the class R1(q, φ, ϕ), then∣∣ap+2 − ca2
p+1

∣∣ ≤ B1

9
max

{
1,

∣∣∣∣9cB1

16
− B2

B1

∣∣∣∣} .
For p = 1 and ϕ(z) ≡ 1 in the Theorem 3.6, then we have the following result:

Corollary 3.8. Let the function f ∈ A be in the class R(φ), then∣∣ap+2 − ca2
p+1

∣∣ ≤ B1

9
max

{
1,

∣∣∣∣9cB1

16
− B2

B1

∣∣∣∣} .
Theorem 3.9. Let the function f ∈ A(p) be in the class Rp(q, φ, ϕ), then∣∣ap+2 − ca2

p+1

∣∣+ (c− ρ) |ap+1|2 ≤
2!p!B1

3(p+ 2)!
, ρ < c ≤ σ

2
, (3.20)

and ∣∣ap+2 − ca2
p+1

∣∣+ (σ − c) |ap+1|2 ≤
2!p!B1

3(p+ 2)!
,

σ

2
< c ≤ σ. (3.21)
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Proof. Let f ∈ Rp(q, φ, ϕ), then from (3.8) and (3.15) (when ρ < c < σ), we get if
ρ < c ≤ σ

2 :∣∣ap+2 − ca2
p+1

∣∣+ (c− ρ) |ap+1|2 ≤
2!p!B1

3(p+ 2)!

{
|w2| − (−1) |w1|2

}
. (3.22)

Hence by applying the Lemma 2.1 on (3.22), we obtain the desired estimates (3.20). If
σ
2 < c ≤ σ, then again from (3.8) and (3.15), we have∣∣ap+2 − ca2

p+1

∣∣+ (σ − c) |ap+1|2 ≤
2!p!B1

3(p+ 2)!

{
|w2| − (−1) |w1|2

}
. (3.23)

Hence by using Lemma 2.1 on (3.23), we obtain the desired estimates (3.21).
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