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1. INTRODUCTION

Let A(p) denote the class of functions
F2)=2"+) angpz"', (pe N={1,2,..}), (1.1)
n=1

which are analytic and p-valent in the open unit disk E = {z : |z] < 1}. Clearly for p = 1,
then A(p) = A, the class of normalized analytic functions. The subclass R, of multivalent
functions was defined and studied by Noor et-al. [1] as follows:

R, = {f eA:%(f(p)(z)+zf(p+l)(z)) - 0}7

. (1.2)

where f()(z) denotes p** derivative of f(z). The class Ry = R was studied by Singh and
Singh [2] in 1989.

Moreover, the subclass of A(p) consisting of all analytic functions and has positive real
part in E is denoted by P. An analytic description of P is given by

h(z) =1+ Zan”7 z € E.
n=1
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If f and g are analytic functions in [E, we say that the function f is said to be subordinate
to the function g and written as:
f=g or  [f(z)<9(2),
if there exists a Schwarz function w in E with w(0) = 0, and |w(z)| < 1 for all z € E,
such that
f(z) =g(w(z)), =z€kE.
Furthermore, if the function g is univalent in E, then the subordination is equivalent to
f(z) < g(z) = f(0) = g(0) and [(E) C g(E).
In 1970, Robertson [3] introduced the concept of quasi-subordination. For two analytic

functions f and g, the function f is quasi-subordinate to g in an open unit disc E, if there
exist analytic functions ¢(z) with |p(z)| < 1 such that % is analytic in E and

<g(z), z€E. 1.3
o) )

The expression (1.3) can also be written as:
f(z) =4 9(2), ze€kLE. (1.4)

Note that the quasi-subordination (1.4) is equivalent to f(z) = ¢(z)g(w(z)). We also note
that if ¢(z) = 1, then the quasi-subordination <, becomes a usual subordination that is

f(2) < g(2), sothat f(2) = g(w(z)).

Now we define the following definition:

Definition 1.1. A function f(z) defined by (1.1) is said to be in the class R,(q, ¢, ¥),
p e N={1,2,3,...}, if the following quasi subordination holds:

(P)(2) 4 2 (P (4
<f ( )+p!f ( )>—1<q (p(2) —1), z€ekE. (1.5)

where ¢ € P be univalent in E.
The above subordination condition (1.5) can also be written as:

(f“’>(Z)+Zf‘p“)(z)) ~1
p!

¢(2)

In the subordination condition (1.6), if ¢(z) = 1, then the class R,(q, ¢, ¢) denoted by
Rp(¢) and satisfy the condition

®) (4 2 fo+1) (5
(f ( )+p!f + ( )) —<¢(Z), » ¢ E. (1.7)

<(o(z)-1), =€k (1.6)

Special Cases:

i) For ¢(z) =1 and ¢(z) = 112, the class R,(q, ¢, ¢) = R, defined and studied in [1].
ii) For ¢(z) =1, p=1and ¢(z) = %2, the class R,(q, ¢, ¢) = R, defined and studied in
2]

iii) For p(2) =1, p =1 and ¢(z) = w, (0 < o < 1) the class R,(q, ¢, ) = N3O,
defined and studied in [4].




Bounds on Multivalent Functions Associated with Quasi-Subordination 1529

It is well known that the Fekete-Szegd functional is ’(13 — a%’ was obtained by Fekete
and Szego [5]. Fekete and Szegd further generalized the estimate ’(13 — ua%‘ where p is real
and f € .5, the class of univalent functions. Since then, the problem of finding the sharp
bounds for this functional of any compact family of function f € S with any complex p is
generally knows as the classical Fekete and Szegd problems inequality. Fekete and Szego
problem for several subclasses of A have been studied by many authors (see, e.g [(—11])
also recently by [12—14].

In this paper we mainly concentrate in determining the coefficient estimates including
a Fekete and Szegd inequality of functions belonging to the classes R,(q, ¢, ¢), Rp(¢) and
R1(q, ¢, ). Some consequences of our main results are also given.
Throughout in this paper it is assumed that ¢ € P is analytic in E, and ¢(z) is also
analytic in E and has the form given by:

0(2) =do +diz+da2? + ..., (|o(z)| < 1; z€R). (1.8)

2. PRELIMINARY RESULTS
Lemma 2.1 ([15]). Let the Schwarz function w(z) be given by
w(z) = w2 + w2 + w32 + ... (z €E). (2.1)
Then
lwi| <1, |ws —tw}] < 1+ (Jt] — 1) Jwy|* < max {1, [¢]}.
2

Where t € C, the result is sharp for the function w(z) = z or w(z) = 2°.

Lemma 2.2 ([16]). If w is analytic in E, then

— [, if p< -1,
|wa — pwi] < 1, if  —1<p<l, (2.2)
I if p> 1

When p < —1 or p > 1, equality holds if and only if w(z) = z or one of its rotations. If
—1 < p < 1, then equality holds if and only if w(z) = 2% or one of its rotations. Equality
holds for u = —1 if and only if

_ 2(t+2)

w(z) = e (0<t<1),

or one of its rotations while for u = 1, equality holds if and only if

—z(t + 2)
1+tz

w(z) = (0<t<1),

or one of its rotations.
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3. MAIN RESULTS

Theorem 3.1. Let the function f(z) € A(p) defined by (1.1) be in the class Rp(q, ¢, ¥),
then

p!B;
G 3.1
|ap+1| — 2(p+ 1)'7 ( )
B 3p!(p+2)! By .
?? o CQ&(?p—i—l)!)Q’ if csp
2!p!Bl .
— ca? < e 1 <ec< 3.2
ap+2 cap+1| = 3(p+ 2)! ’ if P=C=0, ( )
3p!(p+2)!31 _ By Zf c> 0o

24((p+1))? ~ By’

where

p=2 (4(32 — By (v + 1)!)2> ond o — 91 <4(Bz +B1) ((p+ 1)!)2>
' 3pl(p +2)! B} ' 3pl(p +2)!B7 :

Proof. Let f € Ry,(q,¢,¢), then for Schwarz function w(z) given by (2.1) and for an
analytic function ¢(z) given by (1.8), we have

f(p) z +zf(p+1) z
(L) e ot - 1), (33
where the series expansions of the right hand side and left hand side of (3.3) are given as:
o(2) (d(w(z))—1) = (do +diz+dyz? + ) {Blwlz + (Byws + Bow?)2* + } ,
= dOBlwlz + {do(BﬂJ)Q -+ ng%) + dlBl’UJl} Z2 + .. (34)
and
F@P (2) 4+ 2fPHD(2) 2(p+1)! 3(p+2)!
( p' —1= Wap+12 + Wa/p+222 + (35)

From the expansion (3.4) and (3.5), on equating the coefficients of z and 22 in (3.3), we
have

2(p +1)!
%%H = b, (3.6)
3(p+2)!

%%H = {do(Biws + Bow}) + diBywy } . (3.7)

Now from (3.6) we have

pldo Brw;

Gpt+1 = 2 (3.8)
Taking modulus on (3.8), we have
!B
et (3.9)

< — .
|ap+1| = 2(p+ 1)'
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Which is required inequality (3.1).
Now in the view of (3.7),

B,
ap42 = m {dl'lUl + do('LUQ + w2)} . (310)

B,
For some ¢ € C, we obtain from (3.8) and (3.10)

diw + do {wz + (gj - cmdo> w%}] . (3.11)

9 - 2'p'Bl
Gp2 = Clpi1 = 50 oN

Since ¢(z) given by (1.8) is analytic and bounded in E, therefore using the result given
in [17, page 172], we have some y (Jy| < 1).

|do| <1 and dy = (1 — d3)y. (3.12)

On putting the value of dy from (3.12) into (3.11), we have

apta — C =—— |(1-dj)ywi1 +d +|5—c——————dy |w
p+2 Qi1 3(p + 2)! ( 0)yw1 0§ W2 B, 62!4(@+ 1)!)2 0 1
(3.13)
If dy = 0 in (3.13) and using the Lemma 2.1, we have
2
|aps2 —cap | < 3pron (3.14)

But if dy # 0, let us suppose that

Fdo) = (1— d2)ywy +do d wy + [ 22 — 2P T2PD1 50 2L
(do) = ( 0)yw1 0{ 2 <Bl 2 (pr 2™ ) "

which is a polynomial in dy and hence analytic in |dg| < 1 and maximum of |F(dp)]| is
attained at do = €’ (0 < 6 < 2m). We find that maxg<g<2n) |F(e’?)| = |[F(1)| and

|apr2 —cap | < 3p+2) ‘w - ( P EE— wy|. (3.15)

aprn)? B

By using the Lemma 2.2 on (3.15), we have the required inequality (3.2).
Sharpness of this result can be verified for the functions f(z) given by

f(p)(z) + zf(”“‘l)(z)

o = ¢(2?), (3.16)
(P) () + » P+ (4
Al Hp!f ) ) - 1), (3.17)

For p =1, in Theorem 3.1, we have the following result.
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Corollary 3.2. Let the function f € A be in the class R1(q, ¢, ), then

B
|a2| S Ila
% _0%7 ¢ < p1,
B
|a3—003| < ?1 1, p1 < c <o,
9B, B
16 _?i7 6201’
where
B 16(By — By) and o« — 16(By + By)
L= ""9p? YT B

Theorem 3.3. Let the function f € A(p) be in the class Rp(¢) for p e N={1,2,3,...},
then

p!By
< - -
|a‘P+1| — 2(p+1)|a
B 3p!(p+2)!B .
B~ Caa(prn if c<p
— ca? < <c<
Qp+2 Cap-‘,—1| = 3(p + 2)' ) Zf p=>c g,
3p!(p+2)!B1  Bo if >0

214((p+1)1)? By

where

p=2 <4<B2 —B)(lpt 1>!>2> and o — 2! <4<32 +B) (p+ 1>!>2>
' 3pl(p+ 2)!B} ' 3pl(p +2)! B} :

Proof. The proof of above theorem is similar to that of Theorem 3.1, when we take
©(z) = 1, then (1.8) evidently implies that dy = 1 and d, = 0, n € N, hence in view
of (3.8), (3.11) and using Lemma 2.2, we obtain the required result. Sharpness can be
verified for the function given by (3.16) or (3.17). L]

For p =1 and ¢(z) = 1 in Theorem 3.3, then we have the following result.
Corollary 3.4. Let the function f € A, be in the class R(d), then

B
|a2| S I17

%_0%7 Cgpla

B
lag — ca3| < ?1 1, p1 <c<o,
091'%1 - %’ 620-17

where
_ 16(By — By) and o« — 16(By + By)
L= ""op? YT B
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Theorem 3.5. Let the function f € A, be in the class Ry(q, ¢, ¥), then

|ap+2—ca12,+1‘ < MmaX{L c }

Proof. Let f € R,(q, ¢, ), then we have from (3.15).
20p! By | ( 3p!(p+ 2)! B Bg> )
I [ w

c - = . 3.18
M((p+1)? B ! (3.18)
2p'B
!ap+2 — ca]23+1| < 3(197"'21)' max {1, c } . (3.19)

This complete the proof. Sharpness of this result can be verified in (3.16) and (3.17). =

3pl(p+2)!B1 By
2 ((p+1))* B

2
|apr2 = cayaa| < 3pr2) Y

Applying the Lemma 2.1 on (3.18), we have

3pl(p+ 2)!B; B
24 ((p+1))* B

Theorem 3.6. Let the function f € A(p) be in the class R,(¢), then

2!p!B
|ap+gfca]23+l| §3plmax{1, }

(p+2)!
Proof. The proof of above theorem is similar to that of Theorem 3.5, when we take
©(z) = 1, then (1.8) evidently implies that dy = 1 and d,, = 0, hence in view of (3.18) and
using Lemma 2.1, we obtain the desired result. Sharpness can be verified for the function
f given by (3.16). n

CSp!(p+ 2)!By By
24 ((p+1))* B

For p =1 in the Theorem 3.5, then we have the following result:

Corollary 3.7. Let the function f € A be in the class R1(q, ¢, ), then
90B1 BQ }

For p =1 and ¢(z) =1 in the Theorem 3.6, then we have the following result:

16 By

B,
|ap+2 - caiﬂ‘ < ?max 1,

Corollary 3.8. Let the function f € A be in the class R(¢), then
90B1 B2 }

16 B
Theorem 3.9. Let the function f € A(p) be in the class Ry(q, ¢, @), then

3p+2)V

B
2 1
|ap+2 - cap_H‘ < 9 max {1,

o
lapta — cal | + (c = p) lapi1)” < p<c<—, (3.20)
2

and

g
m, 5 <C§O’. (321)

2
|ap+2 - Ca§+1| + (0 —c)fap]” <
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Proof. Let f € Ry(q,¢,9), then from (3.8) and (3.15) (when p < ¢ < o), we get if
p<c< 3

2Ip!B
2 2 Dby { 2}
— — < — —(—1 . 3.22
|ap2 — capq| + (¢ = p) laps|” < 312 |wa] = (=1) |wr| (3:22)
Hence by applying the Lemma 2.1 on (3.22), we obtain the desired estimates (3.20). If
Z < ¢ < o, then again from (3.8) and (3.15), we have

2Ip!B
2 2 b5y { 2}
— — < — —(—1 . 3.23
v = ] + (7= 0) oyl < 50 {fual = (<) | (3.23)
Hence by using Lemma 2.1 on (3.23), we obtain the desired estimates (3.21). L]
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