Bounds on Multivalent Functions Associated with Quasi-Subordination

Nazar Khan ${ }^{1}$, Shahid Khan ${ }^{2, *}$ and Qazi Zahoor Ahmad ${ }^{1}$
${ }^{1}$ Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad, Pakistan e-mail : nazarmaths@gmail.com (N. Khan); zahoorqazi5@gmail.com (Q. Z. Ahmad)
${ }^{2}$ Department of Mathematics, Riphah International University, Islamabad, Pakistan
e-mail : shahidmath761@gmail.com (S. Khan)

Abstract In this paper, we introduce certain new subclasses of multivalent functions by using the concept of quasi subordination. We prove certain bounds and Fekete-Szego inequality for these classes of functions.

MSC: 30C45; 30C50
Keywords: p-valent function; quasi subordination; Fekete and Szegö inequality

Submission date: 27.12.2018 / Acceptance date: 14.05.2020

1. Introduction

Let $\mathcal{A}(p)$ denote the class of functions

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} z^{n+p}, \quad(p \in \mathbb{N}=\{1,2, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the open unit disk $\mathbb{E}=\{z:|z|<1\}$. Clearly for $p=1$, then $\mathcal{A}(p)=\mathcal{A}$, the class of normalized analytic functions. The subclass \mathcal{R}_{p} of multivalent functions was defined and studied by Noor et-al. [1] as follows:

$$
\begin{equation*}
\mathcal{R}_{p}=\left\{f \in A: \Re\left(\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}\right)>0\right\} \tag{1.2}
\end{equation*}
$$

where $f^{(p)}(z)$ denotes $p^{t h}$ derivative of $f(z)$. The class $\mathcal{R}_{1}=\mathcal{R}$ was studied by Singh and Singh [2] in 1989.
Moreover, the subclass of $\mathcal{A}(p)$ consisting of all analytic functions and has positive real part in \mathbb{E} is denoted by \mathcal{P}. An analytic description of \mathcal{P} is given by

$$
h(z)=1+\sum_{n=1}^{\infty} B_{n} z^{n}, \quad z \in \mathbb{E} .
$$

[^0]If f and g are analytic functions in \mathbb{E}, we say that the function f is said to be subordinate to the function g and written as:

$$
f \prec g \quad \text { or } \quad f(z) \prec g(z),
$$

if there exists a Schwarz function w in \mathbb{E} with $w(0)=0$, and $|w(z)|<1$ for all $z \in \mathbb{E}$, such that

$$
f(z)=g(w(z)), \quad z \in \mathbb{E}
$$

Furthermore, if the function g is univalent in \mathbb{E}, then the subordination is equivalent to

$$
f(z) \prec g(z) \Rightarrow f(0)=g(0) \text { and } \quad f(\mathbb{E}) \subset g(\mathbb{E})
$$

In 1970, Robertson [3] introduced the concept of quasi-subordination. For two analytic functions f and g, the function f is quasi-subordinate to g in an open unit disc \mathbb{E}, if there exist analytic functions $\varphi(z)$ with $|\varphi(z)| \leq 1$ such that $\frac{f(z)}{\varphi(z)}$ is analytic in \mathbb{E} and

$$
\begin{equation*}
\frac{f(z)}{\varphi(z)} \prec g(z), \quad z \in \mathbb{E} . \tag{1.3}
\end{equation*}
$$

The expression (1.3) can also be written as:

$$
\begin{equation*}
f(z) \prec_{q} g(z), \quad z \in \mathbb{E} \tag{1.4}
\end{equation*}
$$

Note that the quasi-subordination (1.4) is equivalent to $f(z)=\varphi(z) g(w(z))$. We also note that if $\varphi(z)=1$, then the quasi-subordination \prec_{q} becomes a usual subordination that is

$$
f(z) \prec g(z), \quad \text { so that } \quad f(z)=g(w(z)) .
$$

Now we define the following definition:
Definition 1.1. A function $f(z)$ defined by (1.1) is said to be in the class $\mathcal{R}_{p}(q, \phi, \varphi)$, $p \in \mathbb{N}=\{1,2,3, \ldots\}$, if the following quasi subordination holds:

$$
\begin{equation*}
\left(\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}\right)-1 \prec_{q}(\phi(z)-1), \quad z \in \mathbb{E} . \tag{1.5}
\end{equation*}
$$

where $\phi \in \mathcal{P}$ be univalent in E.
The above subordination condition (1.5) can also be written as:

$$
\begin{equation*}
\frac{\left(\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}\right)-1}{\varphi(z)} \prec(\phi(z)-1), \quad z \in \mathbb{E} . \tag{1.6}
\end{equation*}
$$

In the subordination condition (1.6), if $\varphi(z) \equiv 1$, then the class $\mathcal{R}_{p}(q, \phi, \varphi)$ denoted by $\mathcal{R}_{p}(\phi)$ and satisfy the condition

$$
\begin{equation*}
\left(\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}\right) \prec \phi(z), \quad z \in \mathbb{E} . \tag{1.7}
\end{equation*}
$$

Special Cases:

i) For $\varphi(z) \equiv 1$ and $\phi(z)=\frac{1+z}{1-z}$, the class $\mathcal{R}_{p}(q, \phi, \varphi)=\mathcal{R}_{p}$, defined and studied in [1].
ii) For $\varphi(z) \equiv 1, p=1$ and $\phi(z)=\frac{1+z}{1-z}$, the class $\mathcal{R}_{p}(q, \phi, \varphi)=\mathcal{R}$, defined and studied in [2].
iii) For $\varphi(z) \equiv 1, p=1$ and $\phi(z)=\frac{1+(1-2 \alpha) z}{1-z},(0 \leq \alpha<1)$ the class $\mathcal{R}_{p}(q, \phi, \varphi)=\mathcal{N}_{\Sigma}^{\alpha, 0}$, defined and studied in [4].

It is well known that the Fekete-Szegö functional is $\left|a_{3}-a_{2}^{2}\right|$ was obtained by Fekete and Szegö [5]. Fekete and Szegö further generalized the estimate $\left|a_{3}-\mu a_{2}^{2}\right|$ where μ is real and $f \in S$, the class of univalent functions. Since then, the problem of finding the sharp bounds for this functional of any compact family of function $f \in S$ with any complex μ is generally knows as the classical Fekete and Szegö problems inequality. Fekete and Szegö problem for several subclasses of \mathcal{A} have been studied by many authors (see, e.g [6-11]) also recently by [12-14].

In this paper we mainly concentrate in determining the coefficient estimates including a Fekete and Szegö inequality of functions belonging to the classes $\mathcal{R}_{p}(q, \phi, \varphi), \mathcal{R}_{p}(\phi)$ and $\mathcal{R}_{1}(q, \phi, \varphi)$. Some consequences of our main results are also given.
Throughout in this paper it is assumed that $\phi \in \mathcal{P}$ is analytic in E, and $\varphi(z)$ is also analytic in \mathbb{E} and has the form given by:

$$
\begin{equation*}
\varphi(z)=d_{0}+d_{1} z+d_{2} z^{2}+\ldots,(|\varphi(z)| \leq 1 ; \quad z \in \mathbb{E}) \tag{1.8}
\end{equation*}
$$

2. Preliminary Results

Lemma 2.1 ([15]). Let the Schwarz function $w(z)$ be given by

$$
\begin{equation*}
w(z)=w_{1} z+w_{2} z^{2}+w_{3} z^{3}+\ldots \quad(z \in \mathbb{E}) \tag{2.1}
\end{equation*}
$$

Then

$$
\left|w_{1}\right| \leq 1, \quad\left|w_{2}-t w_{1}^{2}\right| \leq 1+(|t|-1)\left|w_{1}\right|^{2} \leq \max \{1,|t|\}
$$

Where $t \in C$, the result is sharp for the function $w(z)=z$ or $w(z)=z^{2}$.
Lemma 2.2 ([16]). If w is analytic in \mathbb{E}, then

$$
\left|w_{2}-\mu w_{1}^{2}\right| \leq\left\{\begin{array}{ccr}
-\mu, & \text { if } & \mu \leq-1 \tag{2.2}\\
1, & \text { if } & -1 \leq \mu \leq 1 \\
\mu, & \text { if } & \mu \geq 1
\end{array}\right.
$$

When $\mu<-1$ or $\mu>1$, equality holds if and only if $w(z)=z$ or one of its rotations. If $-1<\mu<1$, then equality holds if and only if $w(z)=z^{2}$ or one of its rotations. Equality holds for $\mu=-1$ if and only if

$$
w(z)=\frac{z(t+z)}{1+t z} \quad(0 \leq t \leq 1)
$$

or one of its rotations while for $\mu=1$, equality holds if and only if

$$
w(z)=\frac{-z(t+z)}{1+t z}(0 \leq t \leq 1)
$$

or one of its rotations.

3. Main Results

Theorem 3.1. Let the function $f(z) \in \mathcal{A}(p)$ defined by (1.1) be in the class $\mathcal{R}_{p}(q, \phi, \varphi)$, then

$$
\begin{align*}
& \left|a_{p+1}\right| \leq \frac{p!B_{1}}{2(p+1)!}, \tag{3.1}\\
& \left|a_{p+2}-c a_{p+1}^{2}\right| \leq \frac{2!p!B_{1}}{3(p+2)!}\left\{\begin{array}{lrr}
\frac{B_{2}}{B_{1}}-c \frac{3 p!(p+2)!B_{1}}{2!4((p+1)!)^{2}}, & \text { if } \quad c \leq \rho, \\
1, & \text { if } \quad \rho \leq c \leq \sigma, \\
c \frac{3!!(p+2)!B_{1}}{2!4((p+1)!)^{2}}-\frac{B_{2}}{B_{1}}, & \text { if } & c \geq \sigma,
\end{array}\right. \tag{3.2}
\end{align*}
$$

where

$$
\rho=2!\left(\frac{4\left(B_{2}-B_{1}\right)((p+1)!)^{2}}{3 p!(p+2)!B_{1}^{2}}\right) \text { and } \sigma=2!\left(\frac{4\left(B_{2}+B_{1}\right)((p+1)!)^{2}}{3 p!(p+2)!B_{1}^{2}}\right) .
$$

Proof. Let $f \in \mathcal{R}_{p}(q, \phi, \varphi)$, then for Schwarz function $w(z)$ given by (2.1) and for an analytic function $\varphi(z)$ given by (1.8), we have

$$
\begin{equation*}
\left(\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}\right)-1=\varphi(z)(\phi(w(z))-1) \tag{3.3}
\end{equation*}
$$

where the series expansions of the right hand side and left hand side of (3.3) are given as:

$$
\begin{align*}
\varphi(z)(\phi(w(z))-1) & =\left(d_{0}+d_{1} z+d_{2} z^{2}+\ldots\right)\left\{B_{1} w_{1} z+\left(B_{1} w_{2}+B_{2} w_{1}^{2}\right) z^{2}+\ldots\right\} \\
& =d_{0} B_{1} w_{1} z+\left\{d_{0}\left(B_{1} w_{2}+B_{2} w_{1}^{2}\right)+d_{1} B_{1} w_{1}\right\} z^{2}+\ldots \tag{3.4}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}\right)-1=\frac{2(p+1)!}{p!1!} a_{p+1} z+\frac{3(p+2)!}{p!2!} a_{p+2} z^{2}+\ldots \tag{3.5}
\end{equation*}
$$

From the expansion (3.4) and (3.5), on equating the coefficients of z and z^{2} in (3.3), we have

$$
\begin{align*}
& \frac{2(p+1)!}{p!1!} a_{p+1}=d_{0} B_{1} w_{1} \tag{3.6}\\
& \frac{3(p+2)!}{p!2!} a_{p+2}=\left\{d_{0}\left(B_{1} w_{2}+B_{2} w_{1}^{2}\right)+d_{1} B_{1} w_{1}\right\} \tag{3.7}
\end{align*}
$$

Now from (3.6) we have

$$
\begin{equation*}
a_{p+1}=\frac{p!d_{0} B_{1} w_{1}}{2(p+1)!} \tag{3.8}
\end{equation*}
$$

Taking modulus on (3.8), we have

$$
\begin{equation*}
\left|a_{p+1}\right| \leq \frac{p!B_{1}}{2(p+1)!} \tag{3.9}
\end{equation*}
$$

Which is required inequality (3.1).
Now in the view of (3.7),

$$
\begin{equation*}
a_{p+2}=\frac{2!p!B_{1}}{3(p+2)!}\left\{d_{1} w_{1}+d_{0}\left(w_{2}+\frac{B_{2}}{B_{1}} w_{1}^{2}\right)\right\} \tag{3.10}
\end{equation*}
$$

For some $c \in \mathbb{C}$, we obtain from (3.8) and (3.10)

$$
\begin{equation*}
a_{p+2}-c a_{p+1}^{2}=\frac{2!p!B_{1}}{3(p+2)!}\left[d_{1} w_{1}+d_{0}\left\{w_{2}+\left(\frac{B_{2}}{B_{1}}-c \frac{3 p!(p+2)!B_{1}}{2!4((p+1)!)^{2}} d_{0}\right) w_{1}^{2}\right\}\right] \tag{3.11}
\end{equation*}
$$

Since $\varphi(z)$ given by (1.8) is analytic and bounded in \mathbb{E}, therefore using the result given in [17, page 172], we have some $y(|y| \leq 1)$.

$$
\begin{equation*}
\left|d_{0}\right| \leq 1 \text { and } d_{1}=\left(1-d_{0}^{2}\right) y \tag{3.12}
\end{equation*}
$$

On putting the value of d_{1} from (3.12) into (3.11), we have

$$
\begin{equation*}
a_{p+2}-c a_{p+1}^{2}=\frac{2!p!B_{1}}{3(p+2)!}\left[\left(1-d_{0}^{2}\right) y w_{1}+d_{0}\left\{w_{2}+\left(\frac{B_{2}}{B_{1}}-c \frac{3 p!(p+2)!B_{1}}{2!4((p+1)!)^{2}} d_{0}\right) w_{1}^{2}\right\}\right] \tag{3.13}
\end{equation*}
$$

If $d_{0}=0$ in (3.13) and using the Lemma 2.1, we have

$$
\begin{equation*}
\left|a_{p+2}-c a_{p+1}^{2}\right| \leq \frac{2!p!B_{1}}{3(p+2)!} \tag{3.14}
\end{equation*}
$$

But if $d_{0} \neq 0$, let us suppose that

$$
F\left(d_{0}\right)=\left(1-d_{0}^{2}\right) y w_{1}+d_{0}\left\{w_{2}+\left(\frac{B_{2}}{B_{1}}-c \frac{3 p!(p+2)!B_{1}}{2!4((p+1)!)^{2}} d_{0}\right) w_{1}^{2}\right\}
$$

which is a polynomial in d_{0} and hence analytic in $\left|d_{0}\right| \leq 1$ and maximum of $\left|F\left(d_{0}\right)\right|$ is attained at $d_{0}=e^{i \theta}(0 \leq \theta<2 \pi)$. We find that $\max _{(0 \leq \theta<2 \pi)}\left|F\left(e^{i \theta}\right)\right|=|F(1)|$ and

$$
\begin{equation*}
\left|a_{p+2}-c a_{p+1}^{2}\right| \leq \frac{2!p!B_{1}}{3(p+2)!}\left|w_{2}-\left(c \frac{3 p!(p+2)!B_{1}}{2!4((p+1)!)^{2}}-\frac{B_{2}}{B_{1}}\right) w_{1}^{2}\right| . \tag{3.15}
\end{equation*}
$$

By using the Lemma 2.2 on (3.15), we have the required inequality (3.2).
Sharpness of this result can be verified for the functions $f(z)$ given by

$$
\begin{equation*}
\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}=\phi\left(z^{2}\right) \tag{3.16}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{f^{(p)}(z)+z f^{(p+1)}(z)}{p!}-1=z(\phi(z)-1) \tag{3.17}
\end{equation*}
$$

For $p=1$, in Theorem 3.1, we have the following result.

Corollary 3.2. Let the function $f \in \mathcal{A}$ be in the class $\mathcal{R}_{1}(q, \phi, \varphi)$, then

$$
\begin{aligned}
\left|a_{2}\right| & \leq \frac{B_{1}}{4}, \\
\left|a_{3}-c a_{2}^{2}\right| & \leq \frac{B_{1}}{9}\left\{\begin{array}{lr}
\frac{B_{2}}{B_{1}}-c \frac{9 B_{1}}{16}, & c \leq \rho_{1}, \\
1, & \rho_{1} \leq c \leq \sigma_{1}, \\
c \frac{9 B_{1}}{16}-\frac{B_{2}}{B_{1}}, & c \geq \sigma_{1},
\end{array}\right.
\end{aligned}
$$

where

$$
\rho_{1}=\frac{16\left(B_{2}-B_{1}\right)}{9 B_{1}^{2}} \text { and } \sigma_{1}=\frac{16\left(B_{2}+B_{1}\right)}{9 B_{1}^{2}} .
$$

Theorem 3.3. Let the function $f \in \mathcal{A}(p)$ be in the class $\mathcal{R}_{p}(\phi)$ for $p \in \mathbb{N}=\{1,2,3, \ldots\}$, then

$$
\begin{aligned}
& \left|a_{p+1}\right| \leq \frac{p!B_{1}}{2(p+1)!}, \\
& \left|a_{p+2}-c a_{p+1}^{2}\right| \leq \frac{2!p!B_{1}}{3(p+2)!}\left\{\begin{array}{l}
\frac{B_{2}}{B_{1}}-c \frac{3 p!(p+2)!B_{1}}{2!4((p+1)!)^{2}}, \\
1, \\
c \frac{3 p!(p+2)!B_{1}}{2!4((p+1)!)^{2}}-\frac{B_{2}}{B_{1}},
\end{array} \quad \text { if } \quad \begin{array}{rrr}
c \leq \rho, \\
& \text { if } & c \leq \sigma,
\end{array}\right.
\end{aligned}
$$

where

$$
\rho=2!\left(\frac{4\left(B_{2}-B_{1}\right)((p+1)!)^{2}}{3 p!(p+2)!B_{1}^{2}}\right) \text { and } \sigma=2!\left(\frac{4\left(B_{2}+B_{1}\right)((p+1)!)^{2}}{3 p!(p+2)!B_{1}^{2}}\right) .
$$

Proof. The proof of above theorem is similar to that of Theorem 3.1, when we take $\varphi(z) \equiv 1$, then (1.8) evidently implies that $d_{0}=1$ and $d_{n}=0, n \in \mathbb{N}$, hence in view of (3.8), (3.11) and using Lemma 2.2, we obtain the required result. Sharpness can be verified for the function given by (3.16) or (3.17).

For $p=1$ and $\varphi(z) \equiv 1$ in Theorem 3.3, then we have the following result.
Corollary 3.4. Let the function $f \in \mathcal{A}$, be in the class $\mathcal{R}(\phi)$, then

$$
\begin{aligned}
\left|a_{2}\right| & \leq \frac{B_{1}}{4}, \\
\left|a_{3}-c a_{2}^{2}\right| & \leq \frac{B_{1}}{9}\left\{\begin{array}{lr}
\frac{B_{2}}{B_{1}}-c \frac{9 B_{1}}{16}, & c \leq \rho_{1} \\
1, & \rho_{1} \leq c \leq \sigma_{1} \\
c \frac{9 B_{1}}{16}-\frac{B_{2}}{B_{1}}, & c \geq \sigma_{1},
\end{array}\right.
\end{aligned}
$$

where

$$
\rho_{1}=\frac{16\left(B_{2}-B_{1}\right)}{9 B_{1}^{2}} \text { and } \sigma_{1}=\frac{16\left(B_{2}+B_{1}\right)}{9 B_{1}^{2}}
$$

Theorem 3.5. Let the function $f \in \mathcal{A}$, be in the class $\mathcal{R}_{p}(q, \phi, \varphi)$, then

$$
\left|a_{p+2}-c a_{p+1}^{2}\right| \leq \frac{2!p!B_{1}}{3(p+2)!} \max \left\{1,\left|c \frac{3 p!(p+2)!B_{1}}{2!4((p+1)!)^{2}}-\frac{B_{2}}{B_{1}}\right|\right\}
$$

Proof. Let $f \in \mathcal{R}_{p}(q, \phi, \varphi)$, then we have from (3.15).

$$
\begin{equation*}
\left|a_{p+2}-c a_{p+1}^{2}\right| \leq \frac{2!p!B_{1}}{3(p+2)!}\left|w_{2}-\left(c \frac{3 p!(p+2)!B_{1}}{2!4((p+1)!)^{2}}-\frac{B_{2}}{B_{1}}\right) w_{1}^{2}\right| . \tag{3.18}
\end{equation*}
$$

Applying the Lemma 2.1 on (3.18), we have

$$
\begin{equation*}
\left|a_{p+2}-c a_{p+1}^{2}\right| \leq \frac{2!p!B_{1}}{3(p+2)!} \max \left\{1,\left|c \frac{3 p!(p+2)!B_{1}}{2!4((p+1)!)^{2}}-\frac{B_{2}}{B_{1}}\right|\right\} \tag{3.19}
\end{equation*}
$$

This complete the proof. Sharpness of this result can be verified in (3.16) and (3.17).
Theorem 3.6. Let the function $f \in \mathcal{A}(p)$ be in the class $\mathcal{R}_{p}(\phi)$, then

$$
\left|a_{p+2}-c a_{p+1}^{2}\right| \leq \frac{2!p!B_{1}}{3(p+2)!} \max \left\{1,\left|c \frac{3 p!(p+2)!B_{1}}{2!4((p+1)!)^{2}}-\frac{B_{2}}{B_{1}}\right|\right\} .
$$

Proof. The proof of above theorem is similar to that of Theorem 3.5, when we take $\varphi(z) \equiv 1$, then (1.8) evidently implies that $d_{0}=1$ and $d_{n}=0$, hence in view of (3.18) and using Lemma 2.1, we obtain the desired result. Sharpness can be verified for the function f given by (3.16).

For $p=1$ in the Theorem 3.5, then we have the following result:
Corollary 3.7. Let the function $f \in \mathcal{A}$ be in the class $\mathcal{R}_{1}(q, \phi, \varphi)$, then

$$
\left|a_{p+2}-c a_{p+1}^{2}\right| \leq \frac{B_{1}}{9} \max \left\{1,\left|\frac{9 c B_{1}}{16}-\frac{B_{2}}{B_{1}}\right|\right\} .
$$

For $p=1$ and $\varphi(z) \equiv 1$ in the Theorem 3.6, then we have the following result:
Corollary 3.8. Let the function $f \in \mathcal{A}$ be in the class $\mathcal{R}(\phi)$, then

$$
\left|a_{p+2}-c a_{p+1}^{2}\right| \leq \frac{B_{1}}{9} \max \left\{1,\left|\frac{9 c B_{1}}{16}-\frac{B_{2}}{B_{1}}\right|\right\} .
$$

Theorem 3.9. Let the function $f \in \mathcal{A}(p)$ be in the class $\mathcal{R}_{p}(q, \phi, \varphi)$, then

$$
\begin{equation*}
\left|a_{p+2}-c a_{p+1}^{2}\right|+(c-\rho)\left|a_{p+1}\right|^{2} \leq \frac{2!p!B_{1}}{3(p+2)!}, \quad \rho<c \leq \frac{\sigma}{2} \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{p+2}-c a_{p+1}^{2}\right|+(\sigma-c)\left|a_{p+1}\right|^{2} \leq \frac{2!p!B_{1}}{3(p+2)!}, \quad \frac{\sigma}{2}<c \leq \sigma \tag{3.21}
\end{equation*}
$$

Proof. Let $f \in \mathcal{R}_{p}(q, \phi, \varphi)$, then from (3.8) and (3.15) (when $\rho<c<\sigma$), we get if $\rho<c \leq \frac{\sigma}{2}$:

$$
\begin{equation*}
\left|a_{p+2}-c a_{p+1}^{2}\right|+(c-\rho)\left|a_{p+1}\right|^{2} \leq \frac{2!p!B_{1}}{3(p+2)!}\left\{\left|w_{2}\right|-(-1)\left|w_{1}\right|^{2}\right\} . \tag{3.22}
\end{equation*}
$$

Hence by applying the Lemma 2.1 on (3.22), we obtain the desired estimates (3.20). If $\frac{\sigma}{2}<c \leq \sigma$, then again from (3.8) and (3.15), we have

$$
\begin{equation*}
\left|a_{p+2}-c a_{p+1}^{2}\right|+(\sigma-c)\left|a_{p+1}\right|^{2} \leq \frac{2!p!B_{1}}{3(p+2)!}\left\{\left|w_{2}\right|-(-1)\left|w_{1}\right|^{2}\right\} . \tag{3.23}
\end{equation*}
$$

Hence by using Lemma 2.1 on (3.23), we obtain the desired estimates (3.21).

Acknowledgements

The authors are grateful to the reviewers for their valuable comments and suggestions to improve the quality of the paper.

References

[1] K.I. Noor, N. Khan, Some convolution properties of a subclass of p-valent functions, Maejo Int. J. Sci. Technol. 9 (2) (2015) 181-192.
[2] R. Singh, S. Singh, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc. 106 (1989) 145-152.
[3] M.S. Robertson, Quasi-subordination and coefficients conjectures, Bull. Amer. Math. Soc. 76 (1970) 1-9.
[4] H.M. Srivastava, S.S Eker, R.M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015) 1839-1843.
[5] M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte funktionen, J. Londan Math. Soc. 8 (1933) 85-89.
[6] J. Dziok, A general solution of the Fekete-Szegö problem, Bound. Value Probl. 2013 (2013) Article no. 98.
[7] S. Hussain, N. Khan, S. Khan, Q.Z. Ahmad, On a subclass of analytic and biunivalent functions, Southeast Asian Bull. Math. 43 (2019) 51-60.
[8] S. Hussain, N. Khan, S. Khan, Coefficient bounds for generalized multivalent functions, Proc. Jangjeon Math. Soc. 19 (2016) 503-513.
[9] H.M. Srivastava, A.K. Mishra, M.K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables Theory Appl. 44 (2) (2001) 145-163.
[10] H.M. Srivastava, A.K. Mishra, P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Appl. Math. Lett. 23 (2010) 1188-1192.
[11] H.M. Srivastava, S. Bulut, M. Caglar, N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (2013) 831-842.
[12] S. Mehmood, H.M. Srivastava, N. Khan, Q.Z. Ahmad, B. Khan, Upper bound of the third Hankel determinant for a subclass of q-starlike functions, Symmetry 11 (2019) Article no. 347.
[13] M. Sabil, Q.Z. Ahmad, B. Khan, M. Tahir, N. Khan, Generalization of certain subclass of analytic and bi-univalent functions, Maejo Int. J. Sci. Technol 13 (2019) 1-9.
[14] H.M. Srivastava, S. Hussain, A. Raziq, M. Raza, The Fekete-Szego functional for a subclass of analytic functions associated with quasi-subordination, Carpathian J. Math. 34 (1) (2018) 103-113.
[15] F.R. Keogh, E.P.Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969) 8-12.
[16] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Z. Li,F. Ren, L. Yang and S.Zhang (Eds.), Int. Press (1994) 157-169.
[17] Z. Nehari, Conformal Mappings, McGraw-Hill, New York, 1952.

[^0]: *Corresponding author.

