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1. Introduction

Let H1 and H2 be two real Hilbert spaces and A : H1 → H2 be a bounded linear
operator. For nonlinear operators T : H1 −→ H1 and U : H2 −→ H2, the split fixed point
problem (SFPP) is to find a point

x ∈ Fix(T ) such that Ax ∈ Fix(U). (1.1)

In particular, if T = PC and U = PQ, then the SFPP reduces to the split feasibility
problem (SFP); that is, to find x ∈ C such that Ax ∈ Q, where C and Q are nonempty
closed convex subsets in H1 and H2, respectively, and PC , PQ are the respective metric
projections.
The SFP in finite-dimensional Hilbert spaces was first introduced by Censor and Elfving
[1] for modeling inverse problems which arise in phase retrievals and in medical image
reconstruction [2]. Various iterative algorithms have been proposed to solve the SFP or
related problems in Hilbert spaces, as well as in Banach spaces, see for instance [1, 3–9]
and the references therein.
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In the Hilbert space setting, the SFPP has been studied by several authors; see, for
instance, [10–12]. In [13], Censor and Segal introduced the iterative scheme:

xn+1 = U(I − ρnA∗(I − T )A)xn (1.2)

which solves the problem (1.1) for directed operators. This algorithm was then extended
to the case of quasi-nonexpansive mappings [14], as well as to the case of demicontractive
mappings [15].

On the other hand, the hybrid steepest descent method is an algorithmic solution to the
variational inequality problem over the fixed point set of a nonlinear mapping. We know
that the hybrid steepest descent method is applicable to a broad spectrum of convexly
constrained nonlinear inverse problems in real Hilbert spaces.
In [16] Yamada introduced the following hybrid steepest descent method for solving the
variational inequality for nonexpansive mappings:

xn+1 = (1− αnµF )Sxn,

where F : H → H is a k-Lipschitzian and η-strongly monotone operator with constants
k > 0 and η > 0; and µ ∈ (0, 2ηk2 ). He proved that if {αn} satisfies appropriate conditions,
then the sequence {xn} converges strongly to the unique solution of the variational in-
equality related to F , of which the constraint set is the fixed point set Fix(S) of S.
Recently, Jung [7] has presented some iterative algorithms based on Yamada’s hybrid
steepest descent method for solving the SFP. We should mention that some split type
feasibility problems have been studied because of their applications in science, engineer-
ing, medical sciences, and so on. In [11], Ansari et al. introduced an implicit and an
explicit algorithm for the SFPP for firmly nonexpansive mappings and for nonexpansive
mappings in a Hilbert space.
Now, the following question arises:

Question : Does the hybrid steepest descent method work for λ-strictly pseudo-
contractive mappings in spaces beyond Hilbert spaces?

Our aim in this paper is to answer the above question in the affirmative. Motivated by
[11] and [7], we present an algorithm based on hybrid steepest descent method for solving
the split fixed point problem for λ-strictly pseudo-contractive mappings in uniformly
convex and 2-uniformly smooth Banach spaces. First, we present an implicit algorithm.
Next, by discretizing the continuous implicit algorithm, we obtain an explicit algorithm.
We show that both algorithms converge strongly to a solution of the variational inequality
problem over the solution set of SFPP. Our results improve and extend some recent results
of the literature including those of Ansari et al [11], Yao et al [8], as well as those of Jung
[7].

2. Preliminaries

Let E be a real Banach space. A proper function f : E → (−∞,+∞] is said to be
convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y),

for all x, y ∈ E and α ∈ (0, 1). The function f is said to be lower semicontinuous if the
set {x ∈ E : f(x) ≤ r} is closed in E, for all r ∈ R. For a proper lower semicontinuous
convex function f : E → (−∞,+∞], the subdifferential ∂f of f is defined by

∂f(x) = {x∗ ∈ E∗ : f(x) + 〈y − x, x∗〉 ≤ f(y) ∀y ∈ E}.
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On the other hand, the normalized duality map J from E into 2E
∗

is defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}.
It is well-known that J(x) is the subdifferential of the function ( 1

2 )‖.‖2 at x.

Lemma 2.1. Let E1 and E2 be two real Banach spaces, and J1 and J2 be the duality
mappings on E1 and E2, respectively. Let A : E1 → E2 be a bounded linear operator and
A∗ be the adjoint of A. Then, for all x ∈ E1,

A∗J2(Ax) ⊆ ‖A‖2J1(x).

Proof. Let x1 ∈ E1 and x∗ ∈ A∗J2(Ax1) ⊆ E∗1 . So, there exists y∗ ∈ J2(Ax1) such that
x∗ = A∗y∗. Since y∗ ∈ J2(Ax1), by definition of J2 = 1

2∂‖.‖
2, we have

〈z −Ax1, y∗〉 ≤
1

2
‖z‖2 − 1

2
‖Ax1‖2, ∀z ∈ E2.

Also, for x ∈ E1,

〈Ax−Ax1, y∗〉 ≤
1

2
‖Ax‖2 − 1

2
‖Ax1‖2.

Thus, for x ∈ E1,

〈x− x1,
x∗

‖A‖2
〉 =

1

‖A‖2
〈x− x1, x∗〉 =

1

‖A‖2
〈x− x1, A∗y∗〉 ≤

1

2
‖x‖2 − 1

2
‖x1‖2.

It now follows from the definition of J1 that x∗

‖A‖2 ∈ J1(x1). Hence x∗ ∈ ‖A‖2J1(x1).

A Banach space E is said to be strictly convex if ‖x+y2 ‖ < 1 for all x, y ∈ E with
‖x‖ = ‖y‖ = 1 and x 6= y. It is well known that if E∗1 and E∗2 are strictly convex, then
J1 and J2 are single valued. Therefore, for all x ∈ E1, A∗J2(Ax) = ‖A‖2J1(x).
A Banach space E is said to be uniformly convex if for each ε ∈ (0, 2], there exists a δ > 0
such that ‖x+y2 ‖ < 1 − δ for for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε. The
Banach space E is said to be smooth if the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists for all x, y ∈ {z ∈ E : ‖z‖ = 1}. The modulus of convexity of E is defined by

δE(ε) = inf{1− ‖1

2
(x+ y)‖ : ‖x‖, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε}

for all ε ∈ [0, 2]. We call E uniformly convex if δE(0) = 0, δE(2) = 1 and δE(ε) > 0 for
all 0 < ε ≤ 2. Let ρE : [0,∞)→ [0,∞) be the modulus of smoothness of E defined by

ρE(t) = sup{1

2
(‖x+ y‖+ ‖x− y‖)− 1 : ‖x‖ = 1, ‖y‖ ≤ t}.

A Banach space E is said to be uniformly smooth if ρE(t)
t → 0 as t → 0. Let q > 1 be

a fixed real number. Then a Banach space E is said to be q-uniformly smooth if there
exists a constant c > 0 such that ρE(t) ≤ ctq for all t > 0. It is well known that every
q-uniformly smooth Banach space is uniformly smooth.

Lemma 2.2 ([17]). If E is a 2-uniformly smooth Banach space with the best smoothness
constant m > 0, then the following inequality holds:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, Jx〉+ 2‖y‖2, ∀x, y ∈ E.
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Definition 2.3. Let E be a Banach space.

(1) A mapping f : E → E is called k-contractive if ‖fx− fy‖ ≤ k‖x− y‖ for some
constant k ∈ [0, 1) and for all x, y ∈ E;

(2) A mapping V : E → E is called l-Lipschitzian if ‖V x − V y‖ ≤ l‖x − y‖ for
some constant l ∈ [0,∞) and all x, y ∈ E;

(3) A mapping T : E → E is called nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖, ∀x, y ∈
E;

(4) A mapping T : E → E is called averaged if T = (1−ν)I+νG, where ν ∈ (0, 1),
I is the identity, and G : E → E is a nonexpansive mapping.

(5) A mapping A : E → E is called monotone if 〈Ax−Ay, J(x−y)〉 ≥ 0, ∀x, y ∈
E;

(6) An operator F : E → E is called η-strongly monotone with constants k > 0
and η > 0 if

〈Fx− Fy, J(x− y) ≥ η‖x− y‖2, ∀x, y ∈ E.

Let E be a real Banach space and C be a nonempty closed convex subset of E. A
mapping T : C → C is called α-inverse strongly monotone (or briefly, α-ism) with constant
α > 0 if, for each x, y ∈ C, there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≥ α‖Tx− Ty‖2,

where J is the normalized duality mapping from E into the dual space E∗. If α = 1, T is
said to be a firmly nonexpansive mapping. A mapping T : C → C is said to be λ-strictly
pseudo-contractive (λ < 1) if, for each x, y ∈ C, there exists j(x−y) ∈ J(x−y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − λ‖(I − T )x− (I − T )y‖2. (2.1)

Observe that (2.1) can be rewritten as (see [18])

〈(I − T )x− (I − T )y, j(x− y)〉 ≥ λ‖(I − T )x− (I − T )y‖2. (2.2)

When E is a 2-uniformly smooth Banach space having the best smoothness constant m,
T : C → C is called λ-strictly pseudo-contractive if for each x, y ∈ C,

‖Tx− Ty‖2 ≤ ‖x− y‖2 + (2m2 − 2λ)‖(I − T )x− (I − T )y‖2.

Browder and Petryshyn [19] introduced the concept of a strict pseudo-contractive map-
ping. Let C be a nonempty closed convex subset of a real Hilbert space H, and T : C → C
be a mapping. T is said to be a k-strictly pseudo-contraction, if there exists a k ∈ [0, 1)
such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖(x− Tx)− (y − Ty)‖2, (2.3)

for all x, y ∈ C. It is easy to see that (2.3) is equivalent to

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2 − 1− k
2
‖(x− Tx)− (y − Ty)‖2,

for all x, y ∈ C.
The following proposition was proved in [20] in a Hilbert space setting. The statement

is true in Banach spaces as well. To avoid repetition, we omit the details of the proof.
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Proposition 2.4 ([20]). Let T : H → H be an operator. (i) if T is ν-ism, then for
γ > 0, γT is ν

γ -ism. (ii) T is averaged if and only if the complement I − T is ν-ism for

some ν > 1
2 . Indeed, for α ∈ (0, 1), T is α-averaged if and only if (I − T ) is 1

2α -ism.
(iii) The composition of finitely many averaged mappings is averaged. In particular, if
Ti is αi-averaged, where αi ∈ (0, 1) for i = 1, 2, then the composition T1T2 is α-averaged,
where α = α1 +α2−α1α2. (iv) If the mappings {Ti}Ni=1 are averaged and have a common
fixed point, then ∩Ni=1F (Ti) = F (T1 · · ·TN ). (iii) In case E is a uniformly convex Banach
space, every α-averaged mapping is nonexpansive.

Lemma 2.5. Let E1 and E2 be two real uniformly convex and 2-uniformly smooth Banach
spaces with the best smoothness constants n and m, and J1 and J2 be the duality mappings
on E1 and E2, respectively. Let A : E1 −→ E2 be a bounded linear operator and A∗ be
the adjoint of A. Let S : E2 → E2 be a β-psuedo-contractive mapping. Then U =
I − γJ−11 A∗J2(I − S)A is averaged.

Proof. Since S is β-strict pseudo-contractive, according to (2.2), I−S is β-inverse strongly
monotone. Therefore, for all x, y ∈ E1,

〈J1(x− y), γJ−11 A∗J2(I − S)Ax− γJ−11 A∗J2(I − S)Ay〉

=
γ

‖A‖2
〈‖A‖2J1(x− y), J−11 A∗J2(I − S)Ax− J−11 A∗J2(I − S)Ay〉

=
γ

‖A‖2
〈A∗J2(A(x− y)), J−11 A∗J2(I − S)Ax− J−11 A∗J2(I − S)Ay〉

=
γ

‖A‖2
〈J2(A(x− y)), AJ−11 A∗J2(I − S)Ax−AJ−11 A∗J2(I − S)Ay〉

=
γ

‖A‖2
〈A∗J2(A(x− y)), ‖A‖2J−12 J2(I − S)Ax− ‖A‖2J−12 J2(I − S)Ay〉

≥ γβ‖(I − S)Ax− (I − S)Ay‖2

= γβ‖J−12 J2(I − S)Ax− J−12 J2(I − S)Ay‖2

≥ γβ

‖A∗‖2
‖A−1J−12 J2(I − S)Ax−A−1J−12 J2(I − S)Ay‖2

=
γβ

‖A∗‖4
‖A−1AJ−11 A∗J2(I − S)Ax−A−1AJ−11 A∗J2(I − S)Ay‖2

=
β

γ‖A∗‖4
‖γJ−11 A∗J2(I − S)Ax− γJ−11 A∗J2(I − S)Ay‖2.

Noticing that ‖A‖ = ‖A∗‖, we have γJ−11 A∗J2(I−S)A is β
γ‖A‖4 -ism. Since γ ∈ (0, β

‖A‖4 ),

we have β
γ‖A‖4 >

1
2 . So from Proposition 2.4, U = I − γJ−11 A∗J2(I − S)A is averaged.

Lemma 2.6 ([21]). Let {xn} and {zn} be bounded sequences in a Banach space E and
{γn} be a sequence in [0, 1] which satisfies the following condition:

0 < lim inf
n→∞

γn ≤ lim sup
n→∞

γn < 1.

Suppose that xn+1 = γnxn + (1− γn)zn, n ≥ 0, and lim supn→∞(‖zn+1 − zn‖ − ‖xn+1 −
xn‖) ≤ 0. Then ‖zn − xn‖ = 0.
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Recall that a Banach space E is said to satisfy Opial’s condition [22] if whenever {xn}
is a sequence in E which converges weakly to x as n→∞, then

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, for all y ∈ E, y 6= x.

Remark 2.7. If E is a real uniformly convex and uniformly smooth Banach space, then
E satisfies Opial’s condition [22].

Lemma 2.8. (Demiclosedness Principle). Let C be a nonempty, closed and convex subset
of a real uniformly convex and uniformly smooth Banach space E and T : C → C be a
nonexpansive operator with Fix(T ) 6= ∅. If the sequence {xn} ⊆ C converges weakly to p
and the sequence {(I − T )xn} converges strongly to y, then (I − T )p = y. In particular,
if y = 0, then p ∈ Fix(T ).

Proof. Let the sequence xn ⇀ p and (I−T )xn → y. We show that (I−T )p = y. Suppose
p− Tp 6= y. From Remark 2.7 and the fact that T is nonexpansive, we have

lim inf
n→∞

‖Txn − Tp‖ ≤ lim inf
n→∞

‖xn − p‖

< lim inf
n→∞

‖xn − (y + Tp)‖

= lim inf
n→∞

‖xn − Txn − y + Txn − Tp)‖

= lim inf
n→∞

‖Txn − Tp‖

which is a contradiction. Therefore, the result follows.

Lemma 2.9 ([23]). Let E be a real uniformly smooth Banach space with the dual space
E∗ and J be the duality mapping of E, and C be a nonempty closed convex subset of E.
Assume that the mapping F : C → E is monotone, single-valued, and hemicontinuous in
the sense of Brower (i.e, the restriction of F to any line-segment in C is continuous).
Then the variational inequality problem:

find x∗ ∈ C such that 〈F (x∗), J(x− x∗)〉 ≥ 0, for all x ∈ C,

is equivalent to the dual variational inequality

find x∗ ∈ C such that 〈F (x), J(x− x∗)〉 ≥ 0, for all x ∈ C.

Lemma 2.10 ([24]). Let {γn} be a sequence in (0, 1) and {δn} be a sequence in R satis-
fying

(1)
∑∞
n=1 γn =∞,

(2) lim supn→∞ γn ≤ 0 or
∑∞
n=1 |γnδn| <∞.

If {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + γnδn,

for each n ≥ 0, then limn→∞ an = 0.

The following lemma can be easily proved, and therefore, we omit the proof (see also
[16]).
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Lemma 2.11. Let E be a 2-uniformly smooth Banach space . Let F : E → E be a
k-Lipschitzian and η-strongly monotone operator with constants k > 0 and η > 0. Let
0 < µ < 2η

k2 and 0 < t < ξ ≤ 1. Then S := ξI − tµF : E → E is a contractive mapping

with constant ξ − tτ , where τ = 1−
√

1− µ(2η − µk2).

In the following arguments we shall use the following notation: for a mapping T and
a number α ∈ [0, 1],

Tαx = (1− α)x+ αTx.

3. The Main Result

We start this section by proving the main result of this paper.

Theorem 3.1. Let E1 and E2 be two real uniformly convex and 2-uniformly smooth
Banach spaces with the best smoothness constants m and n, and J1 and J2 be the duality
mappings on E1 and E2, respectively. Let A : E1 −→ E2 be a bounded linear operator and
A∗ be the adjoint of A. Let T : E1 → E1 be a ξ-strictly pseudo-contractive mapping with
Fix(T ) 6= ∅ and S : E2 → E2 be a β-strictly pseudo- contractive mapping with Fix(S) 6=
∅. Let V : E1 → E1 be l-Lipschitzian with constant l ∈ [0,∞) and let F : E1 → E1 be k-
Lipschitzian and η-strongly monotone operator with constants k > 0 and η > 0 such that
the constants µ, σ, l and τ satisfy 0 < µ < 2η

k2 and 0 < σl < τ = 1 −
√

1− µ(2η − µk2).

Suppose Ω = {x ∈ Fix(T ) : Ax ∈ Fix(S)} 6= ∅. For any t ∈ (0, 1
τ−σl ), define a net

{xt} ⊂ E1 by

xt = Tα[I − γJ−11 A∗J2(I − S)]Tα[tσV xt + (1− tµF )xt] (3.1)

where γ ∈ (0, 2β
‖A‖4 ) and α ∈ (0, ξ

2m2 ). Then the net {xt} converges strongly to x∗ ∈ Ω

which is a solution of the following variational inequality

x∗ ∈ Ω such that 〈σV x∗ − µFx∗, J1(x− x∗)〉 ≥ 0 ∀x ∈ Ω. (3.2)

Proof. First, we show that Tα is nonexpansive. Form Lemma 2.2, for each x, y ∈ C, we
have

‖Tαx− Tαy‖2 = ‖(1− α)x+ αTx− [(1− α)y + αTy]‖2

= ‖(x− y) + α[(y − Ty)− (x− Tx)]‖2

≤ ‖x− y‖2 + 2α2m2‖(y − Ty)− (x− Tx)‖2

+ 2α〈J1(x− y), (y − Ty)− (x− Tx)〉
≤ ‖x− y‖2 + 2α2m2‖(y − Ty)− (x− Tx)‖2

− 2αξ‖(y − Ty)− (x− Tx)‖2

= ‖x− y‖2 − 2α(ξ − αm2)‖(y − Ty)− (x− Tx)‖2.

Since α ∈ (0, ξ
2m2 ), it follows that

‖Tαx− Tαy‖ ≤ ‖x− y‖.

Set U = I−γJ−11 A∗J2(I−S)A. From Lemma 2.5, U is an averaged mapping. Since every
averaged mapping is nonexpansive, U is nonexpansive. Since composition of nonexpansive
mappings is nonexpansive, we conclude that TαUTα is nonexpansive. We consider the
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mapping wt = TαUTα(tσV + (I − tµF )) on E1. Clearly, wt is a self-mapping on E1,
moreover, for x, y ∈ E1, we have

‖wtx− wty‖ = ‖TαUTα(tσV + (I − tµF ))x− TαUTα(tσV + (I − tµF ))y‖
≤ ‖tσV x+ (I − tµF ))x− [tσV y + (I − tµF )y]‖
≤ tσ‖V x− V y‖+ ‖(I − tµF )x− (I − tµF )y‖
≤ tσl‖x− y‖+ (1− tτ)‖x− y‖ = [1− t(τ − σl)]‖x− y‖.

Therefore, wt is a contractive mapping when t ∈ (0, 1
τ−σl ). By the Banach contraction

principle, wt has a unique fixed point in E1, say xt, that is,

xt = TαUTα(tσV + (I − tµF ))xt.

It is now clear that the net {xt} defined by (3.1) is well-defined. Let p ∈ Ω. Then,
p ∈ Fix(T ) and Ap ∈ Fix(S). From the definition of U we have p ∈ Fix(U). It now
follows that

‖xt − p‖ = ‖TαUTα(tσV + (I − tµF ))xt − p‖
≤ ‖tσ(V xt − V p)‖+ ‖(I − tµF )xt − (I − tµF )p‖+ ‖tσV p− tµFp‖
≤ tσ‖xt − p‖+ (1− tτ)‖xt − p‖+ t‖σV p− µFp‖
= [1− (τ − σl)t]‖xt − p‖+ t‖V p− µFp‖.

(3.3)

Hence

‖xt − p‖ ≤
1

τ − σl
‖σV p− µFp‖.

Therefore {xt} is bounded and so are {V xt}, {Uxt} and {Fxt}. From (3.1), we have

‖xt − Tα[I − γJ−11 A∗J2(I − S)A]Tαxt‖ = ‖TαUTα(tσV + (I − tµF ))xt − TαUTαxt‖
≤ t‖σV xt − µFxt‖.

By the boundedness of {V xt} and {Fxt}, we obtain

lim
t→0
‖xt − TαUTαxt‖ = 0. (3.4)

Next, we show that {xt} is relatively norm-compact as t → 0+. Assume that {tn} ⊂
(0, 1

τ−σl ) is such that tn → 0+ as n→∞. In particular from (3.4), we have

lim
n→∞

‖xtn − TαUTαxtn‖ = 0. (3.5)

Put zt = tσV xt + (I − tµF )xt, yt = Tα(tσV xt + (I − tµF )xt) = Tαzt, zn := ztn and
yn := ytn = Tαzn. Then we have, for any p ∈ Ω,

yt − p = Tαzt − p = (1− α)zt + αTzt − p = α(Tzt − zt) + zt − p
= α(Tzt − zt) + tσ(V xt − V p)
+ (I − tµF )xt − (I − tµF )p+ t(σV p− µFp).

(3.6)
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Since T is ξ-strictly pseudo-contractive with a fixed point p, for all x ∈ E1, we have

‖Tαx− p‖2 ≤ ‖x− p‖2 − 2α(ξ − αm2)‖x− Tx‖2

= ‖x− p+ Tαx− Tαx‖2 − 2α(ξ − αm2)‖x− Tx‖2

≤ 2m2‖x− Tαx‖2 + ‖Tαx− p‖2

+ 2〈x− Tαx, J1(Tαx− p)〉 − 2α(ξ − αm2)‖x− Tx‖2

≤ ‖Tαx− p‖2 − 2α(ξ − 2αm2)‖x− Tx‖2 + 2〈x− Tαx, J1(Tαx− p)〉.

So,

2α(ξ − 2αm2)‖x− Tx‖2 ≤ 2〈x− Tαx, J1(Tαx− p)〉.
Since 2α(ξ − 2αm2) > 0, we have

〈x− Tαx, J1(Tαx− p)〉 ≥ 0. (3.7)

Combining (3.6) with (3.7) along with Lemma 2.11, we get

‖yt − p‖2 = 〈yt − p, J1(yt − p)〉
= 〈yt − zt, J1(yt − p)〉+ tσ〈V xt − V p, J1(yt − p)〉
+ 〈(I − tµF )xt − (I − tµF )p, J1(yt − p)〉+ t〈σV p− µFp, J1(yt − p)〉
≤ tσl‖V xt − V p‖‖yt − p‖
+ (1− tτ)‖xt − p‖‖yt − p‖+ t〈σV p− µFp, J1(yt − p)〉
≤ [1− t(τ − σl)]‖xt − p‖‖yt − p‖+ t〈σV p− µFp, J1(yt − p)〉
≤ [1− t(τ − σl)]‖xt − p‖2 + t〈σV p− µFp, J1(yt − p)〉.

Thus,

‖xt − p‖2 = ‖TαUyt − p‖2 ≤ ‖yt − p‖2

≤ [1− t(τ − σl)]‖xt − p‖2 + t〈σV p− µFp, J1(yt − p)〉.

Hence, we obtain

‖xt − p‖2 ≤
1

τ − σl
〈σV p− µFp, J1(yt − p)〉.

In particular, we have

‖xn − p‖2 ≤
1

τ − σl
〈σV p− µFp, J1(yn − p)〉 ∀p ∈ Ω. (3.8)

Note that

‖xt − zt‖ = ‖xt − [tσV xt + (I − tµF )xt]‖ ≤ t‖σV xt − µFxt‖ → 0 as t→ 0.

So,

lim
n→∞

‖xn − zn‖ = 0. (3.9)

Observe that

‖zn − p‖ = ‖tnσV xn + (I − tnµF )xn − p‖
= ‖(xn − p) + tn(σV xn − µFxn)‖
≤ ‖xn − p‖+ tn‖σV xn − µFxn‖.

(3.10)
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Then, from (3.10) and the fact that Tα is a ξ-psuedo-contractive mapping with a fixed
point p, we deduce

‖xn − p‖2 = ‖TαUTαzn − TαUTαp‖2 ≤ ‖Tαzn − p‖2

≤ ‖zn − p‖2 − 2α(ξ − αm2)‖zn − Tzn‖2

≤ [‖xn − p‖+ tn‖σV xn − µFxn‖]2 − 2α(ξ − αm2)‖zn − Tzn‖2

≤ ‖xn − p‖2 + t2n‖σV xn − µFxn‖2

+ 2tn‖xn − p‖‖σV xn − µFxn‖ − 2α(ξ − αm2)‖zn − Tzn‖2

≤ ‖xn − p‖2 + tnM − 2α(ξ − αm2)‖zn − Tzn‖2,

where 0 ≤M = sup{tn‖σV xn − µFxn‖2 + 2‖xn − p‖‖σV xn − µFxn‖} is an appropriate
constant. Since 2α(ξ − αm2) > 0, it follows that

lim
n→∞

‖zn − Tzn‖ = 0.

So, we have

lim
n→∞

‖yn − zn‖ = lim
n→∞

‖Tαzn − zn‖ = α2 lim
n→∞

‖zn − Tzn‖ = 0. (3.11)

Since {xn} is a bounded sequence in a uniformly convex Banach space, there exists a
subsequence {xni

} of {xn} which converges weakly to x∗. From Remark 2.7, we conclude
that E1 satisfies Opial’s condition. Therefore, xn ⇀ x∗. Then by (3.9) and (3.11),
yn ⇀ x∗. With regard to (3.5), we can use Lemma 2.8 to get x∗ = TαUTαx

∗. By
Proposition 2.4 (iv), we have Tαx

∗ = x∗ and Ux∗ = x∗, and hence S(Ax∗) = Ax∗. Thus
x∗ ∈ Fix(T ) and Ax∗ ∈ Fix(S), that is, x∗ ∈ Ω. Therefore, we can substitute x∗ for p in
(3.8) to obtain

‖xn − x∗‖2 ≤
1

τ − σl
〈σV x∗ − µFx∗, J1(yn − x∗)〉.

Consequently, yn ⇀ x∗ actually implies that xn → x∗. This argument proves the relative
norm-compactness of the net {xt} as t→ 0+. Letting n→∞ in (3.8), we have

‖x∗ − p‖2 ≤ 1

τ − σl
〈σV p− µFp, J1(x∗ − p)〉, p ∈ Ω.

This implies that x∗ ∈ Ω solves the variational inequality

〈σV p− µFp, J1(x∗ − p)〉 ≥ 0, p ∈ Ω. (3.12)

By Lemma 2.9, (3.12) is equivalent to its dual variational inequality

〈σV x∗ − µFx∗, J1(p− x∗)〉 ≥ 0 p ∈ Ω.

This is exactly (3.2). By uniqueness of the solution of the variational inequality (3.2), we
deduce that each cluster point of {xt} as t→ 0+ equals x∗. Therefore xt → x∗ as t→ 0+.
This completes the proof.

Remark 3.2. If we consider T = PC , S = PQ, Fix(T ) = C and Fix(S) = Q, then The-
orem 3.1 generalizes Theorem 3.2 and other results obtained by Jung in [7]. Furthermore,
if F is a self-adjoint, strongly positive bounded linear operator and V = I, then Theorem
3.1 generalizes the results of Yao et al [8].
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Theorem 3.3. Let H1 and H2 be two real Hilbert spaces. Let A : H1 −→ H2 be a bounded
linear operator and A∗ be the adjoint of A. Let G : H1 → H1 be a firmly nonexpansive
mapping with Fix(G) 6= ∅ and S : H2 → H2 be a nonexpansive mapping with Fix(S) 6= ∅.
Let V : H1 → H1 be l-Lipschitzian with constant l ∈ [0,∞) and let F : H1 → H1 be k-
Lipschitzian and η- strongly monotone operator with constants k > 0 and η > 0 such
that µ, σ, l and τ satisfy 0 < µ < 2η

k2 and 0 < σl < τ = 1 −
√

1− µ(2η − µk2). Suppose

Ω = {x ∈ Fix(G) : Ax ∈ Fix(S)} 6= ∅. For any t ∈ (0, 1
τ−σl ), define a net {xt} ⊂ H1 by

xt = G[I − γA∗(I − S)]G[tσV xt + (1− tµF )xt] (3.13)

where γ ∈ (0, 2β
‖A‖2 ) and α ∈ (0, 1). Then the net {xt} converges strongly to x∗ ∈ Ω which

a solution of the following variational inequality

x∗ ∈ Ω such that 〈σV x∗ − µFx∗, x− x∗〉 ≥ 0 ∀x ∈ Ω.

Proof. A simple calculation shows that every firmly nonexpansive mapping is a non-
expansive mapping, and every nonexpansive mapping is a 1

2 -strictly pseudo-contractive

mapping. Therefore every firmly nonexpansive mapping is a 1
2 -strictly pseudo-contractive

mapping. Set h = 1
αG+ (1− 1

α )I. Then

‖(I−h)x−(I−h)y‖2 =
1

α2
‖(I−G)x−(I−G)y‖2 ≤ 2

α2
〈(I−G)x−(I−G)y, x−y〉

=
1

2α
〈(I − h)x − (I − h)y, x − y〉,

from which it follows that h is an α
2 -strictly pseudo-contractive mapping. Now, putting

T = h in Theorem 3.1, the result follows.

Remark 3.4. Theorem 3.3 generalizes Theorem 3.5 and its follwing results already ob-
tained by Ansari et al [11] based on the hybrid steepest decent method. Our result also
generalizes the results of Ansari et al regarding variational and equilibrum problems.

Theorem 3.5. Let E1 and E2 be two real uniformly convex and 2-uniformly smooth
Banach spaces with the best smoothness constants m and n, and J1 and J2 be the duality
mappings on E1 and E2, respectively. Let A : E1 −→ E2 be a bounded linear operator and
A∗ be the adjoint of A. Let T : E1 → E1 be a ξ-strictly pseudo-contractive mapping with
Fix(T ) 6= ∅ and S : E2 → E2 be a β-strictly pseudo-contractive mapping with Fix(S) 6= ∅.
Let V : E1 → E1 be l-Lipschitzian with constant l ∈ [0,∞) and let F : E1 → E1 be a
k-Lipschitzian and η-strongly monotone operator with constants k > 0 and η > 0 such
that µ, σ, l and τ satisfy 0 < µ < 2η

k2 and 0 < σl < τ = 1−
√

1− µ(2η − µk2). Suppose

Ω = {x ∈ Fix(T ) : Ax ∈ Fix(S)} 6= ∅.

For any t ∈ (0, 1
τ−σl ), define a sequence {xn} ⊂ E1 by

xn+1 = Tα[I − γJ−11 A∗J2(I − S)]Tα[βnσV xn + (1− βnµF )xn] (3.14)

where x1 ∈ E1 is arbitrary, γ ∈ (0, 2β
‖A‖4 ), α ∈ (0, ξ

2m2 ) and the sequence {βn} satisfies

the following conditions:

(1) {βn} ⊂ [0, 1], limn→∞ βn = 0,
(2)

∑∞
n=0 βn =∞.
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Then the sequence {xn} converges strongly to x∗ ∈ Ω which a solution of the following
variational inequality

x∗ ∈ Ω such that 〈σV x∗ − µFx∗, J1(x− x∗)〉 ≥ 0 ∀x ∈ Ω.

Proof. Let p ∈ Ω and U = I − γJ−11 A∗J2(I − S)A. Then (3.14) becomes

xn+1 = TαUTα(βnσV xn + (I − βnµF )xn) n ≥ 0.

We divide the proof into five steps as follows.

Step 1. We show that {xn} is bounded. In fact, from (3.14) we deduce that

‖xn+1 − p‖ = ‖TαUTα[βnσV xn + (I − βnµF )xn]− TαUTαp‖
≤ ‖βnσV xn + (I − βnµF )xn − p‖
≤ βnσ‖V xn − V p‖+ ‖(I − βnµF )xn − (I − βnµF )p‖
+ βn‖σV p− µFp‖
≤ βnσl‖xn − p‖+ (1− βnτ)‖xn − p‖+ βn‖σV p− µFp‖

= [1− (τ − σl)βn]‖xn − p‖+ (τ − σl)βn
‖σV p− µFp‖

τ − σl

≤ max{‖xn − p‖,
‖σV p− µFp‖

τ − σl
}.

It now follows by induction that

‖xn+1 − p‖ ≤ max{‖x0 − p‖,
‖σV p− µFp‖

τ − σl
}.

This means that {xn} is bounded. It is easy to see that {V xn}, {Uxn} and {Fxn} are
bounded too.

Step 2. We show that limn→∞ ‖TαUTαzn − zn‖ = 0. To this end, set

yn := Tα[βnσV xn + (I − βnµF )xn],

and

zn := βnσV xn + (I − βnµF )xn.

Since U is averaged by Lemma 2.5, and since every nonexpansive mapping is averaged, it
follows that Tα is averaged. Since the composition of finitely many averaged mappings is
averaged by Proposition 2.4 (iv), TαU is averaged. Hence, there exists a positive constant
λ1 ∈ (0, 1) such that TαU = (1 − λ1)I + λ1G1, where G1 is a nonexpansive mapping.
Since Tα is averaged, there exists λ2 ∈ (0, 1) such that Tα = (1− λ2)I + λ2G2, where G2

is a nonexpansive mapping. It follows that

yn = Tαzn = ((1− λ2)I + λ2G2)zn

= ((1− λ2)I + λ2G2)(βnσV xn + (I − βnµF )xn)

= (1− λ2)(βnσV xn + (I − βnµF )xn) + λ2G2zn

= (1− λ2)(xn + βn(σV xn − µFxn) + λ2G2zn

= (1− λ2)xn + λ2[
(1− λ2)

λ2
βn(σV xn − µFxn) +G2zn]

= (1− λ2)xn + λ2qn,

(3.15)
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where

qn =
1− λ2
λ2

βn(σV xn − µFxn) +G2zn.

Moreover, we get

‖qn+1 − qn‖ = ‖ (1− λ2)

λ2
βn+1(σV xn+1 − µFxn+1) +G2zn+1

− (1− λ2)

λ2
βn(σV xn − µFxn) +G2zn‖

≤ ‖G2zn+1 −G2zn‖

+
(1− λ2)

λ2
[βn+1‖σV xn+1 − µFxn+1‖

+ βn‖σV xn − µFxn‖]

≤ ‖zn+1 − zn‖+
(1− λ2)

λ2
[βn+1‖σV xn+1 − µFxn+1‖

+ βn‖σV xn − µFxn‖].

(3.16)

In view of (3.14) and (3.15), we have

xn+1 = TαUyn

= ((1− λ1)I + λ1G1)yn

= (1− λ1)yn + λ1G1yn

= (1− λ1)[(1− λ2)xn + λ2qn] + λ1G1yn

= (1− λ1)(1− λ2)xn + (1− λ1)λ2qn + λ1G1yn

= (1− (λ1 + λ2 − λ1λ2))xn + (1− λ1)λ2qn + λ1G1yn

= (1− λ3)xn + λ3[
(1− λ1)λ2

λ3
qn +

λ1
λ3
G1yn]

= (1− λ3)xn + λ3pn,

(3.17)

where

λ3 = λ1 + λ2 − λ1λ2
and

pn =
(1− λ1)λ2

λ3
qn +

λ1
λ3
G1yn.

Thus, from (3.16), we derive that

‖pn+1 − pn‖ = ‖ (1− λ1)λ2
λ3

qn+1 +
λ1
λ3
G1yn+1 −

(1− λ1)λ2
λ3

qn −
λ1
λ3
G1yn‖

≤ (1− λ1)λ2
λ3

‖qn+1 − qn‖+
λ1
λ3
‖G1yn+1 −G1yn‖

≤ (1− λ1)λ2
λ3

‖qn+1 − qn‖+
λ1
λ3
‖yn+1 − yn‖

≤ (1− λ1)λ2
λ3

‖qn+1 − qn‖+
λ1
λ3
‖zn+1 − zn‖
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≤ (1− λ1)λ2
λ3

‖zn+1 − zn‖+
(1− λ1)(1− λ2)

λ3
[βn+1‖σV xn+1 − µFxn+1‖

+ βn‖σV xn − µFxn‖] +
λ1
λ3
‖zn+1 − zn‖

=
(λ1 + λ2 − λ1λ2)

λ3
‖zn+1 − zn‖

+
(1− λ3)

λ3
[βn+1‖σV xn+1 − µFxn+1‖+ βn‖σV xn − µFxn‖]

= ‖βn+1σV xn+1 + (I − βn+1µF )xn+1 − βnσV xn + (I − βnµF )xn‖

+
(1− λ3)

λ3
[βn+1‖σV xn+1 − µFxn+1‖+ βn‖σV xn − µFxn‖]

≤ ‖xn+1 − xn‖+ βn+1‖σV xn+1 − µFxn+1‖+ βn‖σV xn − µFxn‖

+
(1− λ3)

λ3
[βn‖σV xn+1 − µFxn+1‖+ βn‖σV xn − µFxn‖].

(3.18)

This implies that

‖pn+1 − pn‖ ≤ ‖xn+1 − xn‖+ βn+1‖σV xn+1 − µFxn+1‖+ βn‖σV xn − µFxn‖

+
(1− λ3)

λ3
[βn‖σV xn+1 − µFxn+1‖+ βn‖σV xn − µFxn‖],

and

lim sup
n→∞

(‖pn+1 − pn‖ − ‖xn+1 − xn‖) ≤ 0. (3.19)

Thus, from (3.17), (3.19) and Lemma 2.6, we have

lim
n→∞

‖pn − xn‖ = 0. (3.20)

Also, by (3.17) and (3.20), we get

lim
n→∞

‖xn+1 − xn‖ = λ3 lim
n→∞

‖pn − xn‖ = 0, (3.21)

lim
n→∞

‖zn − xn‖ = lim
n→∞

βn‖σV xn − µFxn‖ = 0. (3.22)

Therefore, from (3.21) and (3.22), we have

‖TαUTαzn − zn‖ = ‖xn+1 − zn‖ → 0 as n→∞.

Step 3. We show that limn→∞ ‖Tαzn − zn‖ = limn→∞ ‖yn − zn‖ = 0. To this end, let
p ∈ Ω. Then we have

‖TαUTαzn − p‖ − ‖zn − p‖ ≤ ‖TαUTαzn − zn‖.
By taking limit from both sides, and using Step 2, we obtain

lim
n→∞

(‖TαUTαzn − p‖ − ‖zn − p‖) = 0. (3.23)

By nonexpansiveness of TαU and Tα, we get

‖TαUTαzn − p‖ ≤ ‖Tαzn − p‖ ≤ ‖zn − p‖,
and so,

‖TαUTαzn − p‖ − ‖zn − p‖ ≤ ‖Tαzn − p‖ − ‖zn − p‖ ≤ 0.
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Thus, from (3.23), we deduce that

lim
n→∞

(‖Tαzn − p‖ − ‖zn − p‖) = 0.

Since ‖Tαzn−p‖2 ≤ ‖zn−p‖2−2α(ξ−αm2)‖Tzn−zn‖2, α ∈ (0, ξ
2m2 ) and the sequences

{Tzn} and {zn} are bounded, we have

lim
n
‖Tαzn − zn‖ = α2 lim

n→∞
‖Tzn − zn‖ = α2 lim

n→∞
‖yn − zn‖ = 0.

Step 4. We show that lim supn→∞〈σV x∗−µFx∗, T zn−x∗〉 ≤ 0, where x∗ is the unique
solution of the variational inequality (3.2). Indeed, we can choose a subsequence {xni

} of
{xn} such that

lim sup
n→∞

〈σV x∗ − µFx∗, xn − x∗〉 = lim
i→∞
〈σV x∗ − µFx∗, xni

− x∗〉.

Since {xni} is bounded, there exists a subsequence of {xni} which converges weakly to
a point p. Without loss of generality, we may assume that {xni} converges weakly to p.
Therefore, from Step 2, (3.22) and Lemma 2.8, we have xni

→ p ∈ Fix(TαUTα). Since
Tα and U are averaged, by Proposition 2.4 (iv), we have p ∈ Fix(Tα) and p ∈ Fix(U),
and hence Ap ∈ Fix(S). Thus p ∈ Ω. Therefore we have

lim sup
n→∞

〈σV x∗ − µFx∗, xn − x∗〉 = lim
i→∞
〈σV x∗ − µFx∗, xni − x∗〉

= 〈σV x∗ − µFx∗, p− x∗〉 ≤ 0.

This together with (3.22) and Step 3 implies that

lim sup
n→∞

〈σV x∗ − µFx∗, T zn − x∗〉 ≤ 0.

Step 5. We show that limn→∞ xn = x∗, where x∗ is the unique solution of the variational
inequality (3.2). We observe that

‖Tαzn − x∗‖2 = 〈Tαzn − zn, J1(Tαzn − x∗)〉+ 〈zn − x∗, J1(Tαzn − x∗)〉.
Since 〈Tαzn − zn, J1(Tαzn − x∗)〉 ≤ 0, we have

‖Tαzn − x∗‖2 ≤ 〈zn − x∗, J1(Tαzn − x∗)〉
= 〈βnσ(V xn − V x∗)
+ (I − βnµF )xn − (I − βnµF )x∗, J1(Tαzn − x∗)〉
+ βn〈σV x∗ − µFx∗, J1(Tαzn − x∗)〉
≤ (βnσl‖xn − x∗‖+ (1− βnτ)‖xn − x∗‖)‖Tαzn − x∗‖
+ βn〈σV x∗ − µFx∗, J1(Tαzn − x∗)〉
= (1− βn(τ − σl))‖xn − x∗‖‖Tαzn − x∗‖
+ βn〈σV x∗ − µFx∗, J1(Tαzn − x∗)〉

≤ 1− βn(τ − σl)
2

‖xn − x∗‖2 +
1

2
‖Tαzn − x∗‖2

+ βn〈σV x∗ − µFx∗, J1(Tαzn − x∗)〉.
It follows that

‖Tαzn − x∗‖2 ≤ (1− βn(τ − σl))‖xn − x∗‖2 (3.24)

+ βn〈σV x∗ − µFx∗, J1(Tαzn − x∗)〉. (3.25)
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From (3.14) and (3.24), we have

‖xn+1 − x∗‖2 = ‖TαUTαzn − x∗‖2 ≤ ‖Tαzn − x∗‖2

≤ (1− βn(τ − σl))‖xn − x∗‖2

+ βn(τ − σl) 2

τ − σl
〈σV x∗ − µFx∗, J1(Tαzn − x∗)〉.

(3.26)

Put λn = βn(τ − σl) and δn = 2
τ−σl 〈σV x

∗ − µFx∗, J1(Tαzn − x∗)〉. It is easily seen from

Step 4 and the conditions (1) and (2) that λn → 0,
∑∞
n=1 λn =∞ and lim supn→∞ δn ≤ 0.

Since (3.26) reduces to

‖xn+1 − x∗‖2 ≤ (1− λn)‖xn − x∗‖2 + λnδn,

by Lemma 2.10, we conclude that limn→∞ ‖xn − x∗‖ = 0. This completes the proof.

Remark 3.6. If we consider T = PC , S = PQ, Fix(T ) = C and Fix(S) = Q, then
Theorem 3.5 generalizes Theorem 3.5 of Jung in [7]. Furthermore, if F is a self-adjoint,
strongly positive bounded linear operator and V = I, then Theorem 3.5 generalizes the
results of Yao et al [8].

Theorem 3.7. Let H1 and H2 be two Hilbert spaces. Let A : H1 −→ H2 be a bounded
linear operator and A∗ be the adjoint of A. Let G : H1 → H1 be a firmly nonexpansive
mapping with Fix(G) 6= ∅ and S : H2 → H2 be a nonexpansive mapping with Fix(S) 6= ∅.
Let V : H1 → H1 be l-Lipschitzian with constant l ∈ [0,∞) and let F : H1 → H1 be a
k-Lipschitzian and η-strongly monotone operator with constants k > 0 and η > 0 such
that µ, σ, l and τ satisfy 0 < µ < 2η

k2 and 0 < σl < τ = 1 −
√

1− µ(2η − µk2). Suppose

Ω = {x ∈ Fix(G) : Ax ∈ Fix(S)} 6= ∅. For any t ∈ (0, 1
τ−σl ), define a sequence

{xn} ⊂ H1 by

xn+1 = G[I − γA∗(I − S)]G[βnσV xn + (1− βnµF )xn] (3.27)

where x1 ∈ H1 is arbitrary, γ ∈ (0, 2β
‖A‖4 ) and α ∈ (0, ξ

2m2 ). Then the sequence {xn}
converges strongly to x∗ ∈ Ω which a solution of the following variational inequality

x∗ ∈ Ω such that 〈σV x∗ − µFx∗, x− x∗〉 ≥ 0 ∀x ∈ Ω.

Proof. By a similar argument as in the proof of Theorem 3.3, the result follows.

Remark 3.8. Theorem 3.5 generalizes both Theorem 3.7 of Ansari et al [11] based on
hybrid steepest decent method, and the results of Ansari et al regarding variational and
equilibrum problems.

In the next example we compare our method (the hybrid steepest descent method)
with the viscosity iterative method [3, 25, 26]:

xn+1 = βnσV (xn)+(I−βnF )(xn+γA∗(S−I)Axn+
1− β

2
(T −I)(xn+γA∗(S−I)Axn))

and the other iterative method presented in [13–15], (we call it CSM method, for Censor,
Segal, and Moudafi):

xn+1 = T (xn − γA∗(I − S)Axn).
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Example 3.9. Let E2 be the real Hilbert space l2, and let S : l2 → l2 be a mapping
defined by

S(x1, x2, x3, · · · ) = (x2, x3, x4, · · · ).

Then, Fix(S) = {0} and

‖Sx− Sy‖2 =

∞∑
i=2

|xi − yi|2 ≤
∞∑
i=2

|xi − yi|2

= ‖x− y‖2 ≤ ‖x− y‖2 + β‖(x− Sx)− (y − Sy)‖2.

Therefore, each S is a β-strictly pseudo-contractive mapping. Let E1 be the set of real
numbers R, and T : R→ R be a mapping defined by:

T (x) =


x x < 0

−x
2

x ≥ 0

Then Fix(T ) = (−∞, 0] and:
If x > 0 and y ≤ 0, then we have Tx = x and Ty = −y

2 and so

|Tx− Ty|2 = |x+
y

2
|2 = x2 + xy +

y2

4

≤ x2 + y2 − 2xy + 3xy +
y2

4

≤ (x− y)2 +
1

9

9y2

4
= ‖x− y‖2 +

1

9
‖(x− Tx)− (y − Ty)‖2.

It is easily seen that if x, y < 0 or x, y ≥ 0, then T is 1
9 -strictly pseudo-contractive.

Therefore, T is 1
9 -strictly pseudo-contractive. Let A : R → l2 be the linear operator

defined by

A(x) = (
x

2
,
x

4
,
x

8
, · · · ), x ∈ R.

Then, A is bounded and ‖A‖ = 1
3 . It now follows that

A∗ : l2 → R, A∗(x1, x2, · · · ) =

∞∑
i=1

xi
2i
.

We define V x = 1
2x and F = I. It is claimed that the mapping V is Lipschitzian with

constant l = 1
2 and F is Lipschizian and a strongly monotone operator with constants

k = η = 1. On the other hand, we can take µ = 1 and σ = 1
2 which satisfy 0 < µ < 2η

k2

and 0 < σl < τ = 1−
√

1− µ(2η − µk2), respectively. We now put, for n ∈ N, βn = 1√
n

,

γ = 1
2 and α = 1

4 . Furthermore, we have

Ω = {x ∈ F (T ) : Ax ∈ F (S)} = {0}.

Now, all the assumptions in Theorem 3.5 are satisfied. Let us consider the following
numerical algorithm:
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zn = βnσV xn + (1− βnµF )xn =
1

4
√
n
xn + (1− 1√

n
)xn = (1− 3

4
√
n

)xn,

yn = T 1
4
(zn) =


zn xn < 0

5

8
zn xn ≥ 0,

(I − S)Ayn = (
yn
4
,
yn
8
,
yn
16
, · · · ), I − γA∗(I − S)Ayn =

11

12
yn,

xn+1 =



11

12
(1− 3

4
√
n

)xn xn < 0

275

768
(1− 3

4
√
n

)xn xn ≥ 0.

If we choose x0 < 0, then xn+1 = 11
12 (1 − 3

4
√
n

)xn. If we choose x0 ≥ 0, then xn+1 =
275
768 (1 − 3

4
√
n

)xn. By Theorem 3.5, the sequence {xn} converges to an element of Ω. By

the viscosity iterative method, we obtain

xn+1 =



1

12
(11− 8√

n
)xn xn < 0

1

36
(11− 2√

n
)xn xn ≥ 0.

By the CSM method, we have

xn+1 =


11

12
xn xn < 0

−11

24
xn xn ≥ 0.

We have displayed the convergence behavior of xn for x0 = 2 and n = 20 (some steps
have been skipped) with respect to the three algorithms in Table 1. It is seen that the
sequence generaed by our algorithm vanishes to the fixed point 0 faster than the other
two algorithms. In general, we cannot claim that our algorithm is the best one, this
indeed requires more work, but al least in some instances our method works better. As
the above example shows, the hybrid steepest descent method (HSDM) converges to zero
faster than the viscosity iteration method (VIM) and the CSM method.
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[Table 1]

n xn-VIM xn-CSM method xn-HSDM
0 2 2 2
1 5× 10−1 −9.1× 10−1 1.7× 10−1

2 1.33× 10−1 −8.3× 10−1 3.01× 10−2

3 3.6× 10−2 −7.6× 10−1 6.11× 10−3

4 1.01× 10−2 −6.9× 10−1 1.36× 10−3

5 2.8× 10−3 −6.2× 10−1 3.2× 10−4

6 8.03× 10−4 −5.7× 10−1 8.08× 10−5

7 2.28× 10−4 −5.2× 10−1 2.07× 10−5

8 6.53× 10−5 −4.7× 10−1 5.46× 10−6

17 3.2× 10−9 −2.0× 10−2 2× 10−10

18 9× 10−10 −1.8× 10−2 1× 10−10

20 1× 10−10 −1.6× 10−2 0
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