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Abstract This paper presents the quadrant interlocking factorization (QIF ) of nonsingular matrix,

alternatively called WH factorization, to yield hourglass matrix (H-matrix). The WH factorization

algorithm ofH-matrix is synonymous toWZ factorization algorithm of Z-matrix, unlike LU factorization.

We examine the conditions to generate the zero and nonzero entries of H-matrix from the factorization

algorithm, and compare the H-matrix and Z-matrix. Then we conclude that the existence of WH

factorization implies WZ factorization.
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1. Introduction

Demeure [1] coined the word hourglass matrix in describing the method of factoriz-
ing matrices, especially from Toeplitz matrix and Hankel matrix, from bowtie-hourglass
factorization or quadrant interlocking factorization. He further explained that hourglass
matrix is analogous to partitioned Z-matrix into Z-system (2 × 2 triangular block sys-
tems) [2]. Over time, hourglass matrix is used interchangeably with Z-matrix due to
the structural form of the matrix in resemblance with hourglass device. Unfortunately,
there are changes in structure of Z-matrix which depend on the type of matrix (Toeplitz,
Hankel, Hermitian, centrosymmetric, diagonally dominant or tridiagonal matrix) being
factorized when using quadrant interlocking factorization (QIF ) [3]. However, Evans and
Hatzopoulos [4] first posited QIF or WZ factorization of nonsingular matrix and gave
details of the factorization as well as the avoidance of breakdown of the factorization
algorithm. The stability of QIF comes from the centro-nonsingular matrix which is far
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reliable than any other type of factorization, such as LU factorization [5, 6]. LU factor-
ization (B = LU) is the representation of a nonsingular matrix in the form of a lower
triangular and an upper triangular matrix. Matrix inversion combined with the low com-
putational complexity and partial pivoting techniques makes LU -factorization extremely
efficient [7, 8]. LU factorization may fail to occur, but a proper permutation in rows
or columns is sufficient for the LU factorization which makes it numerically stable with(
2
3n

3 + 1
2n

2 − 7
6n
)

arithmetic operations [9, 10].
WZ factorization offers parallelization to solve linear system in enhancing performance

using OpenMP, OmpSs, CUDA, BLAS or EDK HW/SW codesign architecture on SIMD
or MIMD shared memory parallel computers or mesh multiprocessors, see [11–16] and
the references therein. The factorization is known for its adaptability to use direct method
in solving n× n linear system defined as [17]

Bx = c, (1.1)

where,

B = (bi,j) 1 ≤ i, j ≤ n , x = (x1, ..., xn)T , c = (c1, ..., cn)T ; x, c ∈ Rn, B ∈ Rn×n.

According to Evans and Hatzopoulos [18], Z-matrix exists together with a W -matrix
during the factorization of nonsingular matrix B such that

B = WZ. (1.2)

A matrix which is either a Z-matrix or a W -matrix is called butterfly matrix. Z-matrix
and W -matrix are names suggested by the shapes of the set of all possible positions for
nonzero entries given below

W =



• •
• ◦ ◦ •
• ◦ ◦ ◦ ◦ •
• ◦ ◦ ◦ ◦ ◦ ◦ •
• ◦ ◦ • • ◦ •
• ◦ • • ◦ •
• • • •
• •


Z =



• • • • • • • •
◦ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ •
◦ •
• ◦

• ◦ ◦ ◦
• ◦ ◦ ◦ ◦ ◦

• • • • • • • •


The WZ factorization breaks up the nonsingular matrix to structural forms which are

then regrouped and solved as sub-blocks [2, 19]. For the factorization, we compute w
(k)
i,k

and w
(k)
i,n−k+1 for W -matrix from Equation (1.3) by solving its 2 × 2 linear systems for

every update of matrix B,{
z
(k−1)
k,k w

(k)
i,k + z

(k−1)
n−k+1,kw

(k)
i,n−k+1 = z

(k−1)
i,k ;

z
(k−1)
k,n−k+1w

(k)
i,k + z

(k−1)
n−k+1,n−k+1w

(k)
i,n−k+1 = z

(k−1)
i,n−k+1,

(1.3)

where k = 1, 2, ..., bn2 c; i = k + 1, ..., n − k. For the Z-matrix, its entries are obtained
from Equation (1.4)

z
(k)
i,j = z

(k−1)
i,j − w

(k)
i,k z

(k−1)
k,j − w

(k)
i,n−k+1z

(k−1)
n−k+1,j , (1.4)

where j = k + 1, ..., n − k. The direct method to solve the linear systems of Equation
(1.3) under the nonsingularity constraint presumed for their determinants solely depends
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on a conventional method called Cramer’s rule [20, 21]. The unique solution provided by
Cramer’s rule to the system in Equation (1.1) is given by [22]

x =
det(Bi|c)

det(B)
, (1.5)

where Bi|c is the matrix obtained from B by substituting the vector column of c to the
ith column of B, for i = 1, 2, ..., n. The advantage of using Cramer’s rule to solve all
bn2−1c∑
k=1

(n− 2k) of 2× 2 linear systems in the factorization process is to check if the matrix

is centro-singular and to adopt the least matrix norm [23, 24]. To properly portray the
notion and context of hourglass matrix in Section 2, we restrict the computed entries

(h
(k)
i,j ) of hourglass matrix in the factorization process to be nonzero.

2. Hourglass Matrix

Before we proceed, other notions of hourglass (stiffness) matrix that do not portray
what we discuss in this paper are based on stabilization of hourglass control to reduce
the hourglass effect, see for examples [25–27]. Now, hourglass matrix of order n (n ≥ 3)
is a nonsingular matrix given in Definition 2.1.

Definition 2.1. An hourglass matrix (H-matrix) is a nonsingular matrix of order n (n ≥
3) with nonzero entries from the ith to the (n− i + 1) element of the ith and (n− i + 1)
row of the matrix, otherwise 0’s, for i = 1, 2, ..., bn+1

2 c.

Unlike Z-matrix with unrestricted nonzero entries, hourglass matrix with nonzero el-
ements denoted with black dots has structural comparison with an hourglass device, see
Figure 1.

Figure 1. Structure of hourglass device and hourglass matrix.

In this article, quadrant interlocking factorization algorithm of nonsingular matrix to
yield hourglass matrix will be referred as WH factorization. Like the factorization of Z-
matrix, the factorization of H-matrix requires W -matrix to be computed during the WH
factorization of nonsingular matrix B. Thus, H-matrix exists together with W -matrix
such that

B = WH. (2.1)
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H-matrix and W -matrix of order n (n ≥ 3) are generally defined as

H =


hij , 1 ≤ i ≤ b (n+1)

2 c i ≤ j ≤ n + 1− i;

hij , d (n+2)
2 e ≤ i ≤ n n + 1− i ≤ j ≤ i;

0, otherwise.

W =



(1, 0, ..., 0︸ ︷︷ ︸
n−1

);

(wi,1, ..., wi,i−1, 1, 0, ..., 0︸ ︷︷ ︸
n−2i+1

, wi,n−i+2, ..., wi,n), i = 2, ..., b (n+1)
2 c;

(wi,1, ..., wi,n−i, 0, ..., 0︸ ︷︷ ︸
2i−n−1

, 1, wi,i+1, ..., wi,n), i = b (n+1)
2 c+ 1, ..., n− 1;

(0, ..., 0︸ ︷︷ ︸
n−1

, 1).

2.1.WH Factorization Algorithm

The QIF factorization of H-matrix and Z-matrix are quite similar, yet the factor-
ization for H-matrix restricts the computed entries to be nonzero at every stage during
the factorization. WH factorization specifies the number of times row-interchange can
be done at each stage of the factorization if the computed entries yield zero, else the
factorization breakdown. Based on the algorithm made by [28], we modify the sequential
steps for the factorization are as follows:

Step 1: Let B = H(0) for initial update and check if the first row
(
h
(0)
1,j

)
and last row(

h
(0)
n,j

)
of H(0) contains zero. If h

(0)
1,j = 0 or h

(0)
n,j = 0, then use suitable row-interchange

in H(0), where j = 1, 2, ..., n. Then, we compute w
(1)
i,1 and w

(1)
i,n in Equation (2.2) from

matrix H(0) by solving 2× 2 system of linear equations via Equation (1.5){
h
(0)
1,1w

(1)
i,1 + h

(0)
n,1w

(1)
i,n = h

(0)
i,1 ;

h
(0)
1,nw

(1)
i,1 + h

(0)
n,nw

(1)
i,n = h

(0)
i,n,

(2.2)

to have

w
(1)
i,1 =

h
(0)
n,nh

(0)
i,1 − h

(0)
n,1h

(0)
i,n

h
(0)
n,nh

(0)
1,1 − h

(0)
1,nh

(0)
n,1

and w
(1)
i,n =

h
(0)
1,1h

(0)
i,n − h

(0)
1,nh

(0)
i,1

h
(0)
n,nh

(0)
1,1 − h

(0)
1,nh

(0)
n,1

,

Whenever h
(0)
n,nh

(0)
1,1 − h

(0)
1,nh

(0)
n,1 = 0 use suitable row-interchange to avoid factorization

breakdown. Then the values of w
(1)
i,1 and w

(1)
i,n can be written in W -matrix as:

W (1) =



1 0 · · · 0 0

w
(1)
2,1 1 · · ·

... w
(1)
2,n

... 0
. . . 0

...

w
(1)
n−1,1

... · · · 1 w
(1)
n−1,n

0 0 · · · 0 1
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Step 2: We, therefore, update matrix H(0) to H(1) for the first update by evaluating its
entries as

h
(1)
i,j = h

(0)
i,j − w

(1)
i,1 h

(0)
1,j − w

(1)
i,nh

(0)
n,j , (2.3)

where i, j = 2, ..., n− 1. If one of the computed entry h
(1)
2,j = 0 or h

(1)
n−1,j = 0 in Equation

(2.3), then apply row-interchange in H(1) at h
(1)
i,j for i, j = 2, ..., n − 1 in no more than

(n− 2) times, else the factorization breakdown. Thus, updating h
(1)
i,j we have a matrix of

the form

H(1) =



h
(0)
1,1 h

(0)
1,2 · · · · · · h

(0)
1,n−1 h

(0)
1,n

0 h
(1)
2,2 · · · · · · h

(1)
2,n−1 0

...
...

...
...

...
...

...
...

0 h
(1)
n−1,2 · · · · · · h

(1)
n−1,n−1 0

h
(0)
n,1 h

(0)
n,2 · · · · · · h

(0)
n,n−1 h

(0)
n,n


Step 3: Next, ensure h

(1)
2,j 6= 0 and h

(1)
n−1,j 6= 0 and compute w

(2)
i,2 and w

(2)
i,n−1 from H(1)

by solving 2× 2 systems in Equation (2.4) to have{
h
(1)
2,2w

(2)
i,2 + h

(1)
n−1,2w

(2)
i,n−1 = h

(1)
i,2 ;

h
(1)
2,n−1w

(2)
i,2 + h

(1)
n−1,n−1w

(2)
i,n−1 = h

(1)
i,n−1.

(2.4)

Then,

w
(2)
i,2 =

h
(1)
n−1,n−1h

(1)
i,2 − h

(1)
n−1,2h

(1)
i,n−1

h
(1)
n−1,n−1h

(1)
2,2 − h

(1)
2,n−1h

(1)
n−1,2

and w
(2)
i,n−1 =

h
(1)
2,2h

(1)
i,n−1 − h

(1)
2,n−1h

(1)
i,2

h
(1)
n−1,n−1h

(1)
2,2 − h

(1)
2,n−1h

(1)
n−1,2

.

Thus, we write the values of w
(2)
i,2 and w

(2)
i,n−1 in W -matrix as:

W (2) =



1 0 0 · · · 0 0 0

w
(1)
2,1 1 0 · · · 0 0 w

(1)
2,n

... w
(2)
3,2 1 · · ·

... w
(2)
3,n−1

...
...

... 0
. . . 0

...
...

... w
(2)
n−2,2

... · · · 1 w
(2)
n−2,n−1

...

w
(1)
n−1,1 0 0 · · · 0 1 w

(1)
n−1,n

0 0 0 · · · 0 0 1


Step 4: We update matrix H(1) to H(2) for the second update by evaluating its entries
as

h
(2)
i,j = h

(1)
i,j − w

(2)
i,2 h

(1)
2,j − w

(2)
i,n−1h

(1)
n−1,j 6= 0, (2.5)

where i, j = 3, ..., n− 2. If one of the computed entry h
(2)
3,j = 0 or h

(1)
n−2,j = 0 in Equation

(2.5), then apply row-interchange in H(2) at h
(2)
i,j for i, j = 3, ..., n − 2 in no more than

(n− 4) times, else the factorization breakdown. Thus, updating h
(1)
i,j to h

(2)
i,j we have
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H(2) =



h
(0)
1,1 h

(0)
1,2 h

(0)
1,3 · · · · · · h

(0)
1,n−2 h

(0)
1,n−1 h

(0)
1,n

0 h
(1)
2,2 h

(1)
2,3 · · · · · · h

(1)
2,n−2 h

(1)
2,n−1 0

0 0 h
(2)
3,3 · · · · · · h

(2)
3,n−2 0 0

...
...

...
...

...
...

...
...

...
...

...
...

0 0 h
(2)
n−2,3 · · · · · · h

(2)
n−2,n−2 0 0

0 h
(1)
n−1,2 h

(1)
n−1,3 · · · · · · h

(1)
n−2,n−2 h

(1)
n−1,n−1 0

h
(0)
n,1 h

(0)
n,2 h

(0)
n,3 · · · · · · h

(0)
n,n−2 h

(0)
n,n−1 h

(0)
n,n


Step 5: Now, we compute w

(k)
i,k and w

(k)
i,n−k+1 from matrix H(k−1) by solving 2× 2 linear

systems in Equation (2.6) to generalize for every update of H(k) and proceed similarly
for the inner square matrices of size (n− 2k) and so on. That is,{

h
(k−1)
k,k w

(k)
i,k + h

(k−1)
n−k+1,kw

(k)
i,n−k+1 = h

(k−1)
i,k ;

h
(k−1)
k,n−k+1w

(k)
i,k + h

(k−1)
n−k+1,n−k+1w

(k)
i,n−k+1 = h

(k−1)
i,n−k+1,

(2.6)

where k = 1, 2, ..., bn−12 c; i = k + 1, ..., n− k. Then,

w
(k)
i,k =

h
(k−1)
n−k+1,n−k+1h

(k−1)
i,k − h

(k−1)
n−k+1,kh

(k−1)
i,n−k+1

h
(k−1)
n−k+1,n−k+1h

(k−1)
k,k − h

(k−1)
n−k+1,kh

(k−1)
k,n−k+1

and

w
(k)
i,n−k+1 =

h
(k−1)
k,k h

(k−1)
i,n−k+1 − h

(k−1)
k,n−k+1h

(k−1)
i,k

h
(k−1)
n−k+1,n−k+1h

(k−1)
k,k − h

(k−1)
n−k+1,kh

(k−1)
k,n−k+1

.

Then, we put the values w
(k)
i,k and w

(k)
i,n−k+1 in a W -matrix of the form as

W (k) =



1 0
. . .

...

1 0

w
(k)
k+1,k

. . .
... w

(k)
k+1,n−k+1

...
. . .

...

w
(k)
n−1,k

...
. . . w

(k)
n−k,n−k+1

0 1
...

. . .

0 1


Step 6: We finally compute for kth steps of h

(k)
i,j as:

h
(k)
i,j = h

(k−1)
i,j − w

(k)
i,k h

(k−1)
k,j − w

(k)
i,n−k+1h

(k−1)
n−k+1,j , (2.7)

where j = k+1, ..., n−k. From Equation (2.7), if one of the computed entries is zero, then
apply possible row-interchange in no more than (n−2k) times in H(k−1) and re-factorize,
else the factorization breakdown to produce Hk (H-matrix). After the successful kth
steps we get hourglass matrix of the form:
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H=



h
(0)
1,1 h

(0)
1,2 h

(0)
1,3 · · · · · · · · · · · · · · · h

(0)
1,n−2 h

(0)
1,n−1 h

(0)
1,n

0 h
(1)
2,2 h

(1)
2,3 · · · · · · · · · · · · · · · h

(1)
2,n−2 h

(1)
2,n−1 0

0 0 h
(2)
3,3 · · · · · · · · · · · · · · · h

(2)
3,n−2 0 0

... 0 0
. . .

...
...

...
... 0 0

...
...

...
... h

(k−1)
k,k · · · h

(k−1)
k,n−k+1

...
...

...

0 0 0 0
...

... 0 0 0 0
...

...
... h

(k−1)
n−k+1,k · · · h

(k−1)
n−k+1,n−k+1

...
...

...
... 0 0

...
...

...
...

. . . 0 0
...

0 0 h
(2)
n−2,3 · · · · · · · · · · · · · · · h

(2)
n−2,n−2 0 0

0 h
(1)
n−1,2 h

(1)
n−1,3 · · · · · · · · · · · · · · · h

(1)
n−1,n−2 h

(1)
n−1,n−1 0

h
(0)
n,1 h

(0)
n,2 h

(0)
n,3 · · · · · · · · · · · · · · · h

(0)
n,n−2 h

(0)
n,n−1 h

(0)
n,n


From the above algorithmic steps, The MATLAB code to compute H-matrix from

WH factorization of nonsingular matrix is given in Listing 1.

Listing 1. MATLAB code of WH factorization.
1 func t i on H = WHfactor izat ion (B)
2 % step o f e l im ina t i on − from B to H
3 B=input ( ' matrix B = ' ) ;
4 n = s i z e (B, 1) ;
5 W = ze ro s (n) ;
6 counter = 0 ;
7 t i c
8 f o r k = 1 : c e i l ( ( n−1)/2)
9 k2 = n − k + 1 ;

10 % i n s e r t code here to check f o r non−zero
11 % check f i r s t row
12 f i r s t f l a g = any (B(k , k : k2 ) == 0) ;
13 % check l a s t row
14 l a s t f l a g = any (B(k2 , k : k2 ) == 0) ;
15 % l e t zero row count be the number o f row needed
16 zero row count = f i r s t f l a g + l a s t f l a g ;
17 % detec t i f we have enough such rows between them
18 i f ze ro row count > 0
19 po t en t i a l n on z e r o = ze ro s (n , 1 ) ;
20 f o r between index = (k+1) : ( k2−1)
21 i f a l l (B( between index , k : k2 ) )
22 po t en t i a l n on z e r o ( between index )=1;
23 end
24 end
25 po t en t i a l n on z e r o = f i nd ( po t en t i a l n on z e r o ) ;
26 i f l ength ( po t en t i a l n on z e r o ) < zero row count
27 % i f the re isn ' t enough such row ex i t
28 H = B;
29 d i sp ( ' cannot perform swi tch ing ' )
30 return
31 e l s e
32 chosen index = datasample ( po t en t i a l non z e ro , zero row count , '

r ep l a c e ' , f a l s e ) ;
33 % i f the re i s s u f f i c i e n t , swap with those .
34 i f ze ro row count > 1
35 % switch both
36 tmp = B( chosen index (1) , k : k2 ) ;
37 B( chosen index (1) , k : k2 ) = B(k , k : k2 ) ;
38 B(k , k : k2 ) = tmp ;
39 tmp = B( chosen index (2) , k : k2 ) ;
40 B( chosen index (2) , k : k2 ) = B(k2 , k : k2 ) ;
41 B(k2 , k : k2 ) = tmp ;
42 counter = counter + 2 ;
43 e l s e



1468 Thai J. Math. Vol. 19 (2021) /O. Babarinsa et al.

44 % switch one o f them
45 i f f i r s t f l a g
46 tmp = B( chosen index (1) , k : k2 ) ;
47 B( chosen index (1) , k : k2 ) = B(k , k : k2 ) ;
48 B(k , k : k2 ) = tmp ;
49 counter = counter + 1 ;
50 e l s e
51 tmp = B( chosen index (1) , k : k2 ) ;
52 B( chosen index (1) , k : k2 ) = B(k2 , k : k2 ) ;
53 B(k2 , k : k2 ) = tmp ;
54 counter = counter + 1 ;
55 end
56 end
57 end
58 end
59 % end o f i n s e r t i n g code
60 determinant = B(k , k ) ∗ B(k2 , k2 ) − B(k2 , k ) ∗ B(k , k2 ) ;
61 % disp ( ' determinant = ')
62 % disp ( determinant )
63 i f determinant == 0
64 e x i t f l a g = 0 ;
65 f o r i 1 = k : k2
66 f o r i 2 = i1 : k2
67 determinant = B( i1 , k ) ∗ B( i2 , k2 ) − B( i2 , k ) ∗ B( i1 , k2 ) ;
68 i f determinant ˜= 0
69 d i sp ( ' input matrix cannot be f a c t o r i z e d to hourg l a s s matrix '

)
70 tmp = B( i1 , k : k2 ) ;
71 B( i1 , k : k2 ) = B(k , k : k2 ) ;
72 B(k , k : k2 ) = tmp ;
73 tmp = B( i2 , k : k2 ) ;
74 B( i2 , k : k2 ) = B(k2 , k : k2 ) ;
75 B(k2 , k : k2 ) = tmp ;
76 e x i t f l a g = 1 ;
77 break
78 end % end i f determinant ˜= 0
79 end % end o f i 2
80 end % end o f i 1
81 i f e x i t f l a g == 0
82 H = B;
83 return
84 end
85 end % end i f determinant == 0
86 % f i nd i ng elements o f W
87 W(k+1:k2−1,k )=(B(k2 , k2 ) ∗B(k+1:k2−1,k )−B(k2 , k ) ∗B(k+1:k2−1,k2 ) ) / determinant ;
88 W(k+1:k2−1,k2 )=(B(k , k ) ∗B(k+1:k2−1,k2 )−B(k , k2 ) ∗B(k+1:k2−1,k ) ) / determinant ;
89 f o r m=1:n
90 W(m,m)=1;
91 W(m, n+1−m) ;
92 end
93 % updating B
94 B(k+1:k2−1,k ) = 0 ;
95 B(k+1:k2−1,k2 ) = 0 ;
96 B(k+1:k2−1,k+1:k2−1) = B(k+1:k2−1,k+1:k2−1) − W(k+1:k2−1,k ) ∗ B(k , k+1:k2−1)

− W(k+1:k2−1,k2 ) ∗ B(k2 , k+1:k2−1) ;
97 i f B(k+1:k2−1,k+1:k2−1)==0
98 e r r o r ( ' computed e n t r i e s cannot form Hourglass matrix ' )
99 end

100 H = B;
101 permutation = counter
102 W = W − diag ( diag (W) ) + eye (n) ;
103 d i sp (W)
104 di sp (H)
105 toc
106 end
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Listing 2. MATLAB code for random hourglass matrix.
1 func t i on B = random H(N, k )
2 B = t r i l ( ones (N) ) ;
3 n on z e r o s i z e = nchoosek (N+1 ,2) ;
4 v = ze ro s ( non z e r o s i z e , 1 ) ;
5 f o r i = 1 : nchoosek (N+1 ,2)
6 v ( i ) = gen (k ) ;
7 gen (k )=(2 ∗ ( unidrnd (2) −1) −1) ∗ unidrnd (k ) ;
8 end
9 B(˜˜B) = v ;

10 f o r j = 1 : f l o o r (N/2)
11 B( j , j +1: N−j ) = B( j +1: N−j , j ) ;
12 B( j +1: N−j , j ) = ze ro s (N− 2∗ j , 1) ;
13 B( j , N−j +1) = gen (k ) ;
14 end

2.2. Time Complexity and Stability of WH Factorization

Recall that k = 1, 2, ..., bn−12 c and that there are bn−12 c stages in the factorization.
From every successful loops i, j = k+1, k+2, ..., n−k for each stage, there are (n−2k) of
2× 2 linear systems to be solved in (n− 2k) times which account for the elements in W -
matrix and Z-matrix. Next, there are two real addition (2 RA) and two real multiplication

(2 RM) require to compute h
(k)
i,j in (n− 2k) four times at every stage of the factorization.

Thus, the complexity of the total number of arithmetic operations T (n), used is

T (n) =

bn−1
2 c∑

k=1

3(n−2k)+

bn−1
2 c∑

k=1

(n−2k)

n−k∑
i=k+1

8+

bn−1
2 c∑

k=1

(n−2k)

n−k∑
i=k+1

1

2

n−k∑
j=k+1

4. (2.8)

By further simplifying Equation (2.8), we have

T (n) =

bn−1
2 c∑

k=1

(n− 2k)

3 +

n−k∑
i=k+1

2

4 +
1

2

n−k∑
j=k+1

4


 .

Thus,

T (n) =
8n3 − 14n− 36

12

=
4n3 − 7n− 18

6

≈ 2

3
(n3).

The beauty of WH factorization is that it works for nonsingular matrix that is either
well-conditioned (such as Teoplitz matrix) or ill-conditioned (such as Hilbert matrix).
If the matrix is nonsingular, to avoid breakdown at its submatrices there must be row-
interchange in the factorization process. This row-interchange is carried over in exactly
the same way at every stage of the factorization to ensure that the 2 × 2 submatrix
has the least condition number adopting any matrix norm. Although, swapping or row-
interchange at every stage in WH factorization increases the overall time of the algorithm.
This happens as the time required for the algorithm to moved and sort data in and
out of the processor also increases. However, applying row-interchange is crucial, when
necessary, for the factorization to work thereby making it stable. Since WH factorization
must fulfil the requirements of WZ factorizations in order to be applied and that stability
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of WZ factorization based on Factorization Theorem depends on invertible submatrices,
see Theorem 2.5.

Furthermore, the numerical accuracy
(
−log10 ‖B−WH‖

n·‖B‖

)
of WH factorization depends

on the matrix size but more on the matrix norms. The matrix norm of WH factorization
is the Frobenius norm. The Frobenius norm of WH factorization is given as

‖B −WH‖F =

√√√√√
 n∑

i=1

n∑
j=1

|bi,j − wi,jhi,j |

. (2.9)

2.3. Comparison between H-Matrix and Z-Matrix

Although, H-matrix and Z-matrix (especially when factorized from Hankel and Toeplitz
matrix) share most things in common yet Z-matrix does not always imply H-matrix since
Z-matrix is more general than H-matrix [29]. The WZ factorization is possible provided
the submatrices of the nonsingular matrix are invertible, while WH factorization is pos-
sible provided the submatrices of the nonsingular matrix are invertible as well as all the
elements in the first row and in the last row of its submatrix are nonzero. Assuming the
entries hi,j is analogous to zi,j , then Z-matrix will imply H-matrix provided that the

computed z
(k−1)
i,j and z

(k−1)
n,j are strictly nonzero, for k = 1, 2, ..., bn−12 c. However, the

entries of Z-matrix are unbound to be nonzero. Therefore, quadrant interlocking fac-
torization of symmetric positive definite or diagonally dominant does not guarantee that
the factored matrix is H-matrix, however it often guarantees that it is Z-matrix. Then
it is obvious that it will no longer be H-matrix if one of its strictly nonzero elements is
replaced with zero. The WZ factorization exists for every nonsingular matrix often with
pivoting whereas WH factorization may fail to exist even if the matrix is nonsingular.
Unlike the factorization of Z-matrix, the factorization of an H-matrix may not necessarily
be from a symmetric positive definite or diagonally dominant matrix but definitely not
from a tridiagonal matrix. In general, every H-matrix is theoretically a Z-matrix but the
converse may not always true, see Figure 2.

Figure 2. H-matrix as a subset of Z-matrix.

Proposition 2.2. [28] Let H be an hourglass matrix of order n (n ≥ 3), HT (nz) the total
number of nonzero entries and HT (z) be the total number of zero entries in hourglass
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matrix. Then,

HT (nz) =
n2 + 2n−

∣∣(n + 1) mod 2− 1
∣∣

2

and

HT (z) =
n2 − 2n +

∣∣(n + 1) mod 2− 1
∣∣

2
.

Though not always that properties of hourglass matrix and Z-matrix are similar, the
entries in H-matrix are linearly independent. Like Z-matrix, the transpose of hourglass
matrix does not retain the shape of the matrix but rather form a bowtie matrix or butterfly
matrix. Inverse and nth root of hourglass matrix is again hourglass matrix. The minimum
order of hourglass matrix is 3 and its rank is n. Regardless of order of hourglass matrix,
the total number of zero entries is even. The minimum matrix density of H-matrix is

lim
n→∞

n2+2n−|(n+1) mod 2−1|
2

n2
= 0.5.

2.4. On Hourglass Matrix

Definition 2.3. [28] Filanz submatrix, denoted as f
1≤i≤dn−1

2 e
m , is a 2 × 2 non-singular

matrix obtained by taking the first and the last nonzero elements of the ith and (n+1−i)th
row of H-matrix given as

f
1≤i≤dn−1

2 e
m =

[
h
(i−1)
i,i h

(i−1)
i,n+1−i

h
(i−1)
n+1−i,i h

(i−1)
n+1−i,n+1−i

]
1≤i≤dn−1

2 e

(2.10)

Every permutation matrix P is a product of elementary row-interchange matrices, it
is important to know that at any stage k if suitable row-interchange is applied then

H =
(
W (k−1)P (k−1)W (k−2)P (k−2)... W (2)P (2)W (1)P (1)

)
B.

The determinant of matrix B can be evaluated as

det(B) = det
(
W (k−1) · P (k−1) · · · · ·W (2) · P (2) ·W (1) · P (1)·

)−1
H.

Due to 1’s in the diagonal and 0’s in the anti-diagonal of W -matrix, it is easy to deduce
that

det
(
W (k−1) · · · · ·W (2) ·W (1)

)−1
= 1,

while

det
(
P (k−1) · · · · · P (2) · P (1)

)−1
= (−1)pn .

Thus,

(−1)pn =

{
1 if even number of rows are interchanged,

−1 if odd number of rows are interchanged.

Therefore,

det(B) = (−1)pndet (H)

where pn is the total number of permutation matrix (successful row interchange) occurs
in the factorization.



1472 Thai J. Math. Vol. 19 (2021) /O. Babarinsa et al.

Proposition 2.4. [28] Let det(H) be the determinant of hourglass matrix of order (n ≥ 3)
Then,

det (H) =



dn−1
2 e∏

i=1

∣∣∣∣∣ h
(i−1)
i,i h

(i−1)
i,n+1−i

h
(i−1)
n+1−i,i h

(i−1)
n+1−i,n+1−i

∣∣∣∣∣ if n is even;

h(n+1
2 ,n+1

2 )

dn−1
2 e∏

i=1

∣∣∣∣∣ h
(i−1)
i,i h

(i−1)
i,n+1−i

h
(i−1)
n+1−i,i h

(i−1)
n+1−i,n+1−i

∣∣∣∣∣ if n is odd.

In evaluating the determinants of H-matrix, each filanz minor (determinant of filanz
submatrix of Equation (2.10)) uses 2 multiplications and 1 subtraction. If n is even, then
there are 3n−2

2 multiplications and n
2 subtractions. However. if n is odd, then there are

3n−3
2 multiplications and n−1

2 subtractions to have T (n) ≈ 2n.

Theorem 2.5. (Factorization Theorem [30]). Let B ∈ Rn×n be a nonsingular matrix
that has a unique QIF factorization, then B = WZ if and only if the submatrices of B
are invertible.

Theorem 2.6. If there exists WH factorization for a nonsingular matrix B, then there
exists WZ factorization.

Proof. First, we assume matrix B has even order (the assumption is also true for odd

order). If B = WH, then the central submatrices ∇h = h
(k−1)
i,j of B are nonsingular

according to its factorization algorithm otherwise the factorization fails. That is,

∇h =


h
(k−1)
k,k · · · h

(k−1)
k,n−k+1

...
...

h
(k−1)
n−k+1,k · · · h

(k−1)
n−k+1,n−k+1


1≤k≤n

2

.

This assumption is also applicable to B = WZ according to Theorem 2.5, if and only

if its centro-nonsingular submatrix ∆z = z
(k−1)
i,j are invertible, such that

∆z =


z
(k−1)
k,k · · · z

(k−1)
k,n−k+1

...
...

z
(k−1)
n−k+1,k · · · z

(k−1)
n−k+1,n−k+1


1≤k≤n

2

.

If a nonsingular matrix B with centro-nonsingular submatrix assumes WH factorization

such that det (∇h) = h
(k−1)
n−k+1,n−k+1h

(k−1)
k,k − h

(k−1)
n−k+1,kh

(k−1)
k,n−k+1 6= 0, then the matrix also

assumes WZ factorization such that det (∆z) = z
(k−1)
n−k+1,n−k+1z

(k−1)
k,k −z(k−1)n−k+1,kz

(k−1)
k,n−k+1 6=

0. However, the computed entry z
(k−1)
i,j may or may not be nonzero for i, j = k, k+1, ..., n−

k + 1. This is because WZ factorization only requires invertibility of ∆z, whereas WH
factorization ensures that row interchange exists for ∇h to contain only nonzero entries

and still being invertible. In a case where z
(k−1)
i,j 6= 0 then z

(k−1)
i,j = h

(k−1)
i,j , but if an

entry in z
(k−1)
i,j is zero then z

(k−1)
i,j 6= h

(k−1)
i,j , since h

(k−1)
i,j cannot be zero, even though

det (∆z) 6= 0 and det (∇h) 6= 0.



Quadrant Interlocking Factorization Algorithm ... 1473

Next, we investigate the performance time and matrix norms of LU factorization with
row pivoting against WH factorization on nonsingular dense matrices via MATLAB
R2017b and the results were recorded in Table 1. Due to the lack of parallel computer
or mesh multiprocessors with high multicores, we limit our MATLAB codes on Intel pro-
cessor (Core i7-4600U 2.1GHz, 8GB RAM) and AMD processor (Ryzen 5 1500X 2.1GHz,
8GB RAM) with standard hardware.

Table 1. Performance time and matrix norm of LU and WH factoriza-
tion on Intel and AMD processor via MATLAB R2017b.

Intel AMD
Matrix name Performance time Matrix norm Performance time Matrix norm

LU WH ‖B − LU‖ ‖B −WH‖ LU WH ‖B − LU‖ ‖B −WH‖
500 × 500 7.06 1.08 1.54E-14 0.18E-14 10.53 3.65 1.96E-14 0.24E-14

1000 × 1000 18.93 9.82 3.24E-14 2.49E-14 27.35 19.45 3.62E-14 2.53E-14
1500 × 1500 42.91 23.22 5.33E-14 4.91E-14 65.11 43.02 5.82E-14 4.92E-14
2000 × 2000 124.10 99.52 8.37E-14 7.30E-14 203.13 169.18 8.91E-14 7.35E-14
2500 × 2500 248.93 203.74 1.18E-13 0.90E-13 449.24 343.01 1.57E-13 0.98E-13
3000 × 3000 448.34 399.75 3.21E-13 2.42E-13 681.97 581.73 4.22E-13 2.57E-13
3500 × 3500 635.90 569.32 5.67E-13 4.76E-13 1035.81 936.16 6.31E-13 4.86E-13
4000 × 4000 961.67 781.63 7.89E-13 6.71E-13 1645.35 1284.07 8.49E-13 6.85E-13
4500 × 4500 1441.01 1229.63 1.28E-12 0.94E-12 2368.34 1788.69 1.63E-12 0.97E-12
5000 × 5000 2110.47 1823.76 1.39E-12 0.96E-12 3461.00 2753.27 1.89E-12 0.99E-12
5500 × 5500 2628.34 2264.21 2.86E-12 2.36E-12 4290.46 3457.11 3.26E-12 2.46E-12
6000 × 6000 3289.31 2923.41 3.43E-12 2.73E-12 5235.85 4637.36 3.98E-12 2.81E-12
6500 × 6500 4002.68 3575.92 5.51E-12 4.80E-12 6584.34 6054.05 6.12E-12 4.93E-12
7000 × 7000 4991.64 4514.47 6.52E-12 5.26E-12 8734.14 7239.35 7.08E-12 5.39E-12
7500 × 7500 6194.87 5703.16 8.31E-12 6.76E-12 10634.65 9616.25 9.24E-12 6.96E-12
8000 × 8000 8279.02 6901.07 9.29E-12 7.87E-12 12683.64 12007.31 9.80E-12 8.01E-12

In Figure 3, the performance time of WH factorization on Intel processor is about 23%
better than the performance time of WH factorization on AMD processor but the perfor-
mance time of LU factorization on AMD processor is 19% better than the performance
time of WH factorization on Intel processor. However, the performance time of LU and
WH factorization increase as the dimension of the matrix increases irrespective of the
processor used. From our results in Figure 4, we deduced that norms of WH factorization
is better than LU factorization on Intel and AMD processor. More so, the matrix norms
of LU and WH factorization increase as the size of their matrices increase.

3. Conclusion

The notion and context of hourglass matrix and its WH factorization algorithm have
been successively discussed. Like WZ factorization, the performance time and matrix
norms on Intel and AMD processor of WH factorization are better than LU factorization.
In all, Intel processor gives better result on WH factorization and LU factorization than
on AMD processor. Besides, the comparison made between H-matrix and Z-matrix
concludes that the existence of WH factorization implies WZ factorization.
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Figure 3. Performance time of LU and WH factorization on MATLAB R2017b.
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