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1. Introduction and Preliminaries

Let E be a real Banach space. Then a subset P of E is called a cone if and only if

(i) P is closed, non-empty and P 6= {θ};
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P imply that ax+ by ∈ P ;
(iii) if x,−x ∈ P , then x = θ.

Given a cone P ⊂ E, we define a partial ordering � with respect to P by

x � y ⇐⇒ y − x ∈ P.
We shall write x ≺ y if x � y and x 6= y. Also, we write x � y if and only if

y−x ∈ intP (intP is the interior of P ). The cone P is named normal if there is a number
K > 0 such that for all x, y ∈ E, θ � x � y implies that ‖x‖ ≤ K‖y‖. If intP 6= ∅,
then the cone P is called solid. Also, we shall make use of the following properties for all
u, v, w, c ∈ E when the cone P may be non-normal.

(p1) If u � v and v � w, then u� w.
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(p2) If θ � v � c for each c ∈ intP , then v = θ.
(p3) If v � λv where v ∈ P and 0 < λ < 1, then v = θ.
(p4) Let an → θ in E, θ � an and θ � c. Then there exists positive integer n0 such

that an � c for each n > n0.

Ordered normed spaces and cones have many applications in applied mathematics.
Hence, fixed point theory in K-metric and K-normed spaces was developed in the mid-
20th century ([1, 2]). In 2007, Huang and Zhang [3] reintroduced such spaces under the
name of cone metric spaces by substituting the set of real numbers by an ordered normed
space and proved some fixed point results (see, [4, 5]). On the other, in 1996, Kada et al.
[6] introduced the concept of w-distance in metric spaces, where nonconvex minimization
problems were treated. Further, Cho et al. [7] and Wang and Guo [8] defined the concept
of c-distance which is a cone version of the w-distance. Then some fixed point theorems
with respect to a w-distance in metric spaces and a c-distance in cone metric spaces and
tvs-cone metric spaces were proved in [9–13] and the references cited in them.

Consistent with Huang and Zhang [3] and Cho et al. [7], the following definitions and
lemma will be needed in the sequel.

Definition 1.1. Let X be a nonempty set. A mapping d : X × X → E is called a
cone metric on X and (X, d) is called a cone metric space if (d1) θ � d(x, y) for all
x, y ∈ X and d(x, y) = θ if and only if x = y; (d2) d(x, y) = d(y, x) for all x, y ∈ X; (d3)
d(x, z) � d(x, y) + d(y, z) for all x, y, z ∈ X.

For notions such as convergence and Cauchy sequences, completeness, continuity and
etc. in cone metric spaces and also other properties in a cone, we refer to [3, 4].

Definition 1.2. Let (X, d) be a cone metric space. A function q : X ×X → E is called
a c-distance on X if the following are satisfied:

(q1) θ � q(x, y) for all x, y ∈ X;
(q2) q(x, z) � q(x, y) + q(y, z) for all x, y, z ∈ X;
(q3) for all n ≥ 1 and x ∈ X, if q(x, yn) � u for some u = ux, then q(x, y) � u

whenever {yn} is a sequence in X converging to a point y ∈ X;
(q4) for all c ∈ E with θ � c, there exists e ∈ E with θ � e such that q(z, x) � e

and q(z, y)� e imply d(x, y)� c.

Note that, for c-distance q, q(x, y) = θ is not necessarily equivalent to x = y and
q(x, y) = q(y, x) does not necessarily hold for all x, y ∈ X.

Lemma 1.3. Let (X, d) be a cone metric space and q be a c-distance on X. Also, let
{xn} and {yn} be sequences in X and {un} and {vn} be sequences in cone P converging
to θ and x, y, z ∈ X. Then the following hold:

(c1) If q(xn, y) � un and q(xn, z) � vn for n ∈ N, then y = z. Specifically, if
q(x, y) = θ and q(x, z) = θ, then y = z.

(c2) If q(xn, xm) � un for m > n, then {xn} is a Cauchy sequence in X.

The most important graph theory approach to metric fixed point theory which intro-
duced so far is attributed to Jachymski [14]. In this approach, the underlying metric
space was equipped with a directed graph and the Banach contraction was obtained. For
more details on the theory of graphs, see [14, 15]. Consider a directed graph G with
V (G) = X such that the set E(G) consisting of the edges of G contains all loops (that
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is, ∆(X) ⊆ E(G), where ∆(X) = {(x, x) ∈ X ×X : x ∈ X}) and suppose that G has no
parallel edges. Then G can be represented by the ordered pair (V (G), E(G)).

The purpose of this paper is to study the existence of fixed points for mappings under
c-distance in cone metric spaces endowed with a graph. Our results are generalizations
of some well-known fixed point theorems given in terms of a c-distance from cone metric
spaces equipped with a partial order to cone metric spaces endowed with a graph. Also,
our results are interesting since we need to use neither the continuity of mapping nor the
normality of cone.

2. Main Results

Following Jachymski [14, Definition 2.4], we define the concept of orbitallyG-continuous
for self-map f on cone metric spaces.

Definition 2.1. Let (X, d) be a cone metric space endowed with a graph G. A mapping
f : X → X is called orbitally G-continuous on X if for all x, y ∈ X and all sequences {bn}
of positive integers with (f bnx, f bn+1x) ∈ E(G) for all n ≥ 1, the convergence f bnx → y
implies f(f bnx)→ fy.

Clearly, a continuous mapping on a cone metric space is orbitally G-continuous for all
graphs G but the converse is not totally true. The following example will shows that how
a graph plays an effective role to imply a weaker type of continuity.

Example 2.2. Let E = C1
R[0, 1] with the norm ‖ϕ‖ = ‖ϕ‖∞ + ‖ϕ′‖∞, X = [0, 1] and

consider the non-normal cone P = {ϕ ∈ E : ϕ(t) ≥ 0 on [0, 1]}. Also, let a mapping
d : X × X → E introduced by d(x, y)(t) = |x − y| · ϕ(t) for all x, y ∈ X, where ϕ(t) =
2t ∈ P ⊂ E with t ∈ [0, 1]. Then (X, d) is a cone metric space, and the cone P is a
non-normal solid cone in the Banach space E. Consider the mapping f : X → X by

f(1) = 1 and f(x) = x2

4 for all x ∈ X with x 6= 1. Obviously, f is not continuous at
x = 1, and in particular, on the whole X. Now assume that X is endowed with a graph
G = (V (G), E(G)), where V (G) = X and E(G) = {(x, x) : x ∈ X}; that is, E(G) contains
nothing but all loops. Observe that for all x, y ∈ X such that (x, y) ∈ E(G), we get x = y.
If x, y ∈ X and {bn} is a sequence of positive integers with (f bnx, f bn+1x) ∈ E(G) for
all n ≥ 1 such that f bnx → y, then {f bnx} is necessarily a constant sequence. Thus,
f bnx = y for all n ≥ 1 and so f(f bnx)→ fy. Hence, f is orbitally G-continuous on X.

In this section, let (X, d) be a cone metric space associated with c-distance q and
endowed with a graph G with V (G) = X and ∆(X) ⊆ E(G). Throughout this section,
we denote Xf = {x ∈ X : (x, fx) ∈ E(G)}. Our main result is the following theorem
for mappings with respect to a given c-distance in a complete cone metric space endowed
with a graph.

Theorem 2.3. Let (X, d) be a complete cone metric space endowed with a graph G, q be
a c-distance on X and f : X → X be an orbitally G-continuous mapping. Suppose that
there exist mappings αi : X → [0, 1) for i = 1, 2, 3, 4 such that the following conditions
hold:

(i) αi(fx) ≤ αi(x) and (α1 + α2 + α3 + 2α4)(x) < 1 for all x ∈ X;
(ii) f preserves the edges of G; that is, (x, y) ∈ E(G) implies (fx, fy) ∈ E(G) for

all x, y ∈ X;
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(iii) for all x, y ∈ X with (x, y) ∈ E(G),

q(fx, fy) � α1(x)q(x, y) + α2(x)q(x, fx) + α3(x)q(y, fy) + α4(x)q(x, fy). (2.1)

If Xf 6= ∅, then f has a fixed point on X. Moreover, if fz = z, then q(z, z) = θ.

Proof. Let x0 ∈ Xf . If fx0 = x0, then x0 is a fixed point of f and the proof is finished.
Now, suppose that fx0 6= x0. Since f preserves the edges of G and (x0, fx0) ∈ E(G), then
it follows that by induction (xn, xn+1) ∈ E(G) for all n ∈ N, where xn = fxn−1 = fnx0.
Now, let x = xn−1 and y = xn in (2.1). Since (xn−1, xn) ∈ E(G), we have

q(xn, xn+1) = q(fxn−1, fxn)

� α1(xn−1)q(xn−1, xn) + α2(xn−1)q(xn−1, xn) + α3(xn−1)q(xn, xn+1)

+ α4(xn−1)q(xn−1, xn+1)

� (α1 + α2 + α4)(fxn−2)q(xn−1, xn) + (α3 + α4)(fxn−2)q(xn, xn+1)

� (α1 + α2 + α4)(xn−2)q(xn−1, xn) + (α3 + α4)(xn−2)q(xn, xn+1)

...

� (α1 + α2 + α4)(x0)q(xn−1, xn) + (α3 + α4)(x0)q(xn, xn+1),

which implies that

q(xn, xn+1) � (α1 + α2 + α4)(x0)

1− (α3 + α4)(x0)
q(xn−1, xn)

for all n ∈ N. By repeating the procedure, we get

q(xn, xn+1) � hnq(x0, x1) (2.2)

for all n ∈ N, where 0 ≤ h =
(α1 + α2 + α4)(x0)

1− (α3 + α4)(x0)
< 1 by (i). Now, let m,n ∈ N with

m > n. It follows from h ∈ [0, 1) and (2.2) that

q(xn, xm) � q(xn, xn+1) + q(xn+1, xn+2) + · · ·+ q(xm−1, xm)

� hn

1− h
q(x0, x1).

Since hn

1−hq(x0, x1) converges to θ, Lemma 1.3 (c2) implies that {xn} is a Cauchy sequence

in X. Since X is complete, there exists a point x′ ∈ X such that xn = fnx0 → x′ as
n→∞.

We next show that x′ is a fixed point for f . At the first, since f preserves the edges of
G, it follows by induction that fnx0 ∈ Xf for all n ≥ 0. Thus, (fnx0, f

n+1x0) ∈ E(G) for
all n ≥ 0. Now, since f is orbitally G-continuous on X, we have fn+1x0 = f(fnx0)→ fx′

as n → ∞ which implies that fx′ = x′ (because the limit of a convergent sequence is
unique). Now, suppose that fz = z. Then, from (2.1), we have

q(z, z) = q(fz, fz)

� α1(z)q(z, z) + α2(z)q(z, fz) + α3(z)q(z, fz) + α4(z)q(z, fz)

= (α1 + α2 + α3 + α4)(z)q(z, z),

which implies that q(z, z) = θ by (i) and (p3). This completes the proof.
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Example 2.4. Consider E, ‖.‖, ϕ, X, P and d as in Example 2.2. Then (X, d) is a
cone metric space, and the cone P is a non-normal solid cone in the Banach space E.

Define the mapping f : X → X by f( 1
2 ) = 0 and f(x) = x2

4 for all x ∈ X with x 6= 1
2 .

Now assume that X is endowed with a graph G = (V (G), E(G)), where V (G) = X and
E(G) = {(x, x) : x ∈ X} ∪ {(0, 12 ), ( 1

2 , 0)}. Clearly, f is not continuous on the whole X,
but f is orbitally G-continuous on X. Let q : X × X → E be a c-distance defined by
q(x, y)(t) = d(x, y)(t) for all x, y ∈ X, where t ∈ [0, 1]. Take mappings α1(x) = x+1

4 ,
α2(x) = α4(x) = x

8 and α3(x) = 0 for all x ∈ X. Observe that:

(1) if x ∈ X − { 12}, then α1(f(x)) = α1(x2

4 ) = 1
4

(
x2

4 + 1
)
≤ x+1

4 = α1(x), and if

x = 1
2 , then α1(f( 1

2 )) = α1(0) = 0+1
4 ≤

1
2+1

4 = α1( 1
2 );

(2) if x ∈ X − { 12}, then α2(f(x)) = α4(f(x)) = x2

32 ≤
x
8 = α2(x) = α4(x), and if

x = 1
2 , then α2(f( 1

2 )) = α4(f( 1
2 )) = 0

8 ≤
1
2

8 = α2( 1
2 ) = α4( 1

2 );
(3) α3(f(x)) = α3(x) = 0 for all x ∈ X;
(4) (α1 + α2 + α3 + 2α4)(x) = x+1

4 + x
8 + x

4 < 1 for all x ∈ X;
(5) let x ∈ X. Then

q(fx, fx)(t) � α1(x)q(x, x)(t) + ((α2 + α3 + α4)(x))q(x, fx)(t)

or

q(f0, f
1

2
)(t) � α1(0)q(0,

1

2
)(t) + α2(0)q(0, f0)(t) + α3(0)q(

1

2
, f

1

2
)(t)

+ α4(0)q(0, f
1

2
)(t),

q(f
1

2
, f0)(t) � α1(

1

2
)q(

1

2
, 0)(t) + α2(

1

2
)q(

1

2
, f

1

2
)(t) + α3(

1

2
)q(0, f0)(t)

+ α4(
1

2
)q(

1

2
, f0)(t);

(6) since (0, f(0)) = (0, 0) ∈ E(G), so Xf 6= ∅.
Thus, all of the conditions of Theorem 2.3 are established. Obviously, f has a fixed point
x = 0 ∈ [0, 1] and q(0, 0) = 0.

Now, let Fixf be the set of fixed points of the mapping f .

Theorem 2.5. In addition to the hypothesis of Theorem 2.3, if the subgraph of G with
the vertex set Fixf is connected, then the restriction of f to Xf is a Picard operator.

Proof. Let the subgraph of G with the vertex set Fixf be connected and x′, y′ ∈ X
be a fixed point of f . Then there exists a path {xi}Ni=0 in G from x′ to y′ such that
x1, . . . , xN−1 ∈ Fixf ; that is, x0 = x′, xN = y′ and (xi, xi+1) ∈ E(G) for i = 0, . . . , N−1.
By (2.1) and q(xi+1, xi+1) = q(xi, xi) = θ, we have

q(xi, xi+1) = q(fxi, fxi+1) � α1(xi)q(xi, xi+1) + α2(xi)q(xi, fxi)

+ α3(xi)q(xi+1, fxi+1) + α4(xi)q(xi, fxi+1)

= (α1 + α4)(xi)q(xi, xi+1),

which implies that q(xi, xi+1) = θ (by (p3)). On the other hand, q(xi, xi) = θ. Thus, by
Lemma 1.3 (c1), we obtain xi = xi+1. Consequently,

x′ = x0 = x1 = · · · = xN−1 = xN = y′
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and hence the fixed point of f is unique and the restriction of f to Xf is a Picard operator.

Question. Can you consider another property instead of given condition in Theorem 2.5
to obtain the uniqueness of the fixed point of f?

In Theorems 2.3 and 2.5, set αi(x) = αi for i = 1, 2, 3, 4. Then we get the following
theorem.

Theorem 2.6. Let (X, d) be a complete cone metric space endowed with a graph G, q be
a c-distance on X and f : X → X be an orbitally G-continuous mapping and preserves
the edges of G. Suppose that there exist nonnegative constants αi for i = 1, 2, 3, 4 with
α1 + α2 + α3 + 2α4 < 1 such that

q(fx, fy) � α1q(x, y) + α2q(x, fx) + α3q(y, fy) + α4q(x, fy).

If Xf 6= ∅, then f has a fixed point on X. Moreover, if fz = z, then q(z, z) = θ. Also, if
the subgraph of G with the vertex set Fixf is connected, then the restriction of f to Xf

is a Picard operator.

Note that each w-distance in a metric space (in the sense of Kada et al. [6]) is a
c-distance in the cone metric space (X, d) (in the sense of Cho et al. [7]) with E = R
and P = [0,∞). But the converse does not hold. Thus, the c-distance is a generalization
of the w-distance. Consequently, our theorems are true for mappings with respect to a
w-distance in metric spaces endowed with a graph.

Remark 2.7. (i) Since we need to use neither the continuity of mapping nor the normality
of cone, the method of mentioned theorems generalize, extend and unify all of research
paper on fixed point theorems in cone metric spaces associated with a c-distance such as:
Rahimi et al. [11, 13], Cho et al. [7], Wang and Guo [8], Kada et al. [6], Ćirić et al. [16]
(and also, all references contained in them about w-distance and c-distance).

(ii) Sometimes the constant numbers which satisfy Theorem 2.6 are difficult to find.
Thus, it is better to define such mappings αi(x) instead of constants αi for i = 1, 2, 3, 4
as another auxiliary tool of the cone metric (such as Theorem 2.3).

(iii) In 2012, Ćirić et al. [16] show that the method of Du [17] for cone contraction
mappings cannot be applied for a c-distance contraction mappings. Thus, our results are
new and cannot to derived from the version of w-distance in metric spaces.

Several consequences of Theorem 2.6 follow now for particular choices of the graph. For
example, consider cone metric space (X, d) endowed with the complete graph G0 whose
vertex set coincides with X; that is, V (G0) = X and E(G0) = X ×X. Then we get the
following corollary.

Corollary 2.8. Let (X, d) be a complete cone metric space associated endowed with the
graph G0, q be a c-distance on X and f : X → X be an orbitally G0-continuous mapping.
Suppose that there exist nonnegative constants αi for i = 1, 2, 3, 4 with α1+α2+α3+2α4 <
1 such that

q(fx, fy) � α1q(x, y) + α2q(x, fx) + α3q(y, fy) + α4q(x, fy).

Then f has a fixed point on X. Moreover, if fz = z, then q(z, z) = θ.

Suppose now that (X,v) is a poset. Consider on the poset X, the graph G1 given by
V (G1) = X and E(G1) =

{
(x, y) ∈ X ×X : x v y

}
. Since v is reflexive, it follows that
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E(G1) contain all loops. Now, let G = G1 in Theorem 2.6. Then we obtain the following
result.

Corollary 2.9. Let (X,v) be a poset and (X, d) be a complete cone metric space endowed
with the graph G1. Also, let q be a c-distance on X and f : X → X be a nondecreasing
and orbitally G1-continuous mapping. Suppose that there exist nonnegative constants αi

for i = 1, 2, 3, 4 with α1 + α2 + α3 + 2α4 < 1 such that

q(fx, fy) � α1q(x, y) + α2q(x, fx) + α3q(y, fy) + α4q(x, fy).

for all x, y ∈ X with x v y. If there exists x0 ∈ X such that x0 v fx0, then f has a fixed
point on X. Moreover, if fz = z, then q(z, z) = θ.

For our next consequence, consider on the posetX, the graphG2 defined by V (G2) = X
and E(G2) =

{
(x, y) ∈ X ×X : x v y ∨ y v x

}
. Then, an ordered pair (x, y) ∈ X ×X

is an edge of G2 if and only if x and y are comparable elements of (X,v). If we set
G = G2 in Theorem 2.6, then we obtain another fixed point theorem in complete cone
metric spaces associated with a c-distance q and endowed with a partial order.

Corollary 2.10. Let (X,v) be a poset and (X, d) be a complete cone metric space en-
dowed with the graph G2. Also, let q be a c-distance on X and f : X → X be an
orbitally G2-continuous mapping which maps comparable elements of X onto compara-
ble elements. Suppose that there exist nonnegative constants αi for i = 1, 2, 3, 4 with
α1 + α2 + α3 + 2α4 < 1 such that

q(fx, fy) � α1q(x, y) + α2q(x, fx) + α3q(y, fy) + α4q(x, fy).

for all x, y ∈ X such that x and y are comparable. If there exists x0 ∈ X such that x0
and v fx0 are comparable, then f has a fixed point on X. Moreover, if fz = z, then
q(z, z) = θ.

Let e ∈ int P be a fixed element. Recall that two elements x, y ∈ X are said to be
e-close if d(x, y) � e. Define the e-graph G3 by V (G3) = X and E(G3) =

{
(x, y) ∈

X ×X : d(x, y) � e
}

. We see that E(G3) contains all loops. Finally, if we set G = G3

in Theorem 2.6, then we get the following consequence.

Corollary 2.11. Let (X, d) be a complete cone metric space, q be a c-distance on X
and e ∈ intP . Also, let f : X → X be a mapping which maps e-close elements of X
onto e-close elements and f be orbitally G3-continuous on X. Suppose that there exist
nonnegative constants αi for i = 1, 2, 3, 4 with α1 + α2 + α3 + 2α4 < 1 such that

q(fx, fy) � α1q(x, y) + α2q(x, fx) + α3q(y, fy) + α4q(x, fy).

for all x, y ∈ X such that x and y are e-close elements. If there exists x0 ∈ X such that
x0 and fx0 are e-close elements, then f has a fixed point on X. Moreover, if fz = z,
then q(z, z) = θ.

Question. Can one obtain common fixed point results for mappings with respect to the
c-distance in cone metric spaces endowed with the graph G?
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