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1. Introduction and Preliminary

The Bessel function is associated with a wide range of problems concerning the most
important areas of mathematical physics and various technical problems are linked into
application of Bessel functions. Bessel function theory is often used when solving, for ex-
ample, problems of hydrodynamics, acoustics, radio physics, atomic and nuclear physics,
information theory. These functions are also an effective tool for problem solving in areas
of wave mechanics and elasticity theory. In recent years, various useful integral formulae
and applications associated with the Bessel (or generalized) functions have been studied
by several authors [1–7].
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Recently, Choi and Agarwal [8] introduced the generalized multiindex Bessel function
in the form

J
(αj)m,γ

(βj)m, υ
(z) =

∞∑
n=0

(γ)υ n∏m
j=1 Γ (αj n + βj + 1)

(−z)n

n !
(m ∈ N), (1.1)

where αj , βj , γ ∈ C (j = 1, · · · ,m), υ > 0, <(γ) > 0, <(βj) > −1,
∑m
j=1<(αj) >

max{0;<(υ)− 1}.
Clearly, for υ = 0,m = 1, α1 = 1, β1 = ν and replacing z by z2

/
4 in (1.1), we obtain

J1,γ
ν,0

[
z2

4

]
=

(
2

z

)ν
Jν [z] , (1.2)

where Jν [z] is a Bessel function of the first kind defined for complex z ∈ C, (z 6= 0) and
ν ∈ C, (<(ν) > −1) ([9–11]):

Jν [z] =

∞∑
k=0

(−1)k

Γ(ν + k + 1)

(z/2)ν+2k

k!
. (1.3)

The Srivastava’s polynomials is defined by Srivastava [12, p. 1, Eq.(1)] as:

S`n [x ] =

[n/`]∑
k=0

(−n)`k
k!

An,k x
k, n = 0, 1, 2, . . . , (1.4)

where ` is an arbitrary positive integer and the coefficients An,k(n, k ≥ 0) are arbi-
trary constants, real or complex. The polynomial family S`n[x] gives a number of known
polynomials as its special cases on suitably specializing the coefficient An,k.

For our present investigation, we required the following Oberhettinger’s integral for-
mula [13]:∫ ∞

0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ
dx = 2λa−λ

(a
2

)µ Γ(2µ)Γ(λ− µ)

Γ(1 + λ+ µ)
, (1.5)

provided 0 < <(µ) < <(λ) and Lavoie-Trottier integral formula [14]:∫ 1

0

xα−1 (1− x)
2β−1

(
1− x

3

)2α−1 (
1− x

4

)β−1
dx =

(
2

3

)2α
Γ(α)Γ(β)

Γ(α+ β)
, (1.6)

provided <(α) > 0, <(β) > 0.
Here, we establish four generalized integral formulas involving product of Srivastava’s

polynomials and multiindex Bessel function, which are expressed in terms of the general-
ized (Wright) hypergeometric functions. Particular cases and consequences of our main
results involving the Hermite polynomials are also considered.

2. Main Results

For our purpose, we first recall the definition of Fox-Wright function pΨq(z) (see, for
details, [15–18]), for z ∈ C complex, ai, bj ∈ C and αi, βj ∈ <, where (αi, βj 6= 0 ;
i = 1, 2, ... , p; j = 1, 2, ... , q), is defined as below:

pΨq

[
(ai, αi) 1, p

(bj , βj) 1,q
|z
]

=

∞∑
k=0

∏p
i=1 Γ(ai + αik) zk∏q
j=1 Γ(bj + βjk) k !

, (2.1)
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for all values of the argument z under the condition:

q∑
j=1

βj −
p∑
i=1

αi > −1. (2.2)

It is noted that the generalized (Wright) hypergeometric function pΨq in (2.1) whose
asymptotic expansion was investigated by Fox [19] and Wright is an interesting further
generalization of the generalized hypergeometric series as follow:

pΨq

[
(a1, 1) , . . . , (ap, 1);
(b1, 1) , . . . , (bq, 1);

z

]
=

∏p
j=1 Γ (αj)∏q
j=1 Γ (βj)

pFq

[
α1, . . . , αp ;
β1, . . . , βq ;

z

]
, (2.3)

where pFq is the generalized hypergeometric series defined by (see [20], Section 1.5)

pFq

[
α1, . . . , αp ;
β1, . . . , βq ;

z

]
=

∞∑
n=0

(α1)n · · · (αp)nzn

(β1)n · · · (βq)nn !
= pFq(α1, . . . , αp; β1, . . . , βq; z).

(2.4)

Theorem 2.1. Let a ∈ N; λ, µ, αj , βj , γ ∈ C such that n, k ≥ 0, <(βj) > −1 and
0 < <(µ) < <(λ+ k), then there holds the following result for x > 0:∫ ∞

0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ
S`n

(
y

x+ a+
√
x2 + 2ax

)

×J (αj)m,γ

(βj)m,υ

(
y

x+ a+
√
x2 + 2ax

)
dx

= 21−µaµ−λ
Γ (2µ)

Γ(γ)

[n/`]∑
k=0

(−n)` k
k!

An,k (y/a)k

3Ψm+2

 (λ+ k + 1, 1) , (λ− µ+ k, 1) , (γ, υ) ;

(λ+ µ+ k + 1, 1) , (λ+ k, 1) , (βj + 1, αj)
m
1 ;

−y
a

 . (2.5)

Proof. By making use of definition (1.1) and (1.4) in the left-hand-side of integral (2.5)
and then interchanging the order of integration and summation, which is verified by
uniform convergence of the involved series under the given conditions, we get∫ ∞

0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ
S`n

(
y

x+ a+
√
x2 + 2ax

)

×J (αj)m,γ

(βj)m,υ

(
y

x+ a+
√
x2 + 2ax

)
dx,

=

[n/`]∑
k=0

(−n)`k
k!

An,k y
k
∞∑
p=0

(γ)υp∏m
j=1 Γ (αjp+ βj + 1)

(−y)p

p!

×
∫ ∞
0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ−k−p
dx. (2.6)
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Now, on applying the integral formula (1.5) to the integral in (2.6), we obtain the following
expression:

= 21−µaµ−λ
Γ (2µ)

Γ(γ)

[n/`]∑
k=0

(−n)`k
k!

An,k (y/a)k

×
∞∑
p=0

Γ(γ + υp)Γ (λ− µ+ k + p) Γ(λ+ k + 1 + p)∏m
j=1 Γ (αjp+ βj + 1) Γ (λ+ µ+ k + 1 + p) Γ(λ+ k + p)p!

(
−y
a

)p
.

In accordance with the definition of (2.1), we obtain the result (2.5). This completes the
proof of the theorem.

Theorem 2.2. Let a ∈ N; λ, µ, αj , βj , γ ∈ C such that n, k ≥ 0, <(βj) > −1 and
0 < <(µ) < <(λ+ k), then there holds the following result for x > 0:∫ ∞

0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ
S`n

(
x y

x+ a+
√
x2 + 2ax

)
×J (αj)m,γ

(βj)m,υ

(
x y

x+ a+
√
x2 + 2ax

)
dx

=
21−µaµ−λ

Γ(γ)

[n/`]∑
k=0

(−n)`kΓ(λ− µ)

k!
An,k (y/2)k

3Ψm+2

 (2µ+ 2k, 2) , (λ+ k + 1, 1) , (γ, υ) ;

(λ+ k, 1) , (λ+ µ+ 2k + 1, 2), (βj + 1, αj)
m
1 ;

−y
2

 . (2.7)

Proof. By similar manner as in the proof of Theorem 2.1, we can prove the integral
formula (2.7).

Theorem 2.3. Let a ∈ N; λ, µ, αj , βj , γ ∈ C such that n, k ≥ 0, <(βj) > −1, <(σ) > 0
and < (ρ+ k) > 0, then there holds the following result for x > 0 :∫ 1

0

xρ−1 (1− x)
2σ−1

(
1− x

3

)2ρ−1 (
1− x

4

)σ−1
×S`n

(
y
(

1− x

4

)
(1− x)

2
)
J
(αj)m,γ

(βj)m,υ

(
y
(

1− x

4

)
(1− x)

2
)
dx

=

(
2

3

)2ρ
Γ(ρ)

Γ(γ)

[n/`]∑
k=0

(−n)`k
k!

An,k y
k
2Ψm+1

 (σ + k, 1) , (γ, υ) ;

(ρ+ σ + k, 1) , (βj + 1, αj)
m
1 ;
− y

 .
(2.8)

Proof. By making use of definition (1.1) and (1.4) in the left-hand-side of integral (2.8)
and then interchanging the order of integration and summation, which is verified by
uniform convergence of the involved series under the given conditions, we get∫ 1

0

xρ−1 (1− x)
2σ−1

(
1− x

3

)2ρ−1 (
1− x

4

)σ−1
×S`n

(
y
(

1− x

4

)
(1− x)

2
)
J
(αj)m,γ

(βj)m,υ

(
y
(

1− x

4

)
(1− x)

2
)
dx
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=

[n/`]∑
k=0

(−n)`k
k !

An,k y
k
∞∑
p=0

(γ)υ p∏m
j=1 Γ (αjp+ βj + 1)

(−y)p

p!

×
∫ 1

0

xρ−1 (1− x)
2(σ+p+k)−1

(
1− x

3

)2ρ−1 (
1− x

4

)σ+p+k−1
dx. (2.9)

On applying the integral formula (1.6) in (2.9), we obtain the following expression:

=

[n/`]∑
k=0

(−n)`k
k!

An,ky
k
∞∑
p=0

(γ)υp∏m
j=1 Γ (αjp+ βj + 1)

(−y)p

p!

(
2

3

)2ρ
Γ (ρ) Γ (σ + p+ k)

Γ (ρ+ σ + p+ k)
,

=

(
2

3

)2ρ
Γ(ρ)

Γ(γ)

[n/`]∑
k=0

(−n)`k
k!

An,k y
k

×
∞∑
p=0

Γ(γ + υp)Γ (σ + p+ k)∏m
j=1 Γ (αjp+ βj + 1) Γ (ρ+ σ + p+ k)

(−y)p

p!
,

which in accordance with the definition (2.1), yield to the desired result (2.8). This
completes the proof of the theorem.

Theorem 2.4. Let a ∈ N; λ, µ, αj , βj , γ ∈ C such that n, k ≥ 0, <(βj) > −1, <(σ) > 0
and < (ρ+ k) > 0, then for x > 0 the following result holds∫ 1

0

xρ−1 (1− x)
2σ−1

(
1− x

3

)2ρ−1 (
1− x

4

)σ−1
×S`n

(
yx
(

1− x

3

)2)
J
(αj)m,γ

(βj)m,υ

(
yx
(

1− x

3

)2)
dx

=

(
2

3

)2(ρ)
Γ(σ)

Γ(γ)

[n/`]∑
k=0

(−n)`k
k!

An,k

(
4y

9

)k

2Ψm+1

 (ρ+ k, 1) , (γ, υ) ;

(ρ+ σ + k, 1) , (βj + 1, αj)
m
1 ;

−4y

9

 . (2.10)

One can easily prove the integral formula (2.10), following the similar procedure as in
proof of Theorem 2.3, so we omit its detailed proof.

3. Special Cases

In this section, we derive some new integral formulae as special cases of our main
results derived in the preceding section.
If we set n = 0, then we observe that the Srivastava’s polynomial S`n[x] reduce to unity
i.e. S`0[x]→ 1. Hence, we obtain the following results:

Corollary 3.1. Let the condition of Theorem 2.1 be satisfied and n = 0, then Theorem
2.1 reduces in following form∫ ∞

0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ
J
(αj)m,γ

(βj)m,υ

(
y

x+ a+
√
x2 + 2ax

)
dx
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= 21−µaµ−λ
Γ (2µ)

Γ(γ)
3Ψm+2

 (λ+ 1, 1) , (λ− µ, 1) , (γ, υ) ;

(λ+ µ+ 1, 1) , (λ, 1) , (βj + 1, αj)
m
1 ;

−y
a

 . (3.1)

Corollary 3.2. For n = 0, Theorem 2.2 reduces in the following result∫ ∞
0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ
J
(αj)m,γ

(βj)m,υ

(
x y

x+ a+
√
x2 + 2ax

)
dx

=
21−µaµ−λΓ(λ− µ)

Γ(γ)
3Ψm+2

 (2µ+ 2k, 2) , (λ+ 1, 1) , (γ, υ) ;

(λ, 1) , (λ+ µ+ 1, 2), (βj + 1, αj)
m
1 ;

−y
2

 . (3.2)

Corollary 3.3. Let the condition of Theorem 2.3 be satisfied, then for n = 0, Theorem
2.3 reduces as under∫ 1

0

xρ−1 (1− x)
2σ−1

(
1− x

3

)2ρ−1 (
1− x

4

)σ−1
J
(αj)m,γ

(βj)m,υ

(
y
(

1− x

4

)
(1− x)

2
)
dx

=

(
2

3

)2ρ
Γ(ρ)

Γ(γ)
2Ψm+1

 (σ, 1) , (γ, υ) ;

(ρ+ σ, 1) , (βj + 1, αj)
m
1 ;
− y

 . (3.3)

Corollary 3.4. Under the valid condition and n = 0, Theorem 2.4 reduces in the following
form ∫ 1

0

xρ−1 (1− x)
2σ−1

(
1− x

3

)2ρ−1 (
1− x

4

)σ−1
J
(αj)m,γ

(βj)m,υ

(
yx
(

1− x

3

)2)
dx

=

(
2

3

)2(ρ)
Γ(σ)

Γ(γ)
2Ψm+1

 (ρ, 1) , (γ, υ) ;

(ρ+ σ, 1) , (βj + 1, αj)
m
1 ;

−4y

9

 . (3.4)

Further, the polynomial’s family S`n[x] gives a number of known polynomials as its
special cases on suitably specializing the coefficients An,k. To illustrate this, we give one
more example.

If we set ` = 2 and An, k = (−1)k, then the Srivastava’s polynomials

S2
n[x]→ xn/2Hn

(
1

2
√
x

)
, (3.5)

where Hn(.) denotes the well known Hermite polynomials and defined by

Hn (x) =

[n/2]∑
k=0

(−1)kn!

k!(n− 2k)!
(2x)n−2k. (3.6)

Now, on putting ` = 2, An, k = (−1)k and taking relation (3.5) into account, Theorem
2.1 to Theorem 2.4 yields to the following results involving the Hermite polynomial and
the generalized multiindex Bessel function:
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Corollary 3.5. Let x > 0; a ∈ N, λ, γ ∈ C; αj > 0 and βj is an arbitrary parameter be
such that n, k ≥ 0 and 0 < <(µ) < <(λ+ k + 1), then the following formulas holds:∫ ∞

0

xµ−1
(
x+ a+

√
x2 + 2ax

)−λ−n
2

y(n
2 )Hn

(
1

2
√
X

)
J
(αj)m,γ

(βj)m,υ
(X) dx

= 21−µaµ−λ
Γ (2µ)

Γ(γ)

[n/2]∑
k=0

(−n)2 k
k!

(−1)k(y/a)k

3Ψm+2

 (λ+ k + 1, 1) , (λ− µ+ k, 1) , (γ, υ) ;

(λ+ µ+ k + 1, 1) , (λ+ k, 1) , (βj + 1, αj)
m
1 ;

−y
a

 , (3.7)

where X = y

x+a+
√
x2+2ax

.

Corollary 3.6. Let x > 0; a ∈ N, λ, γ ∈ C;αj > 0 and βj is an arbitrary parameter be
such that n, k ≥ 0 and 0 < <(µ) < <(λ+ k + 1), then we have

∫ ∞
0

xµ−1+n/2
(
x+ a+

√
x2 + 2ax

)−λ−n
2

y(n
2 )Hn

(
1

2
√
Y

)
J
(αj)m,γ

(βj)m,υ
(Y ) dx

=
21−µaµ−λ

Γ(γ)

[n/2]∑
k=0

(−n)2kΓ(λ− µ)

k!
(−1)k(y/2)k

3Ψm+2

 (2µ+ 2k, 2) , (λ+ k + 1, 1) , (γ, υ) ;

(λ+ k, 1) , (λ+ µ+ 2k + 1, 2), (βj + 1, αj)
m
1 ;
− y

 , (3.8)

where Y = xy

x+a+
√
x2+2ax

.

Corollary 3.7. Let x > 0; a ∈ N, λ, γ ∈ C;αj > 0 and βj is an arbitrary parameter be
such that n, k ≥ 0, <(σ) > 0 and < (ρ+ k) > 0, then there holds the following result:∫ 1

0

xρ−1 (1− x)
2(σ+n

2 )−1
(

1− x

3

)2ρ−1 (
1− x

4

)σ+n
2−1

y(n
2 )

×Hn

(
1

2
√
Z

)
J
(αj)m,γ

(βj)m,υ
(Z) dx

=

(
2

3

)2ρ
Γ(ρ)

Γ(γ)

[n/m]∑
k=0

(−1)2k
k!

(−1)kyk2Ψm+1

[
(σ + k, 1) , (γ, υ) ;

(ρ+ σ + k, 1) , (βj + 1, αj)
m
1 ;
− y
]
,

(3.9)

where Z = y
(
1− x

4

)
(1− x)

2
.

Corollary 3.8. Let x > 0; a ∈ N, λ, γ ∈ C;αj > 0 and βj is an arbitrary parameter be
such that n, k ≥ 0 and <(σ) > 0 and < (ρ+ k) > 0, then∫ 1

0

xρ+
n
2−1 (1− x)

2σ−1
(

1− x

3

)2(ρ+n
2 )−1 (

1− x

4

)σ−1
y(n

2 )
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×Hn

(
1

2
√
W

)
J
(αj)m,γ

(βj)m,υ
(W ) dx

=

(
2

3

)2(ρ)
Γ(σ)

Γ(γ)

[n/2]∑
k=0

(−n)2k
k!

(−1)k
(

4y

9

)k
2Ψm+1

 (ρ+ k, 1) , (γ, υ) ;

(ρ+ σ + k, 1) , (βj + 1, αj)
m
1 ;

−4y

9

,
(3.10)

where W = yx
(
1− x

3

)2
.

4. Concluding Remark

We conclude this paper by emphasizing that the various type of Bessel functions are
particular cases of generalized multiindex Bessel function defined by (1.1). Further, on
giving suitable special values to the coefficient An,k, the general class of polynomials
give many known classical orthogonal polynomials as its particular cases, which includes
Hermite, Leguerre, Jacobi, the Konhauser polynomials and so on. Therefore, we observe
that our main results can lead to yield numerous other interesting integrals involving
various Bessel functions and orthogonal polynomials by suitable specialization of arbitrary
parameters in the main theorems.
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