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Abstract In this paper we propose an iterative and descent type interior point method to compute

solution of linear complementarity problem LCP(q,A) given that A is real square matrix and q is a real

vector. The linear complementarity problem includes many of the optimization problems and applications.

In this context we consider the class of weak generalized positive subdefinite matrices (WGPSBD) which

is a generalization of the class of generalized positive subdefinite (GPSBD) matrices. Though Lemke’s

algorithm is frequently used to solve small and medium size LCP(q,A), Lemke’s algorithm does not

compute solution of all problems. It is known that Lemke’s algorithm is not a polynomial time bound

algorithm. We show that the proposed algorithm converges to the solution of LCP(q,A) where A belongs

to WGPSBD class. A numerical example is illustrated to show the performance of the proposed algorithm.
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1. Introduction

In this paper we introduce an iterative descent approach of an interior point method to
compute the solution of linear complementarity problem LCP(q, A) where A is real square
matrix and q is a real vector. The class of weak generalized positive subdefinite matrices
(WGPSBD) is a generalization of the class of genralized positive subdefinite (GPSBD)
matrices [1]. We study this algorithm for solving LCP(q,A) under A ∈ WGPSBD class.
Lemke’s algorithm is well known to solve an LCP(q, A). However, Lemke’s algorithm
does not consider all problems. Interior point method is another approach to solve lin-
ear complementarity problem. Fathi [2] showed that if A is positive semidefinite matrix

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright c© 2021 by TJM. All rights reserved.



1376 Thai J. Math. Vol. 19 (2021) /A. K. Das et al.

then LCP(q, A) is solvable in polynomial time. For details of the interior point method,
see [3], [4] and references cited therein. Here we consider an interior point method to
compute solution of LCP(q,A) where A belongs to WGPSBD class. The proposed algo-
rithm is useful to compute solution of a large linear complementarity problem. In recent
years, research in complementarity problems has received attention to develop efficient
algorithms for solving the linear complementarity problem. The linear complementarity
problem has wide application in the field of optimization. The computational method
for solving linear complementarity problem can broadly be divided into two approches,
pivotal method which includes Lemke’s algorithm, Criss-cross method [5] and iterative
method which includes ellipsoid method [6], path-following method [7], projective method
[8], differentiable optimization based descent methods [9].

In Section 2, some results are presented that are used in the next sections. In Section 3,
we propose an algorithm based on interior point method to solve linear complementarity
problem. We establish some new results related with the proposed interior point method.
We prove that the proposed algorithm converges to the solutions of the problem. Finally,
we consider a numerical example to illustrate the performance of the proposed algorithm.

2. Preliminaries

Rn++ donotes the positive orthant in Rn. For any matrix A ∈ Rn×n, AT denotes its

transpose. xi denotes the ith coordinate of the vector x. Also xT denotes the transpose
of x. ‖x‖ denotes the norm of the vector x.

Now we start with the definition of linear complementarity problem. Suppose that a
square matrix A of order n and an n dimensional vector q, we have to find n dimensional
vectors u and v satisfying

v −Au = q, u ≥ 0, v ≥ 0 (2.1)

uT v = 0. (2.2)

(2.1) indicates the feasibility of the problem and (2.1), (2.2) jointly indicate the solution
of the problem.

Martos [10] proposed positive subdefinite (PSBD) matrices to address pseudo-convex
functions. The nonsymmetric PSBD matrices was studied to connect generalized mono-
tonicity and the linear complementarity problem. Later Crouzeix and Komlósi [1] enlarged
PSBD class by introducing the class of GPSBD matrices. This class was studied in the
context of the processability of linear complementarity problem by Lemke’s algorithm.
We recall that A is called PSBD matrix if for all u ∈ Rn, uTAu < 0 implies ATu is
unisigned. A matrix A ∈ Rn×n is called GPSBD [1, 11] if ∃ ei ≥ 0 and fi ≥ 0 with
ei + fi = 1, i = 1, 2, . . . , n such that

∀u ∈ Rn, uTAu < 0⇒
{

either − eiui + fi(A
Tu)i ≥ 0 for all i,

or − eiui + fi(A
Tu)i ≤ 0 for all i.

(2.3)

A matrix A ∈ Rn×n is called WGPSBD [12] if ∃ ei ≥ 0 and fi ≥ 0 with ei + fi =
1, i = 1, 2, . . . , n such that

∀u∈Rn, uTAu< 0⇒
{

either − eiui+fi(ATu)i ≥ 0 for at least (n−1) coordinates,
or − eiui+fi(ATu)i ≤ 0 for at least (n−1) coordinates.
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Example 2.1. Let us consider the matrix,

A =


1 −1 0 0
−1 1 1 1

8 0 1 −1
4 0 −1 1


Then for u = [1, 1,−1,−1]T , uTAu < 0 and

(−E + FAT )u =


11e1 − 12

−e2
1
1

 .

So for e2 = 0, the matrix A satisfies the definition of WGPSBD. Hence A ∈ WGPSBD.

Theorem 2.2 ([13]). Suppose u > 0 such that v = q + Au > 0, κ > n and ψ : Rn++ ×
Rn++ → R such that ψ(u, v) = κ log(uT v)−

∑n
i=1 log (uivi). Then

ψ(u, v) ≥ (κ− n)log(uT v).

Proof. Note that

ψ(u, v) = κ log(uT v)−
∑n
i=1 log (uivi)

≥ κ log(uT v)− log
(
1
n

∑n
i=1(uivi)

)n
= (κ− n)log(uT v) + n log n
≥ (κ− n)log(uT v).

Theorem 2.3 ([13]). Suppose u > 0 such that v = q + Au > 0, κ > n and ψ : Rn++ ×
Rn++ → R such that ψ(u, v) = κ log(uT v)−

∑n
i=1 log (uivi). Then

(∇uψ(u, v))i(∇vψ(u, v))i = uivi

( κ

uT v
− 1

uivi

)2
∀ i.

Proof. Note that (
∇uψ(u, v)

)
i

= κ
uT v

vi − 1
uivi

vi
= vi

[
κ
uT v
− 1

uivi

]
.

Similarly we show (
∇vψ(u, v)

)
i

= ui
[
κ
uT v
− 1

uivi

]
.

Hence (∇uψ(u, v))i(∇vψ(u, v))i = uivi

(
κ
uT v
− 1

uivi

)2
∀ i.

Theorem 2.4 ([13]). Suppose u > 0 such that v = q + Au > 0, κ > n and ψ : Rn++ ×
Rn++ → R such that ψ(u, v) = κ log(uT v)−

∑n
i=1 log (uivi). Then

(∇uψ(u, v))T∇vψ(u, v) > 0.
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3. Main Results

Let u > 0, v = q + Au > 0, κ > n and ψ : Rn++ × Rn++ → R such that ψ(u, v) =

κ log(uT v)−
∑n
i=1 log (uivi) ≥ 0. Todd et al. [14] considered this function in the context

of linear programming. We propose an interior point algorithm in line with Pang [13]
for finding solution of LCP (q, A) given that A is a WGPSBD ∩C0 matrix. We prove
the following results which are required for the proposed algorithm. Let us consider the
following index sets,

I1 = {i : (∇vψ(u, v))i > 0}
I2 = {i : (∇vψ(u, v))i < 0}

Ĭ1 = {i : −ei(∇vψ(u, v))i + fi(A
T (∇vψ(u, v)))i > 0}

Ĭ2 = {i : −ei(∇vψ(u, v))i + fi(A
T (∇vψ(u, v)))i < 0}

Ĭ3 = {i : −ei(∇vψ(u, v))i + fi(A
T (∇vψ(u, v)))i = 0}.

Theorem 3.1. Suppose A ∈WGPSBD ∩C0 with either I1∩(Ĭ1∪Ĭ3) 6= ∅ or I2∩(Ĭ2∪Ĭ3) 6=
∅. Then for u, v > 0, ∇uψ(u, v) +AT∇vψ(u, v) 6= 0.

Proof. Suppose ∇uψ(u, v) +AT∇vψ(u, v) = 0. It follows that

(∇vψ(u, v))i(A
T∇vψ(u, v))i = −(∇uψ(u, v))i(∇vψ(u, v))i < 0 ∀ i.

We consider following three cases (Case 1, Case 2, Case 3).

Case 1: I2 = ∅. Since A ∈ C0, we have

(∇vψ(u, v))TA(∇vψ(u, v)) = (∇vψ(u, v))TAT (∇vψ(u, v)) ≥ 0.

Hence maxi[(∇vψ(u, v))i(A
T (∇vψ(u, v)))i] ≥ 0,∀i.

Case 2: I1 = ∅. Again as A ∈ C0, we have

(−(∇vψ(u, v)))TAT (−(∇vψ(u, v))) = (∇vψ(u, v))TAT (∇vψ(u, v)) ≥ 0.

Hence maxi[(∇vψ(u, v))i(A
T (∇vψ(u, v)))i] ≥ 0,∀i.

Case 3: Here I1 6= ∅ and I2 6= ∅. Suppose

max
(∇vψ(u,v))i 6=∅

[(∇vψ(u, v))i(A
T (∇vψ(u, v)))i] < 0.

Now as I1 ∩ (Ĭ1 ∪ Ĭ3) 6= ∅ or I2 ∩ (Ĭ2 ∪ Ĭ3) 6= ∅, by the definition of WGPSBD

−ei(∇vψ(u, v))i + fi(A
T (∇vψ(u, v)))i ≥ 0, for at least (n− 1) coordinates

or

−ei(∇vψ(u, v))i + fi(A
T (∇vψ(u, v)))i ≤ 0, for at least (n− 1) coordinates.

Suppose −ei(∇vψ(u, v))i+fi(A
T (∇vψ(u, v)))i ≥ 0, for at least (n−1) coordinates. Then

for all i ∈ I1 ∩ (Ĭ1 ∪ Ĭ3),

−ei(∇vψ(u, v))2i + fi(∇vψ(u, v))i(A
T (∇vψ(u, v)))i ≥ 0.
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But as max(∇vψ(u,v))i 6=∅(∇vψ(u, v))i(A
T (∇vψ(u, v)))i < 0, this implies

−ei(∇vψ(u, v))2i + fi(∇vψ(u, v))i(A
T (∇vψ(u, v)))i < 0.

Hence we arrive at a contradiction. So

max
(∇vψ(u,v))i 6=∅

(∇vψ(u, v))i(A
T (∇vψ(u, v)))i ≥ 0.

Again if −ei(∇vψ(u, v))i+fi(A
T (∇vψ(u, v)))i ≤ 0, for at least (n−1) coordinates. Then

for all i ∈ I2 ∩ (Ĭ2 ∪ Ĭ3),

−ei(∇vψ(u, v))2i + fi(∇vψ(u, v))i(A
T (∇vψ(u, v)))i ≥ 0.

But as max(∇vψ(u,v))i 6=∅[(∇vψ(u, v))i(A
T (∇vψ(u, v)))i] < 0, this implies

−ei(∇vψ(u, v))2i + fi(∇vψ(u, v))i(A
T (∇vψ(u, v)))i < 0.

Hence this leads to a contradiction. So

max
(∇vψ(u,v))i 6=∅

(∇vψ(u, v))i(A
T (∇vψ(u, v)))i ≥ 0.

Therefore, [(∇vψ(u, v))i(A
T (∇vψ(u, v)))i] = 0, ∀ i. This contradicts Theorem 2.4. Hence

∇uψ(u, v) +AT∇vψ(u, v) 6= 0,

for u, v > 0.

Theorem 3.2. Suppose u and v are two positive n-vectors and U = diag(u) and V =
diag(v) and B = (U)−2 + AT (V )−2A where A ∈ Rn×n. Then B is symmetric positive
definite matrix.

Proof. Note that

BT = [(U)−2 +AT (V )−2A]T = (U)−2 + [AT (V )−2A]T

= (U)−2 +AT (V )−2A
= (U)−2 +AT (V )−2A = B.

Hence B is symmetric. Again

xTAT (V )−2Ax = (Ax)T (V )−2Ax
= (y)T (V )−2y.

Since (y)T (V )−2y ≥ 0, ∀ y ∈ Rn, AT (V )−2A is positive semidefinite. Hence B is positive
definite.

We describe an interior point algorithm for solving LCP(q, A) where A ∈ WGPSBD

∩C0 with either I1 ∩ (Ĭ1 ∪ Ĭ3) 6= ∅ or I2 ∩ (Ĭ2 ∪ Ĭ3) 6= ∅.

Algorithm

Step 1: Let β, γ ∈ (0, 1) and σ ∈ (0, 12 ) following armizo type line search step and u0

be a stictly feasible point of LCP(q, A) and v0 = q +Au0 > 0.

∇uψk = ∇uψ(uk, vk), ∇vψk = ∇vψ(uk, vk)

and

Uk = diag(uk), V k = diag(vk).
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Step 2: Now to find the search direction, consider the following problem

minimize (∇uψk)T du + (∇vψk)T dv

subject to dv = Adu, ‖(Uk)−1du‖2 + ‖(V k)−1dv‖2 ≤ β2.

We apply scaled gradient reduction method to obtain search direction (du, dv).

Step 3: Find mk to be the smallest m ≥ 0 integer such that

ψ(uk + γmdku, v
k + γmdkv)− ψ(uk, vk) ≤ σγm[(∇uψk)T dku + (∇vψk)T dkv ].

Step 4: Set

(uk+1, vk+1) = (uk, vk) + γmk(dku, d
k
v).

Step 5: If (uk+1, vk+1) satisfies the termination criterion i.e. (uk+1)T vk+1 ≤ ε, where
ε > 0 is a very small quantity, stop else k = k + 1.

Now to show (dku, d
k
v) as descent direction for the merit function, we prove the following

lemma.

Lemma 3.3. Suppose A ∈WGPSBD ∩C0 with either I1∩(Ĭ1∪Ĭ3) 6= ∅ or I2∩(Ĭ2∪Ĭ3) 6= ∅,
u > 0, v = q +Au > 0, κ > n and ψ : Rn++ ×Rn++ → R such that

ψ(u, v) = κ log(uT v)−
n∑
i=1

log (uivi).

If there is a pair of vectors (dku, d
k
v) such that (∇uψk)T dku+(∇vψk)T dkv < 0, then there ex-

ists γ ∈ (0, 1) such that ψ(uk+γmdku, v
k+γmdkv)−ψ(uk, vk) < 0 where m is a nonnegative

integer and (dku, d
k
v) is said to be the descent direction.

Proof. We have dku = − (Ak)−1rk

τk
, dkv = Adku from the algorithm. According to Theorem

3.1,

rk = ∇uψk +AT∇vψk 6= 0

andAk = (Uk)−2+AT (V k)−2A is positive definite by Theorem 3.2. So τk =

√
(rk)T (Ak)−1rk

β

is positive. Now we show that (∇uψk)T dku + (∇vψk)T dkv < 0. We derive

(∇uψk)T dku + (∇vψk)T dkv =
[
∇uψk +AT∇vψk

]T
dku

= − 1
τk

(
√

(rk)t(Ak)−1rk)2

= −τkβ2 < 0.

Now we consider

ψ(uk + γmdku, v
k + γmdkv)− ψ(uk, vk) ≤ σγm[(∇uψk)T dku + (∇vψk)T dkv ].

Since 0 < β, γ, σ < 1, we say

ψ(uk + γmdku, v
k + γmdkv)− ψ(uk, vk) < 0.

We prove the following theorem to show that the proposed algorithm converges to the
solution under some defined condition.

Theorem 3.4. If A ∈ WGPSBD ∩C0 with either I1 ∩ (Ĭ1 ∪ Ĭ3) 6= ∅ or I2 ∩ (Ĭ2 ∪ Ĭ3) 6= ∅
and LCP(q, A) has a strictly feasible solution, then every accumulation point of {uk} is
the solution of LCP(q, A) i.e. algorithm converges to the solution.
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Proof. Let us consider the subsequences {uk : k ∈ ω}. Suppose ũ is the limit of the
subsequence and ṽ = q+Aũ. Again we know ψ(ũ, ṽ) <∞. So either ũT ṽ = 0 or (ũ, ṽ) > 0.
For ũT ṽ = 0, algorithm converges to the solution. So let us consider that (ũ, ṽ) > 0. Also

suppose r̃ and Ã are the limits of the subsequences {rk : k ∈ ω} and {Ak : k ∈ ω}

respectively. Consider τk converges to τ̃ =

√
r̃T Ã−1r̃

β
(> 0), where Ã remains positive

definite. (d̃u, d̃v) be the limits of the sequence of direction (dku, d
k
v). So from the algorithm

we get

d̃u = − Ã
−1r̃

τ̃
, d̃v = Ad̃u.

Now as {ψ(uk+1, vk+1)−ψ(uk, vk)} converges to zero and since lim
k→∞

mk=∞, {(uk+1,vk+1) :

k ∈ ω} and {(uk + γmk−1dku, v
k + γmk−1dkv) : k ∈ ω} converges to (ũ, ṽ). As mk is the

smallest non-negative integers, we have,

ψ(uk + γmk−1dku, v
k + γmk−1dkv)− ψ(uk, vk)

γmk−1
> −σβ2τk.

Again on the other hand from the algorithm,

ψ(uk+1, vk+1)− ψ(uk, vk)

γmk
≤ −σβ2τk.

Now taking limit k →∞, From the last two inequalities, we can write,

∇uψ(ũ, ṽ)T d̃u +∇vψ(ũ, ṽ)T d̃v = −στ̃β2.

Again from Lemma 3.3 we know,

(∇uψk)T dku + (∇vψk)T dkv = −τkβ2.

Hence by taking limit k →∞, we get

∇uψ(ũ, ṽ)T d̃u +∇vψ(ũ, ṽ)T d̃v = −τ̃β2.

This is a contradiction. So our proposed algorithm converges to the solution.

4. Numerical Illustration

A numerical example is considered to demonstrate the effectiveness and efficiency of
the proposed algorithm. We consider the example of LCP(q, A), where

A =


1 −1 0 0
−1 1 1 1

8 0 1 −1
4 0 −1 1

 and q =


−1
−1
−10

5

 .

It is easy to show that A is not a PSD matrix. However, A satisfies the definitions
of WGPSBD ∩ C0-matrix as shown in Example 2.1. We apply proposed algorithm to
find solution of the given problem. According to Theorem 3.4 algorithm converges to
solution with u0, v0 > 0. To start with we initialize β = 0.5, γ = 0.5, σ = 0.2, κ = 5 and

ε = 0.00001. We set u0 =


4
2
2
2

 and obtain v0 =


1
1

22
21

 . We define
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diff[ψ(uk, vk)] = ψ(uk + γmdku, v
k + γmdkv)− ψ(uk, vk).

Iteration (k) uk vk ψ(uk, vk) dku dkv diff [ψ(uk, vk)]

1


3.78

1.97
1.92

2.03




0.819

1.128
20.166

20.249

 13.0076


−0.4307

−0.0678
−0.1645

0.0566




−0.363

0.255
−3.667

−1.502

 -0.0881

2


3.49

1.79
2.01

1.93




0.707

1.237
18.035

18.898

 12.9195


−0.58

−0.357
−0.188

−0.192




−0.223

0.22
−4.264

−2.702

 -0.0565

3


3.18
1.5

2.09
1.85




0.678
1.256

15.662
17.468

 12.8631


−0.634
−0.575

0.152
−0.173




−0.0582
0.0372

−4.7444
−2.8592

 -0.0549

4


2.91
1.28

2.19

1.71




0.626
1.265

13.752

16.155

 12.8081


−0.537
−0.434

0.197

−0.282




−0.1037
0.0186

−3.82

−2.627

 -0.0523

...
...

...
...

...
...

...

21


1.485

0.278

2.485
0.619




0.208

0.896

3.749
9.076

 12.3258


−0.0697

−0.0465

0.3637
−0.3224




−0.0232

0.0645

0.1283
−0.965

 -0.0153

22


1.45

0.258

2.304
0.694




0.192

0.807

3.208
9.189

 12.3105


−0.0713

−0.0394

−0.3607
0.151




−0.0319

−0.1777

−1.0821
0.2266

 -0.0278

23


1.419

0.238

2.471
0.549




0.181

0.839

3.275
8.755

 12.2827


−0.0611

−0.0401

0.3336
−0.2895




−0.021

0.0652

0.134
−0.8676

 -0.0142

24


1.39

0.222

2.301
0.616




0.168

0.75

2.802
8.873

 12.2685


−0.0593

−0.0321

−0.3391
0.1339




−0.0272

−0.178

−0.9472
0.2359

 -0.0269

...
...

...
...

...
...

...

83


1.0177

0.0097
2.0521

0.0269




0.0080

0.0710
0.1670

7.0457

 11.7529


−0.0023

−0.0012
−0.0295

0.0031




−0.0011

−0.0254
−0.0510

−0.0234

 -0.0010

84


1.0173

0.0095
2.0539

0.0254




0.0078

0.0715
0.1671

7.0408

 11.7518


−0.0032

−0.0018
0.0145

−0.0115




−0.0014

0.0044
−0.0006

−0.0387

 -0.0009

85


1.0171
0.0093

2.0503

0.0258




0.0077
0.0685

0.1609

7.0437

 11.7508


−0.0022
−0.0011

−0.0286

−0.0033




−0.0010
−0.0243

−0.0491

0.0233

 -0.0009

86


1.0166
0.0091

2.0521

0.0245




0.0075
0.0691

0.1612

7.0391

 11.7499


−0.0029
−0.0016

0.0144

−0.0111




−0.0013
0.0046

0.0018

−0.0374

 -0.0009

Table 1. Summary of computation for the proposed algorithm
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Table 1 summarizes the computations for the first 4 iterations, 21st-24th iterations,
83rd-86th iterations. It is clear that the sequence {uk} and {vk} produced by the proposed
algorithm converges to the solution of the given LCP(q, A) i.e.

u∗ =


1
0
2
0

 and v∗ =


0
0
0
7

 ,

and it is a degenerate solution.
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