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Characterizations of Non-Singular Cycles,
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Abstract: A simple graph is said to be non-singular if its adjacency matrix is non-singular.
In this paper, we find the characterization of non-singular cycles and trees. Main Theorems:
1. A cycle Cn of n points is non-singular iff n is not divided by 4.
2. A path Pn is non-singular if and only if n is even.
3. A tree T is non-singular iff T has an even number of points and contains a sesquivalent
spanning subgraph.
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1 Basic Knowledge.

Let G be a simple graph whose vertex-set V (G) is the set {v1, v2, ..., vn} and let E(G)
denote its edge-set. The adjacency matrix A(G) of G is the matrix [aij ]n×n where

aij =





1 if vi and vj are adjacent;

0 otherwise.

We shall usually refer to the eigenvalues of A(G) as the eigenvalues of G and consider
G as non-singular if its adjacency matrix is non-singular, see [1].

Example 1.1 Each complete graph Kn with n ≥ 2 is non-singular. Indeed,

aij =





1 if i 6= j

0 i = j,

and hence det(A(Kn)) = (−1)n−1(n− 1).

In contrast, each complete bipartite graph Kr,s with r ≥ 2 or s ≥ 2 is singular.

Our aim is to characterize non-singular cycles and non-singular trees. To perform this
work we will refer to standard results and methods used in matrix theory, see for instance [3].
First of all, let us mention
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Theorem 1.2 [3] Let λ0, . . . , λn−1 be eigenvalues of an n × n matrix A. Then

det(A) =
n−1∏
r=0

λr.

Thus, the knowledge of eigenvalues is sufficient to calculate the determinant of the matrix.
It suffices to know if 0 is an eigenvalue of the adjacency matrix to decide if a graph is singular
or is not. It is relatively easy to compute eigenvalues of the so-called circulant graphs, see [2]:

Definition 1.3 An n×n matrix A is said to be circulant if aij = a1k provided that k = j−i+1
(mod n). A circulant graph is a graph G whose vertices can be ordered in such a way that the
adjacency matrix A(G) is a circulant matrix.

Theorem 1.4 [1] Suppose [0, a2, ..., an] is the first row of the adjacency matrix of a circulant
graph G. Then the eigenvalues of G are

λr =
n∑

j=2

ajω
(j−1)r, r = 0, 1, ..., n− 1

where ω = e(2πi/n).

To calculate the determinant of the adjacency matrix we can also use the following result
due to [4].

Definition 1.5 A sesquivalent graph is a simple graph, each component of which is regular
and has the degree 1 or 2; in the other words, the components are single edges or cycles.

Definition 1.6 If Γ is a subgraph of a graph G such that V (Γ) = V (G), then Γ is said to be
a spanning subgraph of the graph G.

Theorem 1.7 [4] Let A(G) be the adjacency matrix of a graph G. Then

det(A(G)) =
∑

Γ

(−1)r(Γ)(2)s(Γ)

where the summation is over all sesquivalent spanning subgraphs Γ of G with c(Γ) = the
number of components of the graph Γ , r(Γ) = |V (Γ)|−c(Γ) and s(Γ) = |E(Γ)|−|V (Γ)|+c(Γ).

2 Characterization of Non-singular Cycles.

It is easy to notice that cycles are circulant graphs. Therefore we can apply Theorem to
calculate their eigenvalues.

Lemma 2.1 Let n ≥ 3. If A(Cn) is the adjacency matrix of a cycle Cn of n vertices, then

its eigenvalues are the numbers λr = 2cos(
2πr

n
) where r = 0, 1, ..., n− 1.
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Proof. Let Cn be a cycle of n vertices. The adjacency matrix A(Cn) is a circulant matrix
with the first row [0, 1, 0, ..., 1]. Thus, by Theorem 1.4, we have λr = ωr + ωr(n−1) for each
r ∈ {0, 1, ..., n− 1}. But

ωr = (cos
2π

n
+ isin

2π

n
)r

= cos
2πr

n
+ isin

2πr

n

and ωr(n−1) = (cos
2π

n
+ isin

2π

n
)r(n−1)

= (cos
2πr(n− 1)

n
+ isin

2πr(n− 1)
n

)

= (cos(2πr − 2πr

n
) + isin(2πr − 2πr

n
)

= cos
2πr

n
− isin

2πr

n
.

Then λr = 2cos
2πr

n
for each r ∈ {0, 1, ..., n− 1}. ¤

Theorem 2.2 A cycle Cn of n vertices is non-singular if and only if n is not divided by 4.

Proof. Let Cn be a cycle of n vertices. Assume that det(A(Cn)) = 0. By Lemma 2.1 and

Theorem 1.2, we have λr = 0 for some r ∈ {0, 1, ..., n − 1}. Then
2πr

n
=

π

2
m for some odd

number m. Therefore r =
mn

4
, i.e. 4 divides n. Conversely, assume that n = 4k for some

k ∈ Z+. Then choose r = k. Thus, λr = 2cos
2πk

4k
= 2cos

π

2
= 0 and therefore det(A(Cn)) = 0.

¤

Not only we can characterize non-singular cycles, but using Theorem 1.7 we can also
compute the determinant of the adjacency matrix of all cycles.

Theorem 2.3 Let n ≥ 3. Then

det(A(Cn)) =





0 if n = 4k for some k ∈ Z+,
−4 if n = 4k + 2 for some k ∈ Z+,
2 otherwise.

Proof. Case I : If n = 4k, then we use Theorem 2.2

Case II: Let n = 4k + 2 for some k ∈ Z+. Then there are exactly three sesquivalent
spanning subgraphs of Cn

(i)

q
v2

qv1

q
v4

qv3

· · ·
q
v4k+2

qv4k+1

(ii)

q
v4k+2

qv1

q
v4k

qv4k+1

· · ·
q
v2

qv3
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(iii) The graph Cn itself which is the only subgraph containing a cycle.

For the graphs (i) and (ii), we have c = 2k + 1, r = 2k + 1 and s = 0. For the graph (iii),
we have c = 1, r = 4k + 1 and s = 1. Therefore, we have det(A(C4k+2))= 2[(−1)2k+120] +
(−1)4k+121 = −4.

Case III: If n = 4k + 1 or 4k + 3, then Cn is the only sesquivalent spanning subgraph
of Cn. Thus, c = 1, r = 4k (or = 4k + 2), and s = 1. Therefore, we have det(C4k+1) =
(−1)4k21 = 2 = det(C4k+3).

¤

As an immediate consequence of the above theorems and Theorem 1.2 we obtain the
following formula which is difficult to prove by means of purely analytic methods:

Corollary 2.4 Let n ≥ 1. Then

2n ·
n−1∏
r=0

cos(
2πr

n
) =





0 if n = 4k for some k ∈ Z+,
−4 if n = 4k + 2 for some k ∈ Z+,
2 otherwise.

3 Characterization of Non-singular Trees.

Let T be a tree. As usual, we denote by V (T ) the set of its vertices and by E(T ) the set
of its edges. Since we will apply Theorem 1.7 to determine det(A(T )), we must identify all
sesquivalent spanning subgraphs of the tree T . It turns out that it is not so common that a
tree contains such a subgraph.

Lemma 3.1 If a tree T has a sesquivalent spanning subgraph, then |V (T )| must be even, that
is the tree T contains an even number of vertices.

Proof. No cycle can be a subgraph of a tree. Thus, if P is a sesquivalent spanning subgraph
of a tree T , then P consists of a number of separate (single) edges. Each edge contains two
(different) vertices, hence P must contain an even number of vertices. If, additionally, P is a
spanning subgraph of T , then V (T ) = V (P ) and hence |V (T )| is even. ¤

Suppose that x ∈ V (T ) and N(x) = {x1, x2, ..., xnx} is the set of all neighbors of x in T .
Let us define, for each xi ∈ N(x), a subset Txi of the set V (T ):

Txi = {y : y = xi or there is a path from y to xi which does not pass x }.

Now, one can prove

Lemma 3.2 Let P be a sesquivalent spanning subgraph of the tree T . Then {x, xi} ∈ E(P )
if and only if |Txi | is odd.

Proof: It is easy to notice that Txi ’s are disjoint subsets of V (T ). Since they are connected
subsets of V (T ), they may also be regarded as subtrees of the tree T . Let Pi denote the
subgraph of P induced on the set Txi . Now, it is obvious that Pi is a sesquivalent spanning
subgraph of the tree Txi if {x, xi} 6∈ E(P ). If {x, xi} ∈ E(P ), then the subgraph of P induced
on the set Txi ∪ {x} is a sesquivalent spanning subgraph of the appropriate subgraph of T .
Thus, by the above lemma, we conclude that {x, xi} ∈ E(P ) if and only if |Txi | is odd. ¤
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If P is a sesquivalent spanning subgraph of the tree T , then there is only one xi ∈ N(x)
such that {x, xi} ∈ E(P ). Thus, by the above lemma, if a tree T has a sesquivalent spanning
subgraph, then for every x ∈ V (T ) there is exactly one xi ∈ N(x) such that |Txi

| is odd.
Let us prove that this is also a sufficient condition for a tree to have a sesquivalent spanning
subgraph.

Theorem 3.3 A tree T has a sesquivalent spanning subgraph if and only if for every x ∈ V (T )
there is exactly one xi ∈ N(x) such that |Txi | is odd.

Proof: One implication follows from the above lemma. To prove the reverse implication let
us assume that T is a tree such that for every x ∈ V (T ) there is exactly one element in N(x),
denote this element by f(x), such that |Tf(x)| is odd. We define a spanning subgraph P of T
taking

E(P ) = {{x, f(x)} : x ∈ V (T )}.
To prove that P is a sesquivalent subgraph of T , it suffices to show that f(f(x)) = x for each
x ∈ V (T ).

Let x ∈ V (T ) and let N(x) = {x1, x2, ..., xnx}. We know that f(x) ∈ N(x). It also means
that x ∈ N(f(x)). Thus, it suffices to prove that the set

(?) {y : y = x or there is a path from y to x which does not pass f(x) }

has an odd number of elements. But any path that joins y with x (and does not pass f(x))
must contain an element of N(x) (different from f(x)). Thus, the set (?) equals to

(??)
⋃
{Txi : xi 6= f(x)} ∪ {x}.

The sets Txi are disjoint and each of them contains an even number of elements if xi 6= f(x)
(we recall that among the sets Txi only Tf(x) contains an odd number of elements). Moreover,
the element x belongs to none of these sets. Therefore, we conclude that the set (??) ( and
hence (?) as well) contains an even number of elements which was to be proved. ¤

Since the right hand side of the above equivalence depends only on the tree T , and it is
either fulfilled or is not for any given tree, a sesquivalent spanning subgraph (if it exists) is
defined uniquely by Lemma 3.2. Thus, we get

Corollary 3.4 Every tree has at most one sesquivalent spanning subgraph.

Now, we can apply Theorem 1.7 to compute the determinant of the adjacency matrx of a
tree. We get

Theorem 3.5 Let T be a tree of n vertices. Then

det(A(T )) =





1 if T has a sesquivalent spanning subgraph
and n = 4k for some k ∈ Z+,

−1 if T has a sesquivalent spanning subgraph
and n = 4k+2 for some k ∈ Z+∪{ 0 },

0 otherwise.



336 Thai J. Math. 6(2008)/ S. Sookyang et al.

Proof. Suppose that T has a sesquivalent spanning subgraph P and n = 4k. Then the

number of components, c of P and the number of edges both are
n

2
=

4k

2
= 2k. So, r(P ) =

n−c = 4k−2k = 2k and s(P ) = 2k−4k+2k = 0. Thus, we get det(A(T )) = (−1)2k(2)0 = 1.
Similarly, if T has a sesquivalent spanning subgraph P and n = 4k+2, then c = 2k+1

and hence r(P ) = 2k + 1 and s(P ) = 0. Thus, we get det(A(T )) = (−1)2k+1(2)0 = −1. ¤

Path is a special case of tree, and a path of n vertices has a sesquivalent spanning sub-
graph if and only if n is even. Therefore,

Corollary 3.6 Let Pn be a path of n vertices. Then

det(A(Pn)) =





(−1)k if n = 2k for some k ∈ Z+,

0 otherwise.

Non-singular trees and paths can be now characterized using the following equivalence
(see Theorem 3.3, 3.5 and Corollary 3.6 above):

Corollary 3.7 A tree T is non-singular if and only if T has a sesquivalent spanning subgraph.

Corollary 3.8 A path Pn is non-singular if and only if n is even.
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