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1. INTRODUCTION

Let A be the class of all analytic functions in the unit disk A = {z € C : |2| < 1},
satisfying the conditions f(0) = 0 and f’(0) = 1, then each function f € A has the form

flz)=z+ Zanz" (z € A). (1.1)
n=2

We shall denote by S the class of functions in A that are also univalent in A.

We say that an analytic function f is subordinate to an analytic function g, written
f =< g, provided there is an analytic function w defined on A with w(0) = 0 and |w(z)| < 1
satisfying f(z) = g(w(z)).

A number of vital and well explored subclasses of class S are the class S*(«) of starlike
functions of order « in A and the class K(«) of convex functions of order a in A. By
definition, we have

s@={rean (LY

f(2)

>>a;zeA,O§a<1}
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21(2)
f'(2)
respectively. In particular, we set $*(0) = §* and K(0) = K.

The arithmetic means of some functions and expressions is very frequently used in
geometric function theory. Making use of the arithmetic means Mocanu [1] introduced
the class of A—convex (0 < A < 1) functions as follows:

My = {feA:éR((l—)\)Z}f;S) +/\(1+ ZJ{(S)» >0; zeA},

which, in some case, proclaims the class of starlike and in the other, convex functions.
In general, the class of A—convex functions determines the arithmetic bridge between
starlikeness and convexity.

Using the geometric means, Lewandowski et al. [2] defined the class of p—starlike
functions (0 < pu < 1) as follows:

o {rean((F) (5) ) roves)

We note that the class of p—starlike functions also, constitute the geometric bridge
between starlikeness and convexity. The significance of Chebyshev polynomial in numer-
ical analysis is increased in both theoretical and practical points of view. Out of four
kinds of Chebyshev polynomials, many researchers dealing with orthogonal polynomials
of Chebyshev. For a brief history of Chebyshev polynomials of first kind 7,,(¢), the second

>>a;z€A,O§a<1},

kind U, (¢) and their applications one can refer [3-5]. The Chebyshev polynomials of the
first and second kinds are well known and they are defined by
sin(n + 1)0

T,(t) =cosnf and U,(t) = (-1<t<l)

sin 0

where n denotes the polynomial degree and ¢t = cos 6.

Definition 1.1. A function f € A given by (1.1) is said to be in the class M (\, 4§, u, 1),
A>0,0<u<1,§>0andt e (1/2,1], if the following subordination holds for all z € A

R ) Y () e e

(1.2)

We note that if ¢ = cos a, where o € (—7/3,7/3), then

H(z,t) = ! :1+sz” (z € A).
n=1

1—2cosaz + 22 sin «
Thus
H(z,t) =1+ 2cosaz+ (3cos’a —sin® )z +... (z€A).
From [7], we can write

H(z,t) =1+ U )z +Us(t)22 +... (€A, te(—1,1))
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where
sin(n arccost)
V-t
are the Chebyshev polynomials of the second kind and we have
Un(t) = 2tUp—1(t) — Upn—a(t),

U,_1= (n S N)

and

Ui(t) =2t, Us(t) =4t> — 1, Us(t) =8> —4t, Uy(t) = 16t* — 12t +1,....
(1.3)

The generating function of the first kind of Chebyshev polnomial T,,(t), ¢t € [-1,1], is
given by

ad 1—tz
T,(t)" = —— = A).
T;) ()2 1— 2tz + 22 (€4)

The first kind of Chebyshev polnomial 7},(¢) and second kind of Chebyshev polnomial
U, (t) are connected by:
dT,,(t)
dt
Remark 1.2. It is interesting to note that for restricted values of the parameters involved
in the class gives the following special subclasses.
(i) A function f(z) € A is said to be in the class M(0,1, u, t) := N(t), t € (1/2,1], if the
following subordination holds:
zf'(z) 1
H(zt) = ————
f(2) < H(z1) 1— 2tz + 22
(ii) A function f(z) € A is said to be in the class M(1,6,0,t) = H(t), t € (1/2,1], if the
following subordination holds:
zf"(2) 1
<H(z,t)= ——
1'(2) (1) 1— 2tz + 22
This class was introduced and studied by Dziok et al. [4].
(iii) A function f(2) € A is said to be in the class M(\,1,0,t) = K£(\,t), 0 < A <1 and
t € (1/2,1], if the following subordination holds:

2f'(z) 2f"(2)

) o) <
This class was introduced and studied by Altinkaya and Yalgn [6].

(iv) A function f(z) € A is said to be in the class M(1,6, u,t) == L(p,t), 0 < p <1 and
t € (1/2,1], if the following subordination holds:

() () " men=imimm cen

In the present paper, motivated by the earlier work of Dziok et al. [4] and Altinkaya
and Yalgm [6], we use the Chebyshev polynomials expansions to provide estimates for
the initial coefficients of univalent functions in M(\,d, u,t). We also solve Fekete-Szegd
problem for functions in this class.

= nUn_1(t); Tn(t) = Un(t) — tUp_1(t); 2T0(t) = Un(t) — Un_s(t).

(z € A).

1+

(z € A).

1
1— 2tz + 22

(1-)\) +>\<1+ (z € A).
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2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS M(\, 4, 1, 1)
Throughout this paper, we assume that
A>0,0<pu<1,6>0andte(1/2,1].
Theorem 2.1. Let the function f € A given by (1.1) be in the class M(\, 0, u,t). Then

2t
as| < , 2.1
2l < =N A — @1)
t 42 -1 (1=XN6(3—=6) — A(p? —
as] < maX{L 4 (L= =0) =X + 50 8)4}
(1= 28+ A( — 24)] 2t (1= X5 + A2 — o)
(2.2)
and
.t
[A=No+ (3—2p)]
» N S [7717772]
as — 7711§| S 5 )
¢ 4421 4 U=NOB=0) N +5u=8)y g, (A=N)6+AB—2p) 4
[A—X)a+AB—2m)] | 2t [EESVLESYCEME (A (EENEESYCRME
0 & [m1,m2]
(2.3)
where
22 {2[(1=N)FHAER— )2+ (1= N)6(3—8) —A(n+5u—8) }—(1426) [(1—-X)6+A(2—p)]? 9.4
mn= SEZ[(1—N) 3+ A(3—21)] (2.4)
and
22 {2[(1=N)HAER— )2+ (1= N)6(3—8) —A(n+5u—8) }—(1-26)[(1=X)d+A(2—p)]? 9
2 = BE[I- N T A (B2 . (2.5)

All of the inequalities are sharp.
Proof. Let the function f(z) given by (1.1) be in the class M(A, 0, u, t). From (1.2), we

have
() (£ (5

= 1+ U ()w(z) + Ua(t)w?(2) + - (2.6)

for some analytic function

w(z) = c1z2 +ca2® + 32 4 -+ (z € A), (2.7)
such that w(0) = 0 and |w(z)| < 1. It is well-known that if |w(z)| < 1, z € A, then

le;l <1 forall jeN={1,2,...} (2.8)
and

|co — pei| < max{1,[u|}, forall pueC. (2.9)
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From (2.6) and (2.7), we have

(A () (58

= 1+ U1(t)612’ + [Ul(t)CQ + Ug(t)Cﬂ 22 4+ (210)
Equating the coefficients in (2.10), we get
(1= A0+ A2 — wlas = Ur(t)ex (2.11)

and
2[(1—)\)6—#)\(3—2#)](13—[(1—)\)5(3—5)—)\(u2+5u—8)]%% = Ul(t)CQ‘f'UQ(t)C%. (2.12)

Then, by using (1.3), (2.8) and (2.11), we get
2t
(1 =X)6+ A2 -l
By using (2.11) and (2.12) for some 1 € R, we get
Ui(t)
—nall < 1
s = na3| < 5 (1= N0+ A3 —2p)|

las] <

X }CQ_TC%|,

_ Us(t)  (1=X)8(3—0) — A2 +5u—8)
= Ui(t) 2[(1 = \)5 + A2 _#)]2 Ui(t) +2n

From (2.9), it follows that

Ui (t)
(1= N3+ A3 - 270)]

X max {1 Us () + [(1—=XN)8(3—3) — A(p? +5u —8)]
UL () 2[(1— N0+ A2 — p)]?

_Qul—M6+Aw—2mhh@ﬂ}

‘a3 —naj| <

Ui(t)

=N ae=wp
Next, using (1.3) in the above equation, we have
t
[(1=A)6 + A3 —2p)|
442 -1 (1 —=N)6(3—9) — AM(p? +5u—8)
1 t
me{’ T (S VRS PRk
(T =X+ A3 —2u)

tlp-
(T 05+ A2~ )] }
Since t > 0, we get

412 — 1 N (1=X)5(3 —68) — AM(u? +5p —8) . (1—=X)0+ A3 —2p) | <1

2t (1= A)0+ A2 —p)]? Ma=Ns e x@—pP| ="

if and only if 7y < n < ne where n; and 7, are given in (2.4) and (2.5), respectively. So
we obtain the inequality (2.3). If we take n = 0, then we obtain the inequality (2.2).

|ag —na3| <

—4n
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The equality (2.6) with w (z) = z generate the function f € M (X, 8, 1, t) such that

. 2t )
1@ = 2+ a0 e—n”
t 42 -1 (1—-N68(3—08) — A(p? - :
n 4 A=NIB=0) — M +5u—8), I
(1—Nd+AB—2u) | 2t (T =8+ A2 — p)2
which shows that the inequalities (2.1), and (2.2) for 4t;t’1 + (17)[2(1;(_3/\7)‘;:\’\((2“_2515578)25‘ >

1 are sharp. Also, in this case
) t
=1 = T s aE 2]
42 -1 (1 =XN)8(3—08) — A(p? +5p—8) 4 (I—=X)0+ A3 —2p)
21 (=5 a@-wP I Ns AR )P
which shows the sharpness of (2.3) for n ¢ [n1, 2] . On the other hand, the equality (2.6)
with w (z) = 22 generate the function f € M (), §, u,t) such that
< t
1@ =2+ s ae =

9

3
z +...,

which shows the sharpness of (2.2) for 4t;t_1 + (lf)fzf(_s/\f)gt;zgf:ﬁffs)t <1, and (2.3)

for n € [m1,n2] . This completes the proof of Theorem 2.1. n

3. COROLLARIES AND CONSEQUENCES

Taking different restricted values to parameter which involved in Theorem 2.1, we get
the following corollaries.

Corollary 3.1. Let f € N(t). Then

las| < 2t
lag| < 4t* — 1,
- 2
t ;1€ [m,m]
|as —na3| < :
A1 =n)t* =21 | n¢m,n
where
82 — 2t — 1 8t2 + 2t —1
m= gy and =g
All of the inequalities are sharp.
Corollary 3.2. [1] Let f € H(t). Then
las| <,
asl < 3P,
5 ;€ [,
|as —na3| < :
e -5, nd el
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where
8t2 —2t—1 p 8t2 + 2t —1
= — an =
n 612 72 612

All of the inequalities are sharp.

Corollary 3.3. Let f € K(\,t). Then

las] < 2t
a e
2 = 1 +)\7
t 1oy o (14+X)24+(14+X)VBEAZ+22249
1+2X1 2 42 +50+2)
|CL3| S )
2(A24+5742)t2 1 (1) 2+ (1+0)VBAZF22049 <t<1
AFNZ([A+2N) — 2(1+2n) 4(A\24+5)+2) =t =
1+t2/\ ;M E [N1,me]
2
— <
a3 —naz| < 2(A2+57+2) —4(1+20)7 o 1 ’
[EESNEIGESSY) = sagany| o M ¢ [m,m2]
where
AN 45BN+ 2)12 — (14 A2 (1 +2t)
= 8(1 + 2022
and

AN 4B+ 2)12 — (14 M1 —2t)
= 8(1+ 2012 '
All of the inequalities are sharp.

Remark 3.4. We note that Corollary 3.3 is an improvement of the results obtained by
Altinkaya and Yalgin [6].

Corollary 3.5. Let f € L(u,t). Then

@l <
as S 5z /1,’
as| < 2 (u? — 13u+16) 2 — (2 — p)?
o 22— 123 —2m)
= . 1€ [m,ne)
2
— <
|a3 7]a2| = (12— 134+16)—4(3—2p1)7) o ) ,
(2—p)*(3—2p) t* = 2G—2w| " & [11,m2]
where
C 2 —13u +16)t% — (2 — p)*(1 + 2t)
"= 8(3 — 2p)2
and

O 2(p? — 13+ 16)t% — (2 — p)?(1 — 2t)
= 8(3 — 2p)t
All of the inequalities are sharp.
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