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1. Introduction

The theory of fuzzy integral and differential equations is important in studying and
solving a large ratio of the problems in many topics in applied mathematics. Many authors
have studied them for several years. The study of fuzzy integral equations begins with
the investigations of Kaleva [1], and Seikkala [2]. These studies continued by Friedman
et al. [3], Lakshmikantham [4], Wu et al. [5], Song et al. [6], Diamond [7], Bede et
al. [8], Salahshour et al. [9], Allahviranloo et al. [10], Khastan [11], Park et al. [12],
Nieto et al. [13] . . . . Recently, the study of fuzzy integral equations in two-dimensional
space was initiated. For example, Mirzaee et al. [14] studied the method of approximate
the solution of linear two-dimensional fuzzy Fredholm integral equations of the second
kind. In [15], Bica et al. constructed the fuzzy trapezoidal cubature rule providing its
remainder estimate for the case of Lipschitzian functions and apply an iterative numerical
method to approximate the solution of nonlinear fuzzy Fredholm integral equations in
two-dimensional space. Similarly, in [15], authors proved the convergence of the proposed
iterative numerical method for two-dimensional fuzzy Volterra linear integral equations
by providing the error estimate. Sadatrasoul et al. [16] introduced an optimal quadrature
formula for classes of two-dimensional fuzzy-number-valued functions of Lipschitz type.
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They also proved the convergence of successive approximations used to approximate the
solution of the two-dimensional Hammerstein fuzzy integral equation. Ezzati et al. [17]
discussed the existence of a solution for the fuzzy Volterra-Fredholm integral equations
of mixed type via Banach’s contraction principle.

In this work, we shall prove the existence and uniqueness of the solution for the two-
dimensional fuzzy Volterra-Fredholm integral equation.

The remainder of the paper is organized as follows. Section 2 presents some necessary
preliminaries of fuzzy analysis that will be used throughout this article. In Section 3, we
concern with the existence and uniqueness of the solution for the two-dimensional fuzzy
Volterra-Fredholm integral equation via Banach’s contraction principle. Moreover, some
properties of the solution are established. In section 4 contains an illustrative example
for the validity of the obtained results.

2. Preliminaries

Denote by Kc(Rd) the collection of all nonempty convex and compact subsets of Rd.
The Hausdorff metric dH in Kc(Rd) is defined as follows

dH(A,B) = max{sup
a∈A

inf
b∈B
‖a− b‖Rd , sup

b∈B
inf
a∈A
‖a− b‖Rd},

where A,B ∈ Kc(Rd). It is easy to see that the space (Kc(Rd), dH) is a complete metric
space.

Denote Ed = {u : Rd → [0, 1] such that x(z) satisfies (i)-(iv) stated below}
(i) x is normal, i.e there exists an z0 ∈ Rd such that x(z0) = 1;
(ii) x is fuzzy convex, that is, for 0 ≤ λ ≤ 1, x(λz1+(1−λ)z2) ≥ min{x(z1), x(z2)},

for any z1, z2 ∈ Rd;
(iii) x is upper semicontinuous;
(iv) [x]0 = cl{z ∈ Rd : x(z) > 0} is compact.

Let α ∈ (0, 1], denote by [x]α = {z ∈ Rd |x(z) ≥ α}. We call this set an α-cut of the

fuzzy set x and defined by 0̂ ∈ Ed as 0̂(x) = 1 if x = 0 and 0̂(x) = 0 if x 6= 0.
The supremum on Ed is defined by

D(x1, x2) = sup
α∈[0,1]

dH([x1]α, [x2]α)

for x1, x2 ∈ Ed and (Ed, D) is a complete metric space.
For x, y, z ∈ Ed and λ ∈ R+, we have

D(x+ z, y + z) = D(x, y), D(λx, λy) = λD(x, y), D(x, y) ≤ D(x, z) +D(y, z).

A mapping f : [a, b]→ Ed is called integrably bounded if there exists an integrable function
h such that ||x|| ≤ h(t) for all x ∈ [f(t)]0.

Definition 2.1 ([18]). Let f : [a, b] → Ed. The integral of f over [a, b], denoted by∫ b
a
f(t)dt, is defined by[ ∫ b

a

f(t)dt

]r
=

∫ b

a

[f(t)]αdt

=

{∫ b

a

f̃(t)dt
∣∣f̃ : J → Rd is a measurable selection for [f(·)]α

}
.
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for all α ∈ [0, 1]. A strongly measurable and integrably bounded mapping f : [a, b]→ Ed

is said to be integrable on [a, b] if
∫ b
a
f(t)dt ∈ Ed.

Next, we have the following some properties of the integral (see details in Lakshmikan-
tham et al. [18]). (1) Let f, g : [a, b]→ Ed be integrable and λ > 0. Then

i)
∫ b
a

(f(s) + g(s))ds =
∫ b
a
f(s)ds+

∫ b
a
g(s)ds.

ii)
∫ b
a
λf(s)ds = λ

∫ b
a
f(s)ds.

iii) D(f, g) is integrable and D
( ∫ b

a
f(s)ds,

∫ b
a
g(s)ds

)
≤
∫ b
a
D(f(s), g(s))ds.

(2) If f : [a, b]→ Ed is continuous then it is integrable.

(3) If f : [a, b]→ Ed is integrable and c ∈ [a, b] then
∫ b
a
f(s)ds =

∫ c
a
f(s)ds+

∫ b
c
f(s)ds.

Let J = [a, b]×[c, d] ⊂ R×R and C(J,Ed) is denoted a space of all continuous functions
f : J → Ed with the supremum metric D∗ defined by

D∗(f, g) = sup
(t,s)∈J

D(f(t, s), g(t, s)).

It is easy to see that D∗ is a metric in Ed. In fact, (Ed, D∗) is a complete metric space.

Definition 2.2 ([19]). A mapping f : J → Ed is called continuous at (t0, s0) ∈ J if
fα(t, s) = [f(t, s)]α is continuous at (t0, s0) with respect to dH for all α ∈ [0, 1].

Definition 2.3 ([19]). A mapping f : J × Ed → Ed is called continuous function at
(t0, s0, x0) ∈ J ×Ed if for any fixed α ∈ [0, 1] and arbitrary ε > 0, there exists δ(ε, α) > 0
such that

dH([f(t, s, x)]α, [f(t0, s0, x0)]α) < ε

whenever max{|t−t0|, |s−s0|} ≤ δ(ε, α) and dH([x]r, [x0]r) < δ(ε, α), for (t, s, x) ∈ J×Ed.

Definition 2.4 ([19]). Let f :J→Ed. The integral of f over J , denote by
∫ b
a

∫ d
c
f(t, s)dsdt,

is defined levelwise by the expression[ ∫ b

a

∫ d

c

f(t, s)dsdt

]r
=

∫ b

a

∫ d

c

[f(t, s)]αdsdt

=

{∫ b

a

∫ d

c

f̃(t, s)dsdt
∣∣f̃ : J → Rd is a measurable selection for [f(·, ·)]α

}
.

for all α ∈ [0, 1].

3. Main Results

Let Ω = [a, b] be the given subsets of R. Denote by C(A,B) the class of continuous
functions from the set A to the set B and = := [0, T ] × Ω. Consider the fuzzy Volterra-
Fredholm integral equation in two variables as follows:

u(t, s) = h(t, s) +

∫ t

0

∫
Ω

F
(
t, s, σ, τ, u(σ, τ), (T u)(σ, τ)

)
dσdτ, (3.1)
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for all (t, s) ∈ =, where

(T u)(t, s) =

∫ t

0

∫
Ω

K(t, s, ξ, ϑ, u(ξ, ϑ))dξdϑ, (3.2)

and u, h ∈ C(=, Ed), F ∈ C(=× =× Ed × Ed, Ed), K ∈ C(=× =× Ed, Ed).
Let Φ be the space of continuous function from = into (Ed, D) with H1(u, 0̂) ≤ δ, that

is,

Φ =
{
u |u : = → Ed is continuous and H1(u, 0̂) ≤ δ

}
,

where

H1(u, v) = sup
(t,s)∈=

{
D(u(t, s), v(t, s))e−λ(t+s)

}
, λ > 0.

It is not difficult to check that (C(=, Ed), H1) is also a complete metric space.

Now, we give a prove of the existence and uniqueness of solution of the problem (3.1)
by using the Banach fixed point theorem.

Theorem 3.1. Let F ∈ C(=×=×Ed ×Ed, Ed) and K ∈ C(=×=×Ed, Ed) be satisfy
the following conditions:

(c1) there exists L ∈ C(=× =,R+) such that

D
(
F (t, s, σ, τ, u1, v1), F (t, s, σ, τ, u2, v2)

)
≤ L(t, s, σ, τ)

{
D(u1, u2) +D(v1, v2)

}
,

for all (t, s, σ, τ, u1, v1), (t, s, σ, τ, u1, v1) ∈ = × =× Ed × Ed;

(c2) there exists M ∈ C(=× =,R+) such that

D
(
K(t, s, σ, τ, u),K(t, s, σ, τ, v)

)
≤M(t, s, σ, τ)D(u, v),

for all (t, s, σ, τ, u), (t, s, σ, τ, v) ∈ = × =× Ed;

(c3) there exists β1 > 0 such that

D(h(t, s), 0̂) +

∫ t

0

∫
Ω

D
(
F
(
t, s, σ, τ, 0̂, (T 0̂)(σ, τ)

)
, 0̂
)
dσdτ ≤ β1e

λ(t+s),

for all (t, s, σ, τ) ∈ = × =;

(c4) there exists β2 ∈ (0, 1] such that∫ t

0

∫
Ω

L(t, s, σ, τ)
(
eλ(σ+τ) +

∫ σ

0

∫
Ω

M(σ, τ, σ, τ)eλ(σ+τ)dσdτ
)
dσdτ ≤ β2e

λ(t+s),

for all (t, s, σ, τ), (t, s, σ, τ) ∈ = × =

Then the problem (3.1) has a unique solution on Φ, provided that β1 + β2δ < 1.

Proof. Let us the operator Q : Φ→ Φ defined by

(Qu)(t, s) = h(t, s) +

∫ t

0

∫
Ω

F
(
t, s, σ, τ, u(σ, τ), (T u)(σ, τ)

)
dσdτ. (3.3)

To prove the theorem, we shall divide the proof into three steps.
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Step 1. The operator Q is continuous. Indeed, for (t, s, σ, τ) ∈ = × =,u ∈ Ed and
h, k > 0, we have

D
(
(Qu)(t+ h, s+ k), (Qv)(t, s)

)
= D

(
h(t+ h, s+ k) +

∫ t+h

0

∫
Ω

F
(
t+ h, s+ k, σ, τ, u(σ, τ), (T u)(σ, τ)

)
dσdτ,

h(t, s) +

∫ t

0

∫
Ω

F
(
t, s, σ, τ, u(σ, τ), (T u)(σ, τ)

)
dσdτ

)
≤ D(h(t+ h, s+ k), h(t, s))

+D

(∫ t+h

0

∫
Ω

F
(
t+ h, s+ k, σ, τ, u(σ, τ), (T u)(σ, τ)

)
dσdτ,∫ t

0

∫
Ω

F
(
t, s, σ, τ, u(σ, τ), (T u)(σ, τ)

)
dσdτ

)
≤ D(h(t+ h, s+ k), h(t, s))

+

∫ t+h

0

∫
Ω

D
(
F
(
t+ h, s+ k, σ, τ, u(σ, τ), (T u)(σ, τ)

)
, 0̂
)
dσdτ

+

∫ t

0

∫
Ω

D
(
F
(
t+ h, s+ k, σ, τ, u(σ, τ), (T u)(σ, τ)

)
,

F
(
t, s, σ, τ, u(σ, τ), (T u)(σ, τ)

))
dσdτ.

Since h is continuous function on = and the functions F,K are integrable on = × =, so
the right side of the inequality above tends to 0 as h→ 0, k → 0. Similar inequalities are
obtained for D

(
(Qu)(t− h, s− k), (Qv)(t, s)

)
. Therefore, Q is a operator continuous.

Step 2. The operator Q is maps bounded sets into bounded sets on Φ. From (3.3) and
using the conditions, we get

D
(
(Qu)(t, s), 0̂

)
= D

(
h(t, s) +

∫ t

0

∫
Ω

F
(
t, s, σ, τ, u(σ, τ), (T u)(σ, τ)

)
dσdτ, 0̂

)
≤ D(h(t, s), 0̂) +

∫ t

0

∫
Ω

D
(
F
(
t, s, σ, τ, u(σ, τ), (T u)(σ, τ)

)
, 0̂
)
dσdτ

≤ D(h(t, s), 0̂) +

∫ t

0

∫
Ω

D
(
F
(
t, s, σ, τ, 0̂, (T 0̂)(σ, τ)

)
, 0̂
)
dσdτ

+

∫ t

0

∫
Ω

L(t, s, σ, τ)

(
D(u(σ, τ), 0̂) +D

(∫ σ

0

∫
Ω

K(σ, τ, σ, τ , u(σ, τ))dσdτ,∫ σ

0

∫
Ω

K(σ, τ, σ, τ , 0̂)dσdτ

))
dσdτ

≤ D(h(t, s), 0̂) +

∫ t

0

∫
Ω

D
(
F
(
t, s, σ, τ, 0̂, (T 0̂)(σ, τ)

)
, 0̂
)
dσdτ

+

∫ t

0

∫
Ω

L(t, s, σ, τ)
(
eλ(σ+τ) +

∫ σ

0

∫
Ω

M(σ, τ, σ, τ)eλ(σ+τ)dσdτ
)
dσdτ

≤
(
β1 + β2H1(u, 0̂)

)
eλ(t+s).
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It implies that for all u ∈ Φ,

D
(
(Qu)(t, s), 0̂

)
e−λ(t+s) ≤ β1 + β2δ.

Therefore,

H1(Qu, 0̂) ≤ β1 + β2δ,

for all u ∈ Φ. Hence, Q is maps bounded sets into itself.

Step 3. The operator Q is a contraction on Φ. Indeed, let u, v ∈ Φ and using the
conditions, we have

D
(
(Qu)(t, s), (Qv)(t, s)

)
= D

(
h(t, s) +

∫ t

0

∫
Ω

F
(
t, s, σ, τ, u(σ, τ), (T u)(σ, τ)

)
dσdτ,

h(t, s) +

∫ t

0

∫
Ω

F
(
t, s, σ, τ, v(σ, τ), (T v)(σ, τ)

)
dσdτ

)
≤
∫ t

0

∫
Ω

D
(
F
(
t, s, σ, τ, u(σ, τ), (T u)(σ, τ)

)
, F
(
t, s, σ, τ, v(σ, τ), (T v)(σ, τ)

))
dσdτ

≤
∫ t

0

∫
Ω

L(t, s, σ, τ)

(
D(u(σ, τ), v(σ, τ)) +D

(∫ σ

0

∫
Ω

K(σ, τ, σ, τ , u(σ, τ))dσdτ,∫ σ

0

∫
Ω

K(σ, τ, σ, τ , v(σ, τ))dσdτ

))
dσdτ

≤ H1(u, v)

∫ t

0

∫
Ω

L(t, s, σ, τ)
(
eλ(σ+τ) +

∫ σ

0

∫
Ω

M(σ, τ, σ, τ)eλ(σ+τ)dσdτ
)
dσdτ

≤ β2H1(u, v)eλ(t+s). (3.4)

From (3.4), we obtain

H1(Qu,Qv) ≤ β2H1(u, v),

for all u, v ∈ Φ and thus Q is a contraction operator.
Therefore, by Banach fixed point theorem, we deduce that Q has a fixed point which

is a solution to the problem (3.1). This proof is complete.

In the sequel, we shall apply the inequality established in Theorem 1 (see [20]) to study
some basic estimaties of the solutions for the problem (3.1).

Theorem 3.2. Assume that all the conditions of Theorem 3.1 hold and let L,M : = ×
= → R+ be a continuous functions, given by L(t, s, σ, τ) = f(t, s)g(σ, τ), M(t, s, σ, τ) =
f(t, s)k(σ, τ), where f, g, k ∈ C(=,R+). If u(t, s) is a solution of the problem (3.1), then
we have

D(u(t, s), 0̂) ≤ C
{

1 + f(t, s)

∫ t

0

∫
Ω

(
g(σ, τ) + k(σ, τ)

)
× exp

(∫ t

σ

∫
Ω

f(σ, τ)
(
g(σ, τ) + k(σ, τ)

)
dσdτ

)
dσdτ

}
,

where

C = sup
(t,s)∈=

{
D(h(t, s), 0̂) +

∫ t

0

∫
Ω

D
(
F
(
t, s, σ, τ, 0̂, (T 0̂)(σ, τ)

)
, 0̂
)
dσdτ

}
.
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Proof. Since u(t, s) is a solution of the problem (3.1) and from (3.1), we have

D(u(t, s), 0̂) = D

(
h(t, s) +

∫ t

0

∫
Ω

F
(
t, s, σ, τ, u(σ, τ), (T u)(σ, τ)

)
dσdτ, 0̂

)
≤ D(h(t, s), 0̂) +

∫ t

0

∫
Ω

D
(
F
(
t, s, σ, τ, 0̂, (T 0̂)(σ, τ)

)
, 0̂
)
dσdτ

+

∫ t

0

∫
Ω

D
(
F
(
t, s, σ, τ, u(σ, τ), (T u)(σ, τ)

)
, F
(
t, s, σ, τ, 0̂, (T 0̂)(σ, τ)

))
dσdτ

≤ D(h(t, s), 0̂) +

∫ t

0

∫
Ω

D
(
F
(
t, s, σ, τ, 0̂, (T 0̂)(σ, τ)

)
, 0̂
)
dσdτ

+

∫ t

0

∫
Ω

L(t, s, σ, τ)

(
D(u(σ, τ), 0̂) +D

(∫ σ

0

∫
Ω

K(σ, τ, σ, τ , u(σ, τ))dσdτ,∫ σ

0

∫
Ω

K(σ, τ, σ, τ , 0̂)dσdτ

))
dσdτ

≤ C + f(t, s)

∫ t

0

∫
Ω

g(σ, τ)
(
D(u(σ, τ), 0̂)

+

∫ σ

0

∫
Ω

k(σ, τ)D(u(σ, τ), 0̂)dσdτ
)
dσdτ, (3.5)

where

C = sup
(t,s)∈=

{
D(h(t, s), 0̂) +

∫ t

0

∫
Ω

D
(
F
(
t, s, σ, τ, 0̂, (T 0̂)(σ, τ)

)
, 0̂
)
dσdτ

}
.

By Theorem 1 in [20] and from (3.5), we see that

D(u(t, s), 0̂) ≤ C
{

1 + f(t, s)

∫ t

0

∫
Ω

(
g(σ, τ) + k(σ, τ)

)
× exp

(∫ t

σ

∫
Ω

f(σ, τ)
(
g(σ, τ) + k(σ, τ)

)
dσdτ

)
dσdτ

}
.

This proof is complete.

We want to emphasize that the solution to the problem (3.1) depends continuously on
the initial condition and the right-hand side of the equation. Let us consider the problem
(3.1) and the corresponding problem

v(t, s) = h̃(t, s) +

∫ t

0

∫
Ω

F̃
(
t, s, σ, τ, v(σ, τ), (T̃ v)(σ, τ)

)
dσdτ, (3.6)

for all (t, s) ∈ =, where

(T̃ v)(t, s) =

∫ t

0

∫
Ω

K̃(t, s, ξ, ϑ, v(ξ, ϑ))dξdϑ, (3.7)

and v, h̃ ∈ C(=, Ed), F̃ ∈ C(=× =× Ed × Ed, Ed), K̃ ∈ C(=× =× Ed, Ed).
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Theorem 3.3. Assume that all the conditions of Theorem 3.1 hold and let L,M : = ×
= → R+ be a continuous functions, given by L(t, s, σ, τ) = f(t, s)g(σ, τ), M(t, s, σ, τ) =
f(t, s)k(σ, τ), where f, g, k ∈ C(=,R+). Let u(t, s) and v(t, s) be solution of the problems
(3.1) and (3.6), respectively. Suppose that there exist ε1, ε2 > 0 such that

D(h(t, s), h̃(t, s)) ≤ ε1,

for (t, s) ∈ =, and

D
(
F
(
t, s, σ, τ, A,B

)
, F̃
(
t, s, σ, τ, A,B

)
≤ ε2,

for (t, s, σ, τ, A,B
)
∈ =×=×Ed ×Ed. Then for the solution u(t, s) of the problem (3.1)

the following estimation is true

D(u(t, s), v(t, s)) ≤
(
ε1 + ε2(b− a)T

){
1 + f(t, s)

∫ t

0

∫
Ω

(
g(σ, τ) + k(σ, τ)

)
× exp

(∫ t

σ

∫
Ω

f(σ, τ)
(
g(σ, τ) + k(σ, τ)

)
dσdτ

)
dσdτ

}
,

for all (t, s) ∈ =.

Proof. Notice that for (t, s) ∈ = we have

D(u(t, s), v(t, s)) = D

(
h(t, s) +

∫ t

0

∫
Ω

F
(
t, s, σ, τ, u(σ, τ), (T u)(σ, τ)

)
dσdτ,

h̃(t, s) +

∫ t

0

∫
Ω

F̃
(
t, s, σ, τ, v(σ, τ), (T̃ v)(σ, τ)

)
dσdτ

)
≤ D(h(t, s), h̃(t, s))

+

∫ t

0

∫
Ω

D
(
F
(
t, s, σ, τ, u(σ, τ), (T u)(σ, τ)

)
, F
(
t, s, σ, τ, v(σ, τ), (T v)(σ, τ)

))
dσdτ

+

∫ t

0

∫
Ω

D
(
F
(
t, s, σ, τ, v(σ, τ), (T v)(σ, τ)

)
, F̃
(
t, s, σ, τ, v(σ, τ), (T̃ v)(σ, τ)

))
dσdτ

≤
∫ t

0

∫
Ω

L(t, s, σ, τ)

(
D(u(σ, τ), v(σ, τ)) +D

(∫ σ

0

∫
Ω

K(σ, τ, σ, τ , u(σ, τ))dσdτ,∫ σ

0

∫
Ω

K(σ, τ, σ, τ , v(σ, τ))dσdτ

))
dσdτ + ε1 + ε2(b− a)T

≤ ε1 + ε2(b− a)T + f(t, s)

∫ t

0

∫
Ω

g(σ, τ)
(
D(u(σ, τ), v(σ, τ))

+

∫ σ

0

∫
Ω

k(σ, τ)D(u(σ, τ , v(σ, τ))dσdτ
)
dσdτ, (3.8)

By Theorem 1 in [20] and from (3.8), we infer that

D(u(t, s), v(t, s)) ≤
(
ε1 + ε2(b− a)T

){
1 + f(t, s)

∫ t

0

∫
Ω

(
g(σ, τ) + k(σ, τ)

)
× exp

(∫ t

σ

∫
Ω

f(σ, τ)
(
g(σ, τ) + k(σ, τ)

)
dσdτ

)
dσdτ

}
.

This proof is complete.
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4. An Example

Consider the following fuzzy Volterra-Fredholm integral equation:

u(t, s) = h(t, s) +

∫ t

0

∫ 1

0

[
f(t, s, σ, τ)u(σ, τ)

+

∫ σ

0

∫ 1

0

g(t, s, σ, τ)u(σ, τ)dσdτ
]
dσdτ, (4.1)

where

h(t, s) = eλ(t+s)χ{1/(t+s)}, f(t, s, σ, τ) =
λ2

eλ − 1
eλ(t+s),

and

g(t, s, σ, τ) =
λ2

t(eλ − 1)
eλ(t+s), λ > 0.

Here,

K(t, s, σ, τ, u(σ, τ)) =

∫ t

0

∫ 1

0

g(t, s, σ, τ)u(σ, τ)dσdτ

and

F
(
t, s, σ, τ, u(σ, τ), (T u)(σ, τ)

)
= g(t, s, σ, τ)u(σ, τ) + (T u)(σ, τ).

We can see that

D
(
K(t, s, σ, τ, u),K(t, s, σ, τ, v)

)
≤
∫ t

0

∫ 1

0

∣∣g(t, s, σ, τ)
∣∣D(u(σ, τ), v(σ, τ))dσdτ

=
λ2

eλ − 1

(∫ t

0

∫ 1

0

eλ(t+s)

t
dσdτ

)
D∗(u, v) =

λ2

eλ − 1
eλ(t+s)D∗(u, v)

and

D
(
F
(
t, s, σ, τ, u(σ, τ), (T u)(σ, τ)

)
, F
(
t, s, σ, τ, v(σ, τ), (T v)(σ, τ)

))
= D

(
f(t, s, σ, τ)u(σ, τ) +

∫ σ

0

∫ 1

0

g(t, s, σ, τ)u(σ, τ)dσdτ,

f(t, s, σ, τ)v(σ, τ) +

∫ σ

0

∫ 1

0

g(t, s, σ, τ)v(σ, τ)dσdτ

)
≤
∣∣f(t, s, σ, τ)

∣∣D(u(σ, τ), v(σ, τ)) +

∫ σ

0

∫ 1

0

∣∣g(t, s, σ, τ)
∣∣D(u(σ, τ), v(σ, τ)

)
dσdτ

≤
{∣∣f(t, s, σ, τ)

∣∣+

∫ σ

0

∫ 1

0

∣∣g(t, s, σ, τ)
∣∣dσdτ}D∗(u, v)

=
2λ2

eλ − 1
eλ(t+s)D∗(u, v).

By choosing L(t, s, σ, τ) =
2λ2

eλ − 1
eλ(t+s) and M(t, s, σ, τ) =

λ2

eλ − 1
eλ(t+s). It is easy to

see that the functions L(t, s, σ, τ) and M(t, s, σ, τ) are continuous, and so the conditions
(c1)-(c2) are satisfied.
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On the order hand, we get that

D(h(t, s), 0̂) +

∫ t

0

∫
Ω

D
(
F
(
t, s, σ, τ, 0̂, (T 0̂)(σ, τ)

)
, 0̂
)
dσdτ

= D
(
eλ(t+s)χ{t+s}, 0̂

)
=

1

t+ s
eλ(t+s) ≤ 1

1 + T
eλ(t+s),

which satisfies the condition (c3) of Theorem 3.1 with β1 = 1/(1 + T ) and λ > 0.
Moreover,∫ t

0

∫
Ω

L(t, s, σ, τ)
(
eλ(σ+τ) +

∫ σ

0

∫
Ω

M(σ, τ, σ, τ)eλ(σ+τ)dσdτ
)
dσdτ

=

∫ t

0

∫ 1

0

(
eλ(σ+τ) +

λ2

eλ − 1
eλ(σ+τ)

∫ σ

0

∫ 1

0

eλ(σ+τ)dσdτ
)
dσdτ

=
2λ2

eλ − 1
eλ(t+s)

∫ t

0

∫ 1

0

eλ(2σ+τ)dσdτ ≤ (eλ + 1)(eλt − 1)eλ(t+s).

If we chose T = ln

(
eλ + 2

eλ + 1

)1/λ

, λ > 0, then we have∫ t

0

∫
Ω

L(t, s, σ, τ)
(
eλ(σ+τ) +

∫ σ

0

∫
Ω

M(σ, τ, σ, τ)eλ(σ+τ)dσdτ
)
dσdτ < eλ(t+s).

It follows that the condition (c4) of Theorem 3.1 is satisfied for β2 = 1, and by direct
computation, we obtain that β1 + β2δ < 1, where δ = 1− 1/(1 + T ).

From the results above, we infer that the problem (4.1) satisfies the all conditions of
Theorem 3.1, which guarantees the problem (4.1) has a unique solution.
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