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Abstract In this article, using the sub and supersolutions method, we study the existence of a positive
solution for a class of Kirchhoff type systems with singular weights.The concepts of sub- and super-solution
were introduced by Nagumo [M. Nagumo, Uber die differentialgleichung y"" = f(x,y,vy’), Proceedings of
the Physico-Mathematical Society of Japan 19 (1937) 861-866] in 1937 who proved, using also the shoot-
ing method, the existence of at least one solution for a class of nonlinear Sturm-Liouville problems. In
fact, the premises of the sub- and super-solution method can be traced back to Picard. He applied, in
the early 1880s, the method of successive approximations to argue the existence of solutions for nonlin-
ear elliptic equations that are suitable perturbations of uniquely solvable linear problems. This is the
starting point of the use of sub- and super-solutions in connection with monotone methods. Picard’s
techniques were applied later by Poincaré [H. Poincaré, Les fonctions fuchsiennes et I’équation Au = e*,
J. Math. Pures Appl. 4 (1898) 137-230] in connection with problems arising in astrophysics. We refer to
[V. Radulescu, Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity,
Analytic, and Variational Methods, Contemporary Mathematics and Its Applications, Vol. 6, Hindawi
Publishing Corporation, New York, 2008].
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1. INTRODUCTION

In this paper, we consider the existence of positive weak solutions for the following
Kirchhoff systems

—M; (/ |Vu\pdx> Apu = ha(z) fqﬁg), x €,
Q

—Mg(/ [Voltdz ) Ago = Ab(x)%, zeQ, (1.1)
Q

u=v=0, x € 08},

where A,z = div(|Vz|"72Vz2), for (r > 1) denotes the r—Laplacian operator and \ is
a positive parameter and € is a bounded domain in R™, n > 1 with smooth boundary,
a, 3 € (0,1). Here a(x) and b(z) are C! sign-changing functions that maybe negative near
the boundary and f, g are C'! nondecreasing functions such that f,g : [0,00) — [0, 00);
f(s)>0,g(s)>0fors>0, SILH;QQ(S) = oo and

 f(Mg(s)TT)
sll>nolo sp—1+a
for all M > 0. Here My, M, satisfy the following condition:

(H1) M; : Ra' — R', i = 1,2, are two continuous and increasing functions and
0 < m; < M;(t) < mjo for all t € RT, where R := [0, +00). System (1.1) is related to
the stationary problem of a model introduced by Kirchhoff [1]. More precisely, Kirchhoff

proposed a model given by the equation
9%u (PO E [F 8u‘2 )82u
(0, = )
P or 02

=0

- =0, 1.2
where p, pg, h, E are all constants. This equation is an extension of the classical D’ Alembert

's wave equation. A distinguishing feature of equation (1.2) is that the equations a non-
L

. Py
local coefficient A + oL ),
hence the equation is no longer a pointwise identity. Nonlocal problems can be used for
modeling, for example, physical and biological systems for which u describes a process
which depends on the average of itself, such as the population density.In recent years,
problems involving Kirchhoff type operators have been studied in many papers, we refer
to [2-12] in which the authors have used variational method and topological method to
get the existence of solutions for (1.1). We study the existence of positive solution to the
system with sign-changing weight functions a(x),b(x) . Due to these weight functions,
the extensions are challenging and nontrivial. The main tool used in this study is the
method of sub- and super solutions. Our result in this note improves the previous one
[13] in which M;(t) = M2(t) = 1. To our best knowledge, this is a new research topic for

2 1 L 2
%‘ dx which depends on the average ﬁ/o %‘ dx

nonlocal problems, see [2, 3, 14, 15]. To precisely state our existence result we consider
the eigenvalue problem
A — r—2
T¢ )\‘(b| (ﬁ? €T e Q? (1.3)

Let ¢1 - be the eigenfunction corresponding to the first eigenvalue Ay , of (1.3) such that
¢10(x) >01in Q, and ||¢1 ,]|ec = 1 for r = p,q. Let m, 0,6 > 0 be such that

o< g1, <1, r e Q—Qy, (1.4)
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ST

m)|v¢1’rlr S —m, T € ﬁg, (15)

Aol — (1-
for r = p,q, and s = o, 3, where Q = {zx € Q | d(z,0Q) < §}. (This is possible since
Vo1 ,]" # 0 on 002 while ¢1, = 0 on 99 for r = p,q.) We also consider the unique
solution ¢, € I/VO1 ""(Q) of the boundary value problem

9 < 0 on 9.
on

Here we assume that the weight functions a(x) and b(x) takes negative values in s, but
require a(z) and b(z) are strictly positive in  — Q5. To be precise we assume that there
exist positive constants ag,a1,by and by such that a(z) > —ag, b(z) > —bg on Qs and
a(z) > ay, b(z) > by on Q — Q;.

to discuss our existence result, it is known that ¢, > 0 in  and

2. EXISTENCE OF POSITIVE SOLUTIONS

In this section, we shall establish our existence result via the method of sub - super-
solution. A pair of nonnegative functions (¢y,%2) € WP N C(Q) x Wh4 N C(Q) and
(21,22) € WP N CO(Q) x W4 N C(Q) are called a subsolution and supersolution of (1.1)
if they satisfy (11,%2) = (0,0) = (21, 22) on 02 and

([ vpae) [19or2ve o < 2 [ a2,
- 9(¥1)

M2</Q |V¢2\‘1dﬂi> /lewﬂq 2y - Vwdr < A [ 1) wgl wia,

M1(/Q|Vz1lpdx)/Q|Vz1|z7—2Vzl.dex > >‘/Qa($)f(;;)wdx,

Mg(/ |V22|qd:17)/ V25|72V 2y - Vwdz > )\/b(x)g(zl)wdz,
Q Q Q

22

forallw e W ={w e C§(Q) | w >0,z € N}. A key role in our arguments will be played
by the following auxiliary result. Its Proof is similar to those presented in [1(], the reader
can consult further the papers [2, 3, 14, 15].

Lemma 2.1. Assume that M : Rt — RT is a continuous and increasing function satis-
fying
M(t) > My >0 for allt € RT.

If the functions u,v € Wy"*(Q2) satisfies

M </|Vupdx>/|Vu|p2Vu~Vg0 de < M </W|P dx)/|Vv|p2Vv~V<p dz (2.1)
Q Q Q Q

for all o € WP (Q), ¢ >0, then u < v in Q.
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Proof. Our proof is based on the arguments presented in [17, 18]. Define the functional
& : Wy () = R by the formula

B(u) = 37 </ Vu|pdx) . ue WyP(Q).
p Q

It is obviously that the functional ® is a continuously Gateaux differentiable whose
Gateaux derivative at the point u € W, ?(Q) is the functional ® € W, "*(Q), given
by

D' (u)(p) =M (/Q |Vul? dx) /Q IVulP=2Vu - Vodz, ¢e W,P(Q).

It is obvious that ®' is continuous and bounded since the function M is continuous. We
will show that ®’ is strictly monotone in Wy*(€2). Indeed, for any u,v € Wy (), u # v,
without loss of generality, we may assume that

/|Vu|pdm2/ [VolP dz.
Q Q

(otherwise, changing the role of u and v in the following proof). Therefore, we have
M (/ |Vul? d:r) > M (/ |Vv|pdx> (2.2)
Q Q
since M (t) is a monotone function. Using Cauchy’s inequality, we have
1
Vu - Vo < |Vul||Vy| < §(|Vu|2 + |Vol?). (2.3)
Using (2.3) we get
1
/ |Vul|P de — / \Vu|P~?Vu - Vode > f/ |VulP~2(|Vul? — |Vv|?) do (2.4)
Q Q 2 Jo
and
1
/ |Voul? dz —/ |Vo|P~2Vv - Vudz > 5/ |VolP2(|Vol> — |[Vul?) da. (2.5)
Q Q Q

If |Vu| > |V, using (2.2)-(2.5) we have
Iy o= @' () (u) — @ (u) (v) — @'(v)(u) + ¢'(v)(v)

M</ Vupda:) (/ |vu|de7/ vupzvu-wdx)
Q Q Q
—M(/ |Vv|pdx> </ \Vv|p72VU-Vudsc—/ |vadx)
Q Q Q
1 -2 2 2
M </Q|Vu|pdx>/QVu|p (IVul? — |Vo|?) da 26
1
—aM (/ 'V“pd””)/|W|”‘2<|Vul2—|w2)dx
2 o 0

1
5M (/ |VolP d:c) /(\vuvjf2 — [Vo[P~2)(|Vul? = |Vv|?) dz
Q Q

My
2

Y

[ v~ = [9op=2)(9al - [90) do
Q
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If |Vv| > |Vu|, changing the role of u and v in (2.2)-(2.5) we have

Iy = @'(0)(v) = @' (v)(u) — ' (u)(v) + &' (u)(u)

:M(/ Vu|de) (/ |Vv|”dq;—/ |Vv|p_2Vv-Vud:v>
Q Q Q
—M(/ |Vu|pdx> (/ |Vu|p’2Vu~Vvdx—/ |Vu|pdx>
Q Q Q

1 —2 2 2
> §M </Q|Vv|pdz>/Q|Vv|p (IVo]* — |Vul?) dz (2.7)
1
Y (/ |Vu|pdx> / VP2 (Vo) = |Vul) da
2 Q Q
1
=M </ |VolP dac> /(\VUV’—? — |VulP~2)(|Vo|* = |Vul?) dz
Q Q
M,
> 50 (9ol = [9ulr 2|9 = [9uP)
Q

From (2.6) and (2.7) we have
(@’(u) - @'(U))(u ) =L =1,>0, YuveWP(Q). (2.8)

Moreover, if u # v and (q)’(u) - <I>’(v)) (u—v) =0, then we have

[ 9= = [9up=2)(Val - [of?) do = .
Q
so |[Vu| = |Vu| in Q. Thus, we deduce that

(@'(w) = @'(0)) (u—0) = &' (w)(u —v) = &' (v)(u —v)

=M (/ |Vul? dx) / |Vu|P~2|Vu — Vo|? dx (2.9)
Q Q

i.e., u—wv is a constant. In view of u = v = 0 on 92 we have v = v which is contrary with
u # v. Therefore (@’(u) - q)’(v)) (u—v) >0 and ' is strictly monotone in W, ().

Let u, v be two functions such that (2.1) is verified. Taking ¢ = (u — v)™, the positive
part of u — v, as a test function of (2.1), we have

(P (u) — @' (v))(p) =M (/Q |Vul? dx) /Q VP2V - Vip da
_M(/Qwvlpdx)/ﬂva2Vv~V<pdx (2.10)

<0.

Relations (2.9) and (2.10) mean that u < v. ]
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From Lemma 2.1 we can establish the basic principle of the sub- and supersolutions
method for nonlocal systems. Indeed, we consider the following nonlocal system

—M, (/ |Vu\pdx> Apu = h(z,u,v) in Q,
Q

_M2(/ |Vu|‘1dx) Agv = k(z,u,v) in Q, (2.11)
Q
u=v=0o0nx € 0N,

where 2 is a bounded smooth domain of RN and h,k : Q x R x R — R satisfy the
following conditions

(HK1) h(x,s,t) and k(x, s,t) are Carathéodory functions and they are bounded if s, ¢
belong to bounded sets.
(KH2) There exists a function g : R — R being continuous, nondecreasing, with
g(0) =0, 0 < g(s) < C(1 + |s|mr{P-a}—1) for some C' > 0, and applications
s+ h(z,s,t) + g(s) and ¢t — k(x,s,t) + g(t) are nondecreasing, for a.e. x € .
If u,v € L®(Q), with u(z) < v(z) for a.e. x € Q, we denote by [u,v] the set {w €
L>(Q) : u(x) < w(z) < v(x) for a.e. z € Q}. Using Lemma 2.1 and the method as in
the proof of Theorem 2.4 of [19] (see also Section 4 of [20]), we can establish a version of
the abstract lower and upper-solution method for our class of the operators as follows.

Proposition 2.2. Let My, M : Ra' — R be two functions satisfying the condition
(H1). Assume that the functions h,k satisfy the conditions (HK1) and (HK2). Assume
that (u,v), (w,D), are respectively, a weak subsolution and a weak supersolution of system
(2.11) with u(z) < w(x) and v(z) < v(x) for a.e. & € Q. Then there exists a minimal
(us,vs) (and, respectively, a mazimal (u*,v*)) weak solution for system (2.11) in the set
[u, 1] x [v,7]. In particular, every weak solution (u,v) € [u, ] X [v,D] of system (2.11)
satisfies u(x) < u(z) < u*(z) and vi(z) < ov(r) < v*(x) for a.e. v € Q.

To state our results precisely we introduce the following hypotheses :
(Hs)f,g:[0,00) = [0,00) are C! nondecreasing functions such that
f(s),g9(s) >0 for s >0, and lim g(s) = oo.

Ede el

1
Mg(s) 7T
(Hs) lim %:o, for all M > 0.

(H,4) suppose that there exist € > 0 such that:

atp—1 a Btq—1 B

p—lda — p—1+a — q—1+p

MM 50€ P 1= MM o€ @ it

M 00€ P71 Alm . 1,00 ( P 2,00 q
<min

_ 1 P ’ T ’
alf(q 11+B€<1—10q71+ﬁ) aof(es=T) bog(e7=T)
atp—1 « Btg—1 B
g—145 2=l (p—1+ta = (9=148
Moo T ALy o |mmaece e ( - MM2 € ¢ .
'1 - - <min T ) 1
b1g(7p7p+aeﬁam) aof(es=T) bog(e7=T)

We are now ready to give our existence result.

Theorem 2.3. Assume that
(a)p>n 0r(b)p<nanda<£,
n

(c)g>n 0r(d)q<nandﬁ<%.
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Let (Hy) — (Hy4) hold. Then there exists a positive weak solution of (1.1) for every \ €
[Ai(€), \*(e)], where

atp—1 1 @ Btq—1 -1 B
MM o€ P 1 (7” p+a) MM 00€ 771 (7‘1 q+5

N .
A® = min - , - ,
aof(64*1> bog(epfl)
and
atp—1 Btq—1
mlooepl)\lp mQOQG‘?l)\lq
Ax = max

a f( +Beq 1ga— 1+B) blg( +a5pflgp71+a>

Remark 2.4. Note that (Hy) implies A, < A*.

Proof. We shall verify that

—14+a 1 -2 146 1
(¢171/)2) — (piep—l d)f,ppr 7/6 qu 1+B>
p q
is a sub-solution of (1.1). Let w € W. Then a calculation shows that

Vi = er= 1V¢1p¢p Ha;

and we have

M1< / |V¢1\de) / Va1 P2V Vawda
Q Q
S ml’ooﬁ/ (Z)i;p_“a|V¢1,p|p_2v¢51,prdx
Q
- -5 =y
gml,me/9|v¢1,p|f7 V61, Vo, T w) — wV(e,, T )| do
~ =5 - 1
:mlme/Q a7 = V61,12V, V(6,7 ) |wda

—m e/ kS ¢TI |y P12 ) ﬁ}wdw
,O0 o yP¥1,p 1,p p— 1+a 1,p

p_i:»a b P _ 7@1)
= M1,00€P7, {/Q P\l,p%,p [V pl (1 P a)}wdx} .
Similarly

M2</9|V1/)2\qu)/ Vaa| T2 Veps - Vawdar

< ma ooﬁbgifw {/Q [)‘17q¢(f,q - |v¢1,q|q(1 - q_ﬁq_’_ﬁ)}wdx} .

First we consider the case when x € Qs. we have

ap
)\17p¢11)l’p - (1 — m) |v¢1,p‘p S —m.

Since A < \* then

atp—1 1 o
MM c0€ P71 (71’ p+a>

ao f(e7T)

<
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Hence

—ap ap

mmq OerSP P—1ta (Al,pd)l P ( — “1ta

_—ap

S —ma, oome(bp e

e (2 "o

)IVoLl)

§ 7>\CL0 o
€p—1
f q—1+56fqi1¢ff+ﬂi p—lta ¢1P Tra
S)\GO ( q 4 )a( p )
€r—1
f(@W2)
< Xa .
(@) (G
A similar argument shows that
- Ba 9(¥1)
—1+8 a _ (1 _ 7\ <
masetr i (bl = (1= 727 55) IVonal?) < ()2 52

On the other hand, on Q — Qs, we have 1 > ¢1, > o for 7 = p,q. Also a(z) > ay,
b(x) > by and since A > A, we have

a+p—1
M 00€ P71 )\11,

a f( +ﬁ6q 1oga- 1+ﬁ).

A>

Hence
ap
My o€y b P ()\147(;51 » ( - ﬁ)l ¢)1,p|p>

T
< ml,oc€>\1 pd)l pp “

1+D(
< My ,00€ p¢1 .

_ _ap —a
f(Q*27+Beﬁaq7?‘+ﬁ) T (7p7;+0‘)
< )\CLl o)

A similar argument shows that

_Ba
maetr g 7 (Maoly — (1= L) IVonlt) < (w20,

b vy
Hence
M1</Q|V1/)1\de)/Q|VZ/J1|P—2V¢1~dex < )‘/Qa(x)f(q?)wdx,
and
’ a-2 g(t)
/|V1/)2\ dx /|V1/12| Vipy - dex<)\/b( ) - wdi
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(p—l—f—aeﬁ(ﬁﬁ q—1+p
q

A =i . ol .
o €1y q”ﬁ‘) is a positive subsolution

Thus (¢1,%2) =
of (1.1). Now we construct a supersolution (z1, z2) > (¢1,%2). When

(a)pznor(b)p<nanda<%,

(c)q2n0r(d)q<nandﬁ<g,
n

from [21], we know that are functions w; € Wy (Q) N C(Q) and wy € Wy 4(Q) N C(Q)
such that

£

—Apwy = L zeq,
w1 :0, 336(9(2,

and

—Aqwy = ﬁ, x €,
2
Wo = 0, x € 39,

are satisfying w; > 6¢, and wy > 6(, for some # > 0. Now, we will prove there exists
¢ > 1 such that

_1
(21,22) = (cwr, gleun ) 7w, ),

is a supersolution of (1.1). A calculation shows that :

/ V21 |P~2V 2, - Vwdz = cp_l/ |V, P2V, - Vwdr = cp_l/ ﬂd:@
Q Q Q

«
wy

by (H3) we know that, for ¢ > 1,

my >f(llwzlloo)(g(CIlell))ﬁ).

)\”a‘(x)”oo - cp—1+a
Hence
ME > Mafo)l [l o)
wl CWw1
> ag o))
= )\a(x)f(ZQ),

27
now from (H2), we know that g(s) — oo as s = co. Thus, for ¢ > 1

Al[b(@)]| oo

<m
B
glclwifloc) 7T

— )
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and we have for ¢ > 1,

cllwn|oc) 71wy

M2</|vz2|q>/|vz2|qi2V22‘dex > mQ/M;‘HOO)wdx
& @ o w
> AlbGe) | 9ew) gy
Q g(

> )\/Qb(x)g(?)wd:c,

22

i.e., (21, 22) is a supersolution of (1.1). Furthermore, ¢ can be chosen large enough so that
(21,22) > (¥1,19), since g(s) — oo as s — oo. Thus, by Proposition 2.2 there exist a
positive solution (u,v) of (1.1) such that (¢1,%2) < (u,v) < (21, 22). This completes the
proof of Theorem 2.3. n
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