Thai Journal of **Math**ematics Volume 19 Number 4 (2021) Pages 1305–1314

http://thaijmath.in.cmu.ac.th

Certain Classes of Analytic Functions Defined by Convolution with Varying Argument of Coefficients

Mohamed Kamal Aouf, Adela Mostafa and Aisha Hussain*

Department of Mathematics, Faculty of Science, Mansoura University, Egypt e-mail : mkaouf127@yahoo.com (M. K. Aouf); adelaeg254@yahoo.com (A. Mostafa); aisha84_hussain@yahoo.com (A. Hussain)

Abstract In this paper we introduce the classes $\kappa - ST(f, g, \alpha; \beta)$ and $\kappa - VCT(f, g, \alpha; \beta)$, of κ uniformly starlike functions of order α and type β and the κ uniformly convex functions of order α and type β with varying arguments of coefficient, respectively. Moreover, we give coefficient estimates,
distortion theorems and extreme points for functions belonging to these classes.

MSC: 30C45

Keywords: analytic functions; κ -uniformly starlike; κ -uniformly convex; convolution; varying arguments; extreme points

Submission date: 11.07.2017 / Acceptance date: 05.10.2019

1. INTRODUCTION

Let \mathcal{A} denote the class of functions of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$
 (1.1)

that are analytic and univalent in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. For $f(z) \in \mathcal{A}$ given by (1.1) and $g \in \mathcal{A}$ given by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n,$$
 (1.2)

the Hadamard product (or convolution) (f * g)(z) of f(z) and g(z) is defined by

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n = (g * f)(z).$$
(1.3)

*Corresponding author.

Published by The Mathematical Association of Thailand. Copyright \bigodot 2021 by TJM. All rights reserved.

Definition 1.1. Let $\kappa - ST(f, g, \alpha; \beta)$ denote the subclass of \mathcal{A} consisting of functions f(z)of the form (1.1) and function q(z) of the form (1.2) and satisfy the following inequality:

$$Re\left\{\frac{z(f*g)'(z)}{(f*g)(z)} - \alpha\right\} > \kappa \left|\frac{z(f*g)'(z)}{(f*g)(z)} - \beta\right|, \qquad (1.4)$$
$$(0 \leq \alpha < \beta \leq 1; \kappa(1-\beta) < (1-\alpha); z \in \mathbb{U}).$$

Also Let $\kappa - CT(f, g, \alpha; \beta)$ denote the subclass of \mathcal{A} consisting of functions f(z) of the form (1.1) and function q(z) of the form (1.2) and satisfy the following inequality:

$$Re\left\{1 + \frac{z(f*g)''(z)}{(f*g)'(z)} - \alpha\right\} > \kappa \left|1 + \frac{z(f*g)''(z)}{(f*g)'(z)} - \beta\right|$$
(1.5)
$$(0 \leq \alpha < \beta \leq 1; \kappa(1-\beta) < (1-\alpha); z \in \mathbb{U}).$$

It follows from (1.4) and (1.5) that

$$f(z) \in \kappa - CT(f, g; \alpha, \beta) \iff zf'(z) \in \kappa - ST(f, g; \alpha, \beta).$$
(1.6)

We note that (i) $\kappa - ST(f, \frac{z}{1-z}, \alpha; \beta) = \kappa - ST(\alpha, \beta) (0 \le \alpha < \beta \le 1, \kappa(1-\beta) < (1-\alpha); z \in \mathbb{U})$

(see Sim et al. [1] and El-Ashwah et al. [2]). (ii) $\kappa - CT(f, \frac{z}{1-z}, \alpha; \beta) = \kappa - UCV(\alpha, \beta)(0 \le \alpha < \beta \le 1, \kappa(1-\beta) < (1-\alpha); z \in \mathbb{U})$ (see Sim et al. [1] and El-Ashwah et al. [2]).

We also note that, for different choices of g(z) we have the following new classes:

$$\begin{aligned} \text{(i)} \ \kappa - ST(f, z + \sum_{n=2}^{\infty} \left(\frac{1+l+\lambda(n-1)}{1+l}\right)^m z^n, \alpha; \beta) &= \kappa - ST(m, \alpha, \beta) \\ \left\{ \begin{array}{l} f \in \mathcal{A} : Re\left\{\frac{z(I^m(\lambda,l)f(z))'}{I^m(\lambda,l)f(z)} - \alpha\right\} > \kappa \left|\frac{z(I^m(\lambda,l)f(z))'}{I^m(\lambda,l)f(z)} - \beta\right|, \\ (0 \leq \alpha < \beta \leq 1, \kappa(1-\beta) < (1-\alpha), \lambda \geq 0, l \geq 0, \\ m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \mathbb{N} = \{1, 2, \ldots\}; z \in \mathbb{U}) \end{array} \right\}. \end{aligned}$$
$$\begin{aligned} \text{(ii)} \ \kappa - CT(f, z + \sum_{n=2}^{\infty} \left(\frac{1+l+\lambda(n-1)}{1+l}\right)^m z^n, \alpha; \beta) = \kappa - UCV(m, \alpha, \beta) \\ \left\{ \begin{array}{l} f \in \mathcal{A} : Re\left\{1 + \frac{z(I^m(\lambda,l)f(z))''}{(I^m(\lambda,l)f(z))'}\right\} > \kappa \left|1 + \frac{z(I^m(\lambda,l)f(z))''}{(I^m(\lambda,l)f(z))'} - \beta\right| \\ (0 \leq \alpha < \beta \leq 1, \kappa(1-\beta) < (1-\alpha), \lambda \geq 0, l \geq 0, m \in \mathbb{N}_0; z \in \mathbb{U}) \end{array} \right\}, \end{aligned}$$

where the operator $I^{m}(\lambda, l)$ was introduced and studied by Cãtas et al. [3], which generalizes other operators see ([4–7]). ∞

(iii)
$$\kappa - ST(f, z + \sum_{n=2}^{\infty} \Omega_n(\alpha_1) z^n; \alpha, \beta) = \kappa - TS_{q,s}(n, \alpha, \beta),$$

$$\begin{cases} f \in \mathcal{A} : Re\left\{ \frac{z(H_{q,s}(\alpha_1)f(z))'}{H_{q,s}(\alpha_1)f(z)} - \alpha \right\} \\ > \kappa \left| \frac{z(H_{q,s}(\alpha_1)f(z))'}{(H_{q,s}(\alpha_1)f(z))} - \beta \right| (z \in \mathbb{U}), \end{cases}$$

where

$$\Omega_n(\alpha_1) = \frac{(\alpha_1)_{n-1}...(\alpha_q)_{n-1}}{(\beta_1)_{n-1}...(\beta_s)_{n-1}} \frac{1}{(n-1)!}$$
(1.7)

and

$$(a)_{k} = \frac{\Gamma(a+k)}{\Gamma(a)} = \begin{cases} 1 & k=0\\ a(a+1)(a+2)\dots(a+k-1), & k\in\mathbb{N} \end{cases},$$
(1.8)

$$\begin{cases} 0 \leq \alpha < 1, \beta \geq 0, \alpha_i \in \mathbb{C}(i = 1, 2, ...q) \text{ and } \beta_j \in \mathbb{C} \setminus \{-1, -2, ...\}, \\ j = 1, 2, ...s, z \in \mathbb{U}); \\ (\text{iv})\kappa - ST(f, z + \sum_{n=2}^{\infty} \Omega_n(\alpha_1) z^n; \alpha, \beta) = \kappa - TC_{q,s}(n, \alpha, \beta), \\ \\ \begin{cases} f \in \mathcal{A} : Re\left\{1 + \frac{z(H_{q,s}(\alpha_1)f(z))''}{(H_{q,s}(\alpha_1)f(z))'} - \alpha\right\} \\ > \kappa \left|1 + \frac{z(H_{q,s}(\alpha_1)f(z))''}{(H_{q,s}(\alpha_1)f(z))'} - \beta\right| (z \in \mathbb{U}), \end{cases}$$

where $\Omega_n(\alpha_1)$ is given by (1.7) and $H_{q,s}(\alpha_1)$ was introduced and studied by Dziok-Srivastava [8].

Silverman [9] defined the class $V(\theta_n)$ of univalent functions in the form (1.1) with varying arguments of coefficient as follows:

Definition 1.2. [9] A function f(z) of the form (1.1) is said to be in the class $V(\theta_n)$ if $f(z) \in \mathcal{A}$ and $\arg(a_n) = \theta_n$ for all $n \ge 2$. If furthermore there exists a real number δ such that $\theta_n + (n-1)\delta \equiv \pi(mod2\pi)$ for all $n \ge 2$, then f(z) is said to be in the class $V(\theta_n, \delta)$. The union of $V(\theta_n, \delta)$ taken over all possible sequences $\{\theta_n\}$ and possible real numbers δ is denoted by V.

Let $\kappa - VST(f, g, \alpha; \beta)$ denote the subclass of V consisting of functions $f(z) \in \kappa - ST(f, g, \alpha; \beta)$. Also let $\kappa - VCT(f, g, \alpha; \beta)$ denote the subclass of V consisting of functions $f(z) \in \kappa - CT(f, g, \alpha; \beta)$.

In this paper we obtain coefficient bounds for functions in the classes $\kappa - VST(f, g, \alpha; \beta)$ and $\kappa - VCT(f, g, \alpha; \beta)$, further we obtain distortion bounds and the extreme points for functions in these classes.

2. Coefficient Estimates

Unless otherwise mentioned, we assume in the reminder of this paper that $0 \leq \alpha < \beta \leq 1, \kappa(1-\beta) < (1-\alpha), g(z)$ is given by (1.2) with $b_n > 0 (n \geq 2)$ and $z \in \mathbb{U}$. We shall need the following lemmas.

Theorem 2.1. If the function f(z) given by (1.1) satisfies the condition

$$\sum_{n=2}^{\infty} \left[\kappa(n-\beta) + (n-\alpha)\right] |a_n| b_n \le 1 - \alpha - \kappa(1-\beta).$$

$$(2.1)$$

Then $f(z) \in \kappa - ST(f, g, \alpha; \beta)$.

Proof. It is sufficient to show that inequality (1.4) holds true. Using the fact that

$$Re\left\{w-\alpha\right\} > \kappa \left|w-\beta\right| \Longleftrightarrow Re\left\{(1+\kappa e^{i\theta})w-\beta\kappa e^{i\theta}\right\} > \alpha,$$
(2.2)

then inequality (1.4) may be written as

$$Re\left\{(1+\kappa e^{i\theta})\frac{z(f*g)'(z)}{(f*g)(z)} - \beta\kappa e^{i\theta}\right\} > \alpha,$$
(2.3)

or

$$Re\left\{\frac{A(z)}{B(z)}\right\} > \alpha,\tag{2.4}$$

where $A(z) = (1 + \kappa e^{i\theta})z(f * g)'(z) - \beta \kappa e^{i\theta}(f * g)(z)$ and B(z) = (f * g)(z). The condition (1.4) or (2.4) is equivalent to

$$|A(z) + (1 - \alpha)B(z)| - |A(z) - (1 + \alpha)B(z)| \ge 0.$$
(2.5)

We note that

$$|A(z) + (1 - \alpha)B(z)| = \left| [(1 - \beta)\kappa e^{i\theta} + 2 - \alpha]z - \sum_{n=2}^{\infty} [(\beta - n)\kappa e^{i\theta} + \alpha - n - 1]b_n a_n z^n \right| \\ \ge [-\kappa(1 - \beta) + 2 - \alpha] |z| \\ - \sum_{n=2}^{\infty} [(n - \beta)\kappa + n - \alpha + 1]b_n |a_n| |z|^n.$$
(2.6)

and

$$|A(z) - (1+\alpha)B(z)| = \left| [(1-\beta)\kappa e^{i\theta} - \alpha]z + \sum_{n=2}^{\infty} [(n-\beta)\kappa e^{i\theta} + n - \alpha - 1]b_n a_n z^n \right|$$

$$\leq [\kappa(1-\beta) + \alpha] |z|$$

$$+ sum_{n=2}^{\infty} [(n-\beta)\kappa + n - \alpha - 1]b_n |a_n| |z|^n.$$
(2.7)

Using (2.6) and (2.7), we obtain the following inequality:

$$|A(z) + (1 - \alpha)B(z)| - |A(z) - (1 + \alpha)B(z)|$$

$$\geq 2[(1 - \alpha) - \kappa(1 - \beta)] |z| - 2\sum_{n=2}^{\infty} [(n - \beta)\kappa + (n - \alpha)]b_n |a_n| |z|^n.$$
(2.8)

The expression $|A(z) + (1 - \alpha)B(z)| - |A(z) - (1 + \alpha)B(z)|$ is bounded below by 0 if

$$2[(1-\alpha) - \kappa(1-\beta)] |z| - 2\sum_{n=2}^{\infty} [\kappa(n-\beta) + (n-\alpha)] b_n |a_n| |z|^n > 0,$$

or

$$\sum_{n=2}^{\infty} [\kappa(n-\beta) + (n-\alpha)]b_n |a_n| < (1-\alpha) - \kappa(1-\beta).$$

$$(2.9)$$

Hence the proof of Theorem 2.1 is completed.

By using (1.6) and (2.1) we can obtain the following theorem.

Theorem 2.2. If the function f(z) given by (1.1) satisfies the condition

$$\sum_{n=2}^{\infty} n[\kappa(n-\beta) + (n-\alpha)]b_n |a_n| < (1-\alpha) - \kappa(1-\beta).$$

$$Then \ f(z) \in \kappa - CT(f, g, \alpha; \beta).$$

$$(2.10)$$

Theorem 2.3. Let f(z) be defined by (1.1), then $f(z) \in \kappa - VST(f, g, \alpha; \beta)$ if and only if

$$\sum_{n=2}^{\infty} [\kappa(n-\beta) + (n-\alpha)] b_n |a_n| < (1-\alpha) - \kappa(1-\beta).$$
(2.11)

Proof. In view of Theorem 2.1, we need only to show that the function $f(z) \in \kappa - VST(f, g, \alpha; \beta)$ satisfies the coefficient inequality (2.11). If $f(z) \in \kappa - ST(f, g, \alpha; \beta)$, then from (1.4), we have

$$Re\left\{\frac{z(f*g)'(z)}{(f*g)(z)} - \alpha\right\} > \kappa \left|\frac{z(f*g)'(z)}{(f*g)(z)} - \beta\right|,$$

thus we have

$$Re \left\{ \frac{\left(1-\alpha\right) + \sum_{n=2}^{\infty} (n-\alpha)b_n a_n z^{n-1}}{1+\sum_{n=2}^{\infty} b_n a_n z^{n-1}} \right\}$$
(2.12)
> $\kappa \left| \frac{\left(1-\beta\right) + \sum_{n=2}^{\infty} (n-\beta)b_n a_n z^{n-1}}{1+\sum_{n=2}^{\infty} b_n a_n z^{n-1}} \right|.$

Since $f(z) \in V$, then f(z) lies in the class $V(\theta_n, \delta)$ for some sequences $\{\theta_n\}$ and real number δ such that

$$\theta_n + (n-1)\delta \equiv \pi(mod2\pi) \ (n \ge 2).$$

Setting $z = re^{i\delta}$ in (2.12), then we obtain

$$\frac{(1-\alpha) - \sum_{n=2}^{\infty} (n-\alpha)b_n |a_n| r^{n-1}}{1 - \sum_{n=2}^{\infty} b_n |a_n| r^{n-1}}$$

$$> \kappa \left[\frac{(1-\beta) + \sum_{n=2}^{\infty} (n-\beta)b_n |a_n| r^{n-1}}{1 - \sum_{n=2}^{\infty} b_n |a_n| r^{n-1}} \right]$$

Letting $r \to 1^-$, then we have the inequality (2.11). Hence the proof of Theorem 2.3 is completed.

Corollary 2.4. If
$$f(z) \in \kappa - VST(f, g, \alpha; \beta)$$
, then
$$|a_n| \leq \frac{(1-\alpha) - \kappa(1-\beta)}{[\kappa(n-\beta) + (n-\alpha)]b_n} (n \geq 2).$$
(2.13)

The inequality holds for the function

$$f(z) = z + \frac{(1-\alpha) - \kappa(1-\beta)}{[\kappa(n-\beta) + (n-\alpha)]b_n} e^{i\theta_n} z^n (n \ge 2; z \in \mathbb{U}).$$

$$(2.14)$$

Using the same technique used in Theorem 2.3 we get the following theorem.

Theorem 2.5. Let f(z) be of the form (1.1), then $f(z) \in \kappa - VCT(f, g, \alpha; \beta)$ if and only if

$$\sum_{n=2}^{\infty} n[\kappa(n-\beta) + n - \alpha] b_n |a_n| < (1-\alpha) - \kappa(1-\beta).$$
(2.15)

Corollary 2.6. If $f(z) \in \kappa - VCT(f, g, \alpha; \beta)$, then

$$|a_n| \le \frac{(1-\alpha) - \kappa(1-\beta)}{n[\kappa(n-\beta) + (n-\alpha)]b_n} (n \ge 2).$$

$$(2.16)$$

The inequality holds for the function

$$f(z) = z + \frac{(1-\alpha) - \kappa(1-\beta)}{n[\kappa(n-\beta) + (n-\alpha)]b_n} e^{i\theta_n} z^n (n \ge 2; z \in \mathbb{U}).$$

$$(2.17)$$

3. DISTORTION THEOREMS

Theorem 3.1. Let the function f(z) defined (1.1) be in the class $\kappa - VST(f, g, \alpha; \beta)$. Then

$$|z| - \frac{(1-\alpha) - \kappa(1-\beta)}{[\kappa(2-\beta) + (2-\alpha)]b_2} |z|^2 \le |f(z)| \le |z| + \frac{(1-\alpha) - \kappa(1-\beta)}{[\kappa(2-\beta) + (2-\alpha)]b_2} |z|^2.$$
(3.1)

The result is sharp.

Proof. We employ the same technique as used by Silverman [6]. In view of Theorem 2.3, since

$$\Phi(n) = [\kappa(n-\beta) + (n-\alpha)]b_n, \qquad (3.2)$$

is an increasing function of $n(n \ge 2)$, we have

$$\Phi(2)\sum_{n=2}^{\infty}|a_n| \le \sum_{k=2}^{\infty}\Phi(n)|a_n| \le (1-\alpha) - \kappa(1-\beta),$$
(3.3)

that is

$$\sum_{n=2}^{\infty} |a_n| \le \frac{(1-\alpha) - \kappa(1-\beta)}{\Phi(2)}.$$
(3.4)

Thus, we have

$$|f(z)| \le |z| + |z|^2 \sum_{n=2}^{\infty} |a_n| \le |z| + \frac{(1-\alpha) - \kappa(1-\beta)}{[\kappa(2-\beta) + (2-\alpha)]b_2} |z|^2.$$
(3.5)

Similarly, we get

$$|f(z)| \ge |z| - |z|^2 \sum_{n=2}^{\infty} |a_n|$$

$$\ge |z| - \frac{(1-\alpha) - \kappa(1-\beta)}{[\kappa(2-\beta) + (2-\alpha)]b_2} |z|^2.$$
(3.6)

This completes the proof of Theorem 3.1. Finally the result is sharp for the function:

$$f(z) = z + \frac{(1-\alpha) - \kappa(1-\beta)}{[\kappa(2-\beta) + (2-\alpha)]b_2} z^2 e^{i\theta_2} z^2,$$
(3.7)

at $z = \pm |z| e^{i\theta_2}$.

Corollary 3.2. Under the hypotheses of Theorem 3.1, f(z) is included in a disc with center at the origin and radius r_1 given by

$$r_1 = 1 + \frac{(1-\alpha) - \kappa(1-\beta)}{[\kappa(2-\beta) + (2-\alpha)]b_2}.$$
(3.8)

Theorem 3.3. Let the function f(z) defined by (1.1) be in the class $\kappa - VST(f, g, \alpha; \beta)$. Then

$$1 - \frac{2[(1-\alpha) - \kappa(1-\beta)]}{[\kappa(2-\beta) + (2-\alpha)]b_2} |z| \le |f'(z)| \le 1 + \frac{2[(1-\alpha) - \kappa(1-\beta)]}{[\kappa(2-\beta) + (2-\alpha)]b_2} |z|.$$
(3.9)

The result is sharp.

Proof. Similarly for $\Phi(n)$ defined by (3.2) it is clear that $\frac{\Phi(n)}{n}$ is an increasing function of $n(n \ge 2)$, in view of Theorem 2.3, we have

$$\frac{\Phi(2)}{2} \sum_{n=2}^{\infty} n |a_n| \le \sum_{n=2}^{\infty} \frac{n\Phi(n)}{n} |a_n| \le (1-\alpha) - \kappa(1-\beta),$$
(3.10)

that is

$$\sum_{n=2}^{\infty} n |a_n| \le \frac{2[(1-\alpha) - \kappa(1-\beta)]}{\Phi(2)}.$$
(3.11)

Thus, we have

$$\begin{aligned} f'(z)| &\leq 1 + |z| \sum_{n=2}^{\infty} n |a_n| \\ &\leq 1 + \frac{2[(1-\alpha) - \kappa(1-\beta)]}{[\kappa(2-\beta) + (2-\alpha)]b_2} |z|. \end{aligned}$$
(3.12)

Similarly,

$$|f'(z)| \geq 1 - |z| \sum_{n=2}^{\infty} n |a_n|$$

$$\geq 1 - \frac{2[(1-\alpha) - \kappa(1-\beta)]}{[\kappa(2-\beta) + (2-\alpha)]b_2} |z|.$$
(3.13)

Finally, we can see that the assertions of Theorem 3.3 are sharp for the function f(z) defined by (3.7). This completes the proof of the Theorem 3.3.

Corollary 3.4. Under the hypotheses of Theorem 3.3, f'(z) is included in a disc with center at origin and radius r_2 given by

$$r_2 = 1 + \frac{2[(1-\alpha) - \kappa(1-\beta)]}{[\kappa(2-\beta) + (2-\alpha)]b_2}.$$
(3.14)

Using the same technique used in Theorems 3.1 and 3.3 we get the following theorems.

Theorem 3.5. Let the function f(z) defined (1.1) be in the class $\kappa - VCT(f, g, \alpha; \beta)$. Then

$$|z| - \frac{(1-\alpha) - \kappa(1-\beta)}{2[\kappa(2-\beta) + (2-\alpha)]b_2} |z|^2 \le |f(z)| \le |z| + \frac{(1-\alpha) - \kappa(1-\beta)}{2[\kappa(2-\beta) + (2-\alpha)]b_2} |z|^2.$$
(3.15)

The result is sharp for following function

$$f(z) = z + \frac{(1-\alpha) - \kappa(1-\beta)}{2[\kappa(2-\beta) + (2-\alpha)]b_2} |z|^2 e^{i\theta_2} z^2,$$
(3.16)

Theorem 3.6. Let the function f(z) defined by (1.1) be in the class $\kappa - VCT(f, g, \alpha; \beta)$. Then

$$1 - \frac{(1-\alpha) - \kappa(1-\beta)}{[\kappa(2-\beta) + (2-\alpha)]b_2} |z| \le |f'(z)| \le 1 + \frac{(1-\alpha) - \kappa(1-\beta)}{[\kappa(2-\beta) + (2-\alpha)]b_2} |z|.$$
(3.17)

The result is sharp for function given by (3.16).

4. Extreme Points

Theorem 4.1. Let the function f(z) defined by (1.1) be in the class $\kappa - VST(f, g, \alpha; \beta)$, with $\arg(a_n) = \theta_n$, where $\theta_n + (n-1)\delta \equiv \pi (mod 2\pi)(n \geq 2)$. Let

$$f_1(z) = z$$

and

$$f_n(z) = z + \frac{(1-\alpha) - \kappa(1-\beta)}{[\kappa(n-\beta) + (n-\alpha)]b_n} e^{i\theta_n} z^n (n \ge 2; z \in \mathbb{U}).$$

$$\tag{4.1}$$

Then $f(z) \in \kappa - VST(f, g, \alpha; \beta)$ if and only if f(z) can be expressed in the form

$$f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z), \tag{4.2}$$

where $\lambda_n \geq 0$ and $\sum_{n=1}^{\infty} \lambda_n = 1$.

Proof. If f(z) is given by (4.2), with $\lambda_n \ge 0$ and $\sum_{n=1}^{\infty} \lambda_n = 1$, then

$$f(z) = \sum_{n=1}^{\infty} \lambda_n f_n(z) = \lambda_1 f_1(z) + \sum_{n=2}^{\infty} \lambda_n f_n(z).$$

$$= \left(1 - \sum_{n=2}^{\infty} \lambda_n\right) z + \sum_{n=2}^{\infty} \frac{(1-\alpha) - \kappa(1-\beta)}{[\kappa(n-\beta) + (n-\alpha)] b_n} \lambda_n e^{i\theta_n} z^n$$

$$= z + \sum_{n=2}^{\infty} \frac{(1-\alpha) - \kappa(1-\beta)}{[\kappa(n-\beta) + (n-\alpha)] b_n} \lambda_n e^{i\theta_n} z^n.$$
 (4.3)

But according to (2.11), we see that

$$\sum_{n=2}^{\infty} [\kappa(n-\beta) + (n-\alpha)] b_n \cdot \left| \frac{(1-\alpha) - \kappa(1-\beta)}{[\kappa(n-\beta) + (n-\alpha)] b_n} \lambda_n e^{i\theta_n} \right|$$

$$= \sum_{n=2}^{\infty} [\kappa(n-\beta) + (n-\alpha)] b_n \cdot \frac{(1-\alpha) - \kappa(1-\beta)}{[\kappa(n-\beta) + (n-\alpha)] b_n} \lambda_n$$

$$= \sum_{n=2}^{\infty} (1-\alpha) - \kappa(1-\beta) \lambda_n = (1-\lambda_1)[(1-\alpha) - \kappa(1-\beta)]$$

$$\leq (1-\alpha) - \kappa(1-\beta). \qquad (4.4)$$

Then f(z) satisfies (2.11), hence $f(z) \in \kappa - VST(f, g, \alpha; \beta)$.

Conversely, let the function f(z) defined by (1.1) be in the class $\kappa - VST(f, g, \alpha; \beta)$, and define

$$\lambda_n = \frac{[\kappa(n-\beta) + (n-\alpha)]b_n}{(1-\alpha) - \kappa(1-\beta)} a_n, n \ge 2$$
$$\lambda_1 = 1 - \sum_{n=2}^{\infty} \lambda_n.$$

Form Theorem 2.3, $\sum_{n=2}^{\infty} \lambda_n \leq 1$ and so $\lambda_1 \geq 0$. Since $\lambda_n f_n(z) = \lambda_n z + a_n z^n$, then

$$\sum_{n=1}^{\infty} \lambda_n f_n(z) = z + \sum_{n=2}^{\infty} a_n z^n = f(z).$$

This completes the proof of Theorem 4.1.

Finally using the same technique used in Theorem 4.1 we get the following theorem.

Theorem 4.2. Let the function f(z) defined by (1.1) be in the class $\kappa - VCT(f, g, \alpha; \beta)$, with $\arg(a_n) = \theta_n$, where $\theta_n + (n-1)\delta \equiv \pi (mod 2\pi)(n \geq 2)$. Define

$$f_1(z) = z$$

and

$$f_n(z) = z + \frac{(1-\alpha) - \kappa(1-\beta)}{n[\kappa(n-\beta) + (n-\alpha)]b_n} e^{i\theta_n} z^n (n \ge 2; z \in \mathbb{U}).$$

Then $f(z) \in \kappa - VCT(f, g, \alpha; \beta)$ if and only if f(z) can be expressed in the form (4.2), where $\lambda_n \geq 0$ and $\sum_{n=1}^{\infty} \lambda_k = 1$.

Remark 4.3. Taking $g(z) = \frac{z}{1-z}$ or $(b_n = 1, \text{with } n \ge 2)$ in our results, we obtain the results obtained by El-Ashwah et al. [2].

Remark 4.4. Specializing the function g(z) in our results, we obtain new results associated to the subclasses $\kappa - ST(m, \alpha, \beta)$, $\kappa - UCV(m, \alpha, \beta)$, $\kappa - TS_{q,s}(n, \alpha, \beta)$ and $\kappa - TC_{q,s}(n, \alpha, \beta)$ defined in the introduction.

References

- Y.J. Sim, O.S. Kwon, N.E. Cho, H.M. Srivastava, Some classes of analytic functions associated with conic regions, Taiwanese J. Math. 16 (1) (2012) 387–408.
- [2] R.M. El-Ashwah, M.K. Aouf, A.A. Hassan, A.H. Hassan, Certain new classes of analytic functions with varying arguments, J. Complex Analysis 2013 (2013) Article ID 958210.
- [3] A. Cãtas, G.I. Oros, G. Oros, Differential subordinations associated with multiplier transformations, Abstract Appl. Anal. 2008 (2008) Article ID 845724.
- [4] F.M. Al-Oboudi, On univalent functions defined by generalized Sălăgean operator, Internat. J. Math. Math. Sci. 27 (2004) 1429–1436.
- [5] N.E. Cho, T.H. Kim, Multiplier transformation and strongly close-to-convex functions, Bull. Korean Math. Soc. 40 (3) (2003) 399–410.
- [6] N.E. Cho, H.M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling 37 (1–2) (2003) 39–49.
- [7] G.S. Sălăgean, Subclasses of univalent functions, Complex Analysis, Lecture Notes in Mathematics, Vol. 1013, Springer, Berlin, Heidelberg (1983), 362–372.
- [8] J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999) 1–13.
- [9] H. Sliverman, Univalent functions with varying arguments, Houston J. Math. 7 (2) (1981) 283–287.