Certain Classes of Analytic Functions Defined by Convolution with Varying Argument of Coefficients

Mohamed Kamal Aouf, Adela Mostafa and Aisha Hussain*

Department of Mathematics, Faculty of Science, Mansoura University, Egypt
e-mail : mkaouf127@yahoo.com (M. K. Aouf); adelaeg254@yahoo.com (A. Mostafa); aisha84_hussain@yahoo.com (A. Hussain)

Abstract

In this paper we introduce the classes $\kappa-S T(f, g, \alpha ; \beta)$ and $\kappa-V C T(f, g, \alpha ; \beta)$, of $\kappa-$ uniformly starlike functions of order α and type β and the $\kappa-$ uniformly convex functions of order α and type β with varying arguments of coefficient, respectively. Moreover, we give coefficient estimates, distortion theorems and extreme points for functions belonging to these classes.

MSC: 30C45
Keywords: analytic functions; κ-uniformly starlike; κ-uniformly convex; convolution; varying arguments; extreme points

Submission date: 11.07.2017 / Acceptance date: 05.10.2019

1. Introduction

Let \mathcal{A} denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

that are analytic and univalent in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. For $f(z) \in \mathcal{A}$ given by (1.1) and $g \in \mathcal{A}$ given by

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \tag{1.2}
\end{equation*}
$$

the Hadamard product (or convolution) $(f * g)(z)$ of $f(z)$ and $g(z)$ is defined by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z) . \tag{1.3}
\end{equation*}
$$

[^0]Definition 1.1. Let $\kappa-S T(f, g, \alpha ; \beta)$ denote the subclass of \mathcal{A} consisting of functions $f(z)$ of the form (1.1) and function $g(z)$ of the form (1.2) and satisfy the following inequality:

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{z(f * g)^{\prime}(z)}{(f * g)(z)}-\alpha\right\}>\kappa\left|\frac{z(f * g)^{\prime}(z)}{(f * g)(z)}-\beta\right| \\
&(0 \leq \alpha<\beta \leq 1 ; \kappa(1-\beta)<(1-\alpha) ; z \in \mathbb{U})
\end{aligned}
$$

Also Let $\kappa-C T(f, g, \alpha ; \beta)$ denote the subclass of \mathcal{A} consisting of functions $f(z)$ of the form (1.1) and function $g(z)$ of the form (1.2) and satisfy the following inequality:

$$
\begin{align*}
\operatorname{Re}\left\{1+\frac{z(f * g)^{\prime \prime}(z)}{(f * g)^{\prime}(z)}-\alpha\right\} & >\kappa\left|1+\frac{z(f * g)^{\prime \prime}(z)}{(f * g)^{\prime}(z)}-\beta\right| \tag{1.5}\\
(0 & \leq \alpha<\beta \leq 1 ; \kappa(1-\beta)<(1-\alpha) ; z \in \mathbb{U}) .
\end{align*}
$$

It follows from (1.4) and (1.5) that

$$
\begin{equation*}
f(z) \in \kappa-C T(f, g ; \alpha, \beta) \Longleftrightarrow z f^{\prime}(z) \in \kappa-S T(f, g ; \alpha, \beta) \tag{1.6}
\end{equation*}
$$

We note that
(i) $\kappa-S T\left(f, \frac{z}{1-z}, \alpha ; \beta\right)=\kappa-S T(\alpha, \beta)(0 \leq \alpha<\beta \leq 1, \kappa(1-\beta)<(1-\alpha) ; z \in \mathbb{U})$ (see Sim et al. [1] and El-Ashwah et al. [2]).
(ii) $\kappa-C T\left(f, \frac{z}{1-z}, \alpha ; \beta\right)=\kappa-U C V(\alpha, \beta)(0 \leq \alpha<\beta \leq 1, \kappa(1-\beta)<(1-\alpha) ; z \in$ $\mathbb{U})$ (see Sim et al. [1] and El-Ashwah et al. [2]).

We also note that, for different choices of $g(z)$ we have the following new classes:
(i) $\kappa-S T\left(f, z+\sum_{n=2}^{\infty}\left(\frac{1+l+\lambda(n-1)}{1+l}\right)^{m} z^{n}, \alpha ; \beta\right)=\kappa-S T(m, \alpha, \beta)$

$$
\left\{\begin{array}{c}
f \in \mathcal{A}: \operatorname{Re}\left\{\frac{z\left(I^{m}(\lambda, l) f(z)\right)^{\prime}}{I^{m}(\lambda, l) f(z)}-\alpha\right\}>\kappa\left|\frac{z\left(I^{m}(\lambda, l) f(z)\right)^{\prime}}{I^{m}(\lambda, l) f(z)}-\beta\right|, \\
(0 \leq \alpha<\beta \leq 1, \kappa(1-\beta)<(1-\alpha), \lambda \geq 0, l \geq 0, \\
\left.m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mathbb{N}=\{1,2, \ldots\} ; z \in \mathbb{U}\right)
\end{array}\right\}
$$

(ii) $\kappa-C T\left(f, z+\sum_{n=2}^{\infty}\left(\frac{1+l+\lambda(n-1)}{1+l}\right)^{m} z^{n}, \alpha ; \beta\right)=\kappa-U C V(m, \alpha, \beta)$

$$
\left\{\begin{array}{c}
f \in \mathcal{A}: \operatorname{Re}\left\{1+\frac{z\left(I^{m}(\lambda, l) f(z)\right)^{\prime \prime}}{\left(I^{m}(\lambda, l) f(z)\right)^{\prime}}\right\}>\kappa\left|1+\frac{z\left(I^{m}(\lambda, l) f(z)\right)^{\prime \prime}}{\left(I^{m}(\lambda, l) f(z)\right)^{\prime}}-\beta\right| \\
\left(0 \leq \alpha<\beta \leq 1, \kappa(1-\beta)<(1-\alpha), \lambda \geq 0, l \geq 0, m \in \mathbb{N}_{0} ; z \in \mathbb{U}\right)
\end{array}\right\},
$$

where the operator $I^{m}(\lambda, l)$ was introduced and studied by Cãtas et al. [3], which generalizes other operators see ([4-7]).
(iii) $\kappa-S T\left(f, z+\sum_{n=2}^{\infty} \Omega_{n}\left(\alpha_{1}\right) z^{n} ; \alpha, \beta\right)=\kappa-T S_{q, s}(n, \alpha, \beta)$,

$$
\left\{\begin{array}{l}
f \in \mathcal{A}: \operatorname{Re}\left\{\frac{z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{H_{q, s}\left(\alpha_{1}\right) f(z)}-\alpha\right\} \\
>\kappa\left|\frac{z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}{\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)}-\beta\right|(z \in \mathbb{U}),
\end{array}\right\}
$$

where

$$
\begin{equation*}
\Omega_{n}\left(\alpha_{1}\right)=\frac{\left(\alpha_{1}\right)_{n-1} \ldots\left(\alpha_{q}\right)_{n-1}}{\left(\beta_{1}\right)_{n-1} \ldots\left(\beta_{s}\right)_{n-1}} \frac{1}{(n-1)!} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{align*}
& (a)_{k}=\frac{\Gamma(a+k)}{\Gamma(a)}=\left\{\begin{array}{ll}
1 & k=0 \\
a(a+1)(a+2) \ldots(a+k-1), & k \in \mathbb{N}
\end{array},\right. \tag{1.8}\\
& \left(0 \leq \alpha<1, \beta \geq 0, \alpha_{i} \in \mathbb{C}(i=1,2, \ldots q) \text { and } \beta_{j} \in \mathbb{C} \backslash\{-1,-2, \ldots\},\right. \\
& j=1,2, \ldots s, z \in \mathbb{U}) ; \\
& (\text { iv }) \kappa-S T\left(f, z+\sum_{n=2}^{\infty} \Omega_{n}\left(\alpha_{1}\right) z^{n} ; \alpha, \beta\right)=\kappa-T C_{q, s}(n, \alpha, \beta), \\
& \left\{\begin{array}{l}
f \in \mathcal{A}: \operatorname{Re}\left\{1+\frac{z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime \prime}}{\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}-\alpha\right\} \\
>\kappa\left|1+\frac{z\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime \prime}}{\left(H_{q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}}-\beta\right|(z \in \mathbb{U}),
\end{array}\right\}
\end{align*}
$$

where $\Omega_{n}\left(\alpha_{1}\right)$ is given by (1.7) and $H_{q, s}\left(\alpha_{1}\right)$ was introduced and studied by DziokSrivastava [8].

Silverman [9] defined the class $V\left(\theta_{n}\right)$ of univalent functions in the form (1.1) with varying arguments of coefficient as follows:

Definition 1.2. [9] A function $f(z)$ of the form (1.1) is said to be in the class $V\left(\theta_{n}\right)$ if $f(z) \in \mathcal{A}$ and $\arg \left(a_{n}\right)=\theta_{n}$ for all $n \geq 2$. If furthermore there exists a real number δ such that $\theta_{n}+(n-1) \delta \equiv \pi(\bmod 2 \pi)$ for all $n \geq 2$, then $f(z)$ is said to be in the class $V\left(\theta_{n}, \delta\right)$. The union of $V\left(\theta_{n}, \delta\right)$ taken over all possible sequences $\left\{\theta_{n}\right\}$ and possible real numbers δ is denoted by V.

Let $\kappa-V S T(f, g, \alpha ; \beta)$ denote the subclass of V consisting of functions $f(z) \in \kappa-$ $S T(f, g, \alpha ; \beta)$. Also let $\kappa-V C T(f, g, \alpha ; \beta)$ denote the subclass of V consisting of functions $f(z) \in \kappa-C T(f, g, \alpha ; \beta)$.

In this paper we obtain coefficient bounds for functions in the classes $\kappa-V S T(f, g, \alpha ; \beta)$ and $\kappa-V C T(f, g, \alpha ; \beta)$, further we obtain distortion bounds and the extreme points for functions in these classes.

2. Coefficient Estimates

Unless otherwise mentioned, we assume in the reminder of this paper that $0 \leq \alpha<$ $\beta \leq 1, \kappa(1-\beta)<(1-\alpha), g(z)$ is given by (1.2) with $b_{n}>0(n \geq 2)$ and $z \in \mathbb{U}$. We shall need the following lemmas.

Theorem 2.1. If the function $f(z)$ given by (1.1) satisfies the condition

$$
\begin{equation*}
\sum_{n=2}^{\infty}[\kappa(n-\beta)+(n-\alpha)]\left|a_{n}\right| b_{n} \leq 1-\alpha-\kappa(1-\beta) \tag{2.1}
\end{equation*}
$$

Then $f(z) \in \kappa-S T(f, g, \alpha ; \beta)$.

Proof. It is sufficient to show that inequality (1.4) holds true. Using the fact that

$$
\begin{equation*}
\operatorname{Re}\{w-\alpha\}>\kappa|w-\beta| \Longleftrightarrow \operatorname{Re}\left\{\left(1+\kappa e^{i \theta}\right) w-\beta \kappa e^{i \theta}\right\}>\alpha \tag{2.2}
\end{equation*}
$$

then inequality (1.4) may be written as

$$
\begin{equation*}
\operatorname{Re}\left\{\left(1+\kappa e^{i \theta}\right) \frac{z(f * g)^{\prime}(z)}{(f * g)(z)}-\beta \kappa e^{i \theta}\right\}>\alpha \tag{2.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{A(z)}{B(z)}\right\}>\alpha \tag{2.4}
\end{equation*}
$$

where $A(z)=\left(1+\kappa e^{i \theta}\right) z(f * g)^{\prime}(z)-\beta \kappa e^{i \theta}(f * g)(z)$ and $B(z)=(f * g)(z)$. The condition (1.4) or (2.4) is equivalent to

$$
\begin{equation*}
|A(z)+(1-\alpha) B(z)|-|A(z)-(1+\alpha) B(z)| \geq 0 \tag{2.5}
\end{equation*}
$$

We note that

$$
\begin{align*}
|A(z)+(1-\alpha) B(z)|= & \left|\left[(1-\beta) \kappa e^{i \theta}+2-\alpha\right] z-\sum_{n=2}^{\infty}\left[(\beta-n) \kappa e^{i \theta}+\alpha-n-1\right] b_{n} a_{n} z^{n}\right| \\
\geq & {[-\kappa(1-\beta)+2-\alpha]|z| } \\
& -\sum_{n=2}^{\infty}[(n-\beta) \kappa+n-\alpha+1] b_{n}\left|a_{n}\right||z|^{n} \tag{2.6}
\end{align*}
$$

and

$$
\begin{align*}
|A(z)-(1+\alpha) B(z)|= & \left|\left[(1-\beta) \kappa e^{i \theta}-\alpha\right] z+\sum_{n=2}^{\infty}\left[(n-\beta) \kappa e^{i \theta}+n-\alpha-1\right] b_{n} a_{n} z^{n}\right| \\
\leq & {[\kappa(1-\beta)+\alpha]|z| } \\
& +\operatorname{sum}_{n=2}^{\infty}[(n-\beta) \kappa+n-\alpha-1] b_{n}\left|a_{n}\right||z|^{n} . \tag{2.7}
\end{align*}
$$

Using (2.6) and (2.7), we obtain the following inequality:

$$
\begin{align*}
& |A(z)+(1-\alpha) B(z)|-|A(z)-(1+\alpha) B(z)| \tag{2.8}\\
\geq & 2[(1-\alpha)-\kappa(1-\beta)]|z|-2 \sum_{n=2}^{\infty}[(n-\beta) \kappa+(n-\alpha)] b_{n}\left|a_{n}\right||z|^{n} .
\end{align*}
$$

The expression $|A(z)+(1-\alpha) B(z)|-|A(z)-(1+\alpha) B(z)|$ is bounded below by 0 if

$$
2[(1-\alpha)-\kappa(1-\beta)]|z|-2 \sum_{n=2}^{\infty}[\kappa(n-\beta)+(n-\alpha)] b_{n}\left|a_{n}\right||z|^{n}>0
$$

or

$$
\begin{equation*}
\sum_{n=2}^{\infty}[\kappa(n-\beta)+(n-\alpha)] b_{n}\left|a_{n}\right|<(1-\alpha)-\kappa(1-\beta) . \tag{2.9}
\end{equation*}
$$

Hence the proof of Theorem 2.1 is completed.
By using (1.6) and (2.1) we can obtain the following theorem.
Theorem 2.2. If the function $f(z)$ given by (1.1) satisfies the condition

$$
\begin{equation*}
\sum_{n=2}^{\infty} n[\kappa(n-\beta)+(n-\alpha)] b_{n}\left|a_{n}\right|<(1-\alpha)-\kappa(1-\beta) . \tag{2.10}
\end{equation*}
$$

Then $f(z) \in \kappa-C T(f, g, \alpha ; \beta)$.

Theorem 2.3. Let $f(z)$ be defined by (1.1), then $f(z) \in \kappa-V S T(f, g, \alpha ; \beta)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty}[\kappa(n-\beta)+(n-\alpha)] b_{n}\left|a_{n}\right|<(1-\alpha)-\kappa(1-\beta) \tag{2.11}
\end{equation*}
$$

Proof. In view of Theorem 2.1, we need only to show that the function $f(z) \in \kappa-$ $\operatorname{VST}(f, g, \alpha ; \beta)$ satisfies the coefficient inequality (2.11). If $f(z) \in \kappa-S T(f, g, \alpha ; \beta)$, then from (1.4), we have

$$
\operatorname{Re}\left\{\frac{z(f * g)^{\prime}(z)}{(f * g)(z)}-\alpha\right\}>\kappa\left|\frac{z(f * g)^{\prime}(z)}{(f * g)(z)}-\beta\right|,
$$

thus we have

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{(1-\alpha)+\sum_{n=2}^{\infty}(n-\alpha) b_{n} a_{n} z^{n-1}}{1+\sum_{n=2}^{\infty} b_{n} a_{n} z^{n-1}}\right\} \tag{2.12}\\
> & \kappa\left|\frac{(1-\beta)+\sum_{n=2}^{\infty}(n-\beta) b_{n} a_{n} z^{n-1}}{1+\sum_{n=2}^{\infty} b_{n} a_{n} z^{n-1}}\right|
\end{align*}
$$

Since $f(z) \in V$, then $f(z)$ lies in the class $V\left(\theta_{n}, \delta\right)$ for some sequences $\left\{\theta_{n}\right\}$ and real number δ such that

$$
\theta_{n}+(n-1) \delta \equiv \pi(\bmod 2 \pi)(n \geq 2)
$$

Setting $z=r e^{i \delta}$ in (2.12), then we obtain

$$
\begin{gathered}
\frac{(1-\alpha)-\sum_{n=2}^{\infty}(n-\alpha) b_{n}\left|a_{n}\right| r^{n-1}}{1-\sum_{n=2}^{\infty} b_{n}\left|a_{n}\right| r^{n-1}} \\
> \\
\kappa\left[\frac{(1-\beta)+\sum_{n=2}^{\infty}(n-\beta) b_{n}\left|a_{n}\right| r^{n-1}}{1-\sum_{n=2}^{\infty} b_{n}\left|a_{n}\right| r^{n-1}}\right] .
\end{gathered}
$$

Letting $r \rightarrow 1^{-}$, then we have the inequality (2.11). Hence the proof of Theorem 2.3 is completed.

Corollary 2.4. If $f(z) \in \kappa-V S T(f, g, \alpha ; \beta)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{(1-\alpha)-\kappa(1-\beta)}{[\kappa(n-\beta)+(n-\alpha)] b_{n}}(n \geq 2) . \tag{2.13}
\end{equation*}
$$

The inequality holds for the function

$$
\begin{equation*}
f(z)=z+\frac{(1-\alpha)-\kappa(1-\beta)}{[\kappa(n-\beta)+(n-\alpha)] b_{n}} e^{i \theta_{n}} z^{n}(n \geq 2 ; z \in \mathbb{U}) \tag{2.14}
\end{equation*}
$$

Using the same technique used in Theorem 2.3 we get the following theorem.

Theorem 2.5. Let $f(z)$ be of the form (1.1), then $f(z) \in \kappa-V C T(f, g, \alpha ; \beta)$ if and only if

$$
\begin{equation*}
\sum_{n=2}^{\infty} n[\kappa(n-\beta)+n-\alpha] b_{n}\left|a_{n}\right|<(1-\alpha)-\kappa(1-\beta) . \tag{2.15}
\end{equation*}
$$

Corollary 2.6. If $f(z) \in \kappa-V C T(f, g, \alpha ; \beta)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{(1-\alpha)-\kappa(1-\beta)}{n[\kappa(n-\beta)+(n-\alpha)] b_{n}}(n \geq 2) \tag{2.16}
\end{equation*}
$$

The inequality holds for the function

$$
\begin{equation*}
f(z)=z+\frac{(1-\alpha)-\kappa(1-\beta)}{n[\kappa(n-\beta)+(n-\alpha)] b_{n}} e^{i \theta_{n}} z^{n}(n \geq 2 ; z \in \mathbb{U}) \tag{2.17}
\end{equation*}
$$

3. Distortion Theorems

Theorem 3.1. Let the function $f(z)$ defined (1.1) be in the class $\kappa-\operatorname{VST}(f, g, \alpha ; \beta)$. Then

$$
\begin{equation*}
|z|-\frac{(1-\alpha)-\kappa(1-\beta)}{[\kappa(2-\beta)+(2-\alpha)] b_{2}}|z|^{2} \leq|f(z)| \leq|z|+\frac{(1-\alpha)-\kappa(1-\beta)}{[\kappa(2-\beta)+(2-\alpha)] b_{2}}|z|^{2} . \tag{3.1}
\end{equation*}
$$

The result is sharp.
Proof. We employ the same technique as used by Silverman [6]. In view of Theorem 2.3, since

$$
\begin{equation*}
\Phi(n)=[\kappa(n-\beta)+(n-\alpha)] b_{n}, \tag{3.2}
\end{equation*}
$$

is an increasing function of $n(n \geq 2)$, we have

$$
\begin{equation*}
\Phi(2) \sum_{n=2}^{\infty}\left|a_{n}\right| \leq \sum_{k=2}^{\infty} \Phi(n)\left|a_{n}\right| \leq(1-\alpha)-\kappa(1-\beta) \tag{3.3}
\end{equation*}
$$

that is

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left|a_{n}\right| \leq \frac{(1-\alpha)-\kappa(1-\beta)}{\Phi(2)} \tag{3.4}
\end{equation*}
$$

Thus, we have

$$
\begin{equation*}
|f(z)| \leq|z|+|z|^{2} \sum_{n=2}^{\infty}\left|a_{n}\right| \leq|z|+\frac{(1-\alpha)-\kappa(1-\beta)}{[\kappa(2-\beta)+(2-\alpha)] b_{2}}|z|^{2} \tag{3.5}
\end{equation*}
$$

Similarly, we get

$$
\begin{align*}
& |f(z)| \geq|z|-|z|^{2} \sum_{n=2}^{\infty}\left|a_{n}\right| \\
& \geq|z|-\frac{(1-\alpha)-\kappa(1-\beta)}{[\kappa(2-\beta)+(2-\alpha)] b_{2}}|z|^{2} \tag{3.6}
\end{align*}
$$

This completes the proof of Theorem 3.1. Finally the result is sharp for the function:

$$
\begin{equation*}
f(z)=z+\frac{(1-\alpha)-\kappa(1-\beta)}{[\kappa(2-\beta)+(2-\alpha)] b_{2}} z^{2} e^{i \theta_{2}} z^{2} \tag{3.7}
\end{equation*}
$$

at $z= \pm|z| e^{i \theta_{2}}$.

Corollary 3.2. Under the hypotheses of Theorem 3.1, $f(z)$ is included in a disc with center at the origin and radius r_{1} given by

$$
\begin{equation*}
r_{1}=1+\frac{(1-\alpha)-\kappa(1-\beta)}{[\kappa(2-\beta)+(2-\alpha)] b_{2}} . \tag{3.8}
\end{equation*}
$$

Theorem 3.3. Let the function $f(z)$ defined by (1.1) be in the class $\kappa-V S T(f, g, \alpha ; \beta)$. Then

$$
\begin{equation*}
1-\frac{2[(1-\alpha)-\kappa(1-\beta)]}{[\kappa(2-\beta)+(2-\alpha)] b_{2}}|z| \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2[(1-\alpha)-\kappa(1-\beta)]}{[\kappa(2-\beta)+(2-\alpha)] b_{2}}|z| . \tag{3.9}
\end{equation*}
$$

The result is sharp.
Proof. Similarly for $\Phi(n)$ defined by (3.2) it is clear that $\frac{\Phi(n)}{n}$ is an increasing function of $n(n \geq 2)$, in view of Theorem 2.3, we have

$$
\begin{equation*}
\frac{\Phi(2)}{2} \sum_{n=2}^{\infty} n\left|a_{n}\right| \leq \sum_{n=2}^{\infty} \frac{n \Phi(n)}{n}\left|a_{n}\right| \leq(1-\alpha)-\kappa(1-\beta), \tag{3.10}
\end{equation*}
$$

that is

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leq \frac{2[(1-\alpha)-\kappa(1-\beta)]}{\Phi(2)} \tag{3.11}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
\left|f^{\prime}(z)\right| & \leq 1+|z| \sum_{n=2}^{\infty} n\left|a_{n}\right| \\
& \leq 1+\frac{2[(1-\alpha)-\kappa(1-\beta)]}{[\kappa(2-\beta)+(2-\alpha)] b_{2}}|z| . \tag{3.12}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\left|f^{\prime}(z)\right| & \geq 1-|z| \sum_{n=2}^{\infty} n\left|a_{n}\right| \\
& \geq 1-\frac{2[(1-\alpha)-\kappa(1-\beta)]}{[\kappa(2-\beta)+(2-\alpha)] b_{2}}|z| . \tag{3.13}
\end{align*}
$$

Finally, we can see that the assertions of Theorem 3.3 are sharp for the function $f(z)$ defined by (3.7). This completes the proof of the Theorem 3.3.

Corollary 3.4. Under the hypotheses of Theorem $3.3, f^{\prime}(z)$ is included in a disc with center at origin and radius r_{2} given by

$$
\begin{equation*}
r_{2}=1+\frac{2[(1-\alpha)-\kappa(1-\beta)]}{[\kappa(2-\beta)+(2-\alpha)] b_{2}} . \tag{3.14}
\end{equation*}
$$

Using the same technique used in Theorems 3.1 and 3.3 we get the following theorems.

Theorem 3.5. Let the function $f(z)$ defined (1.1) be in the class $\kappa-V C T(f, g, \alpha ; \beta)$. Then

$$
\begin{equation*}
|z|-\frac{(1-\alpha)-\kappa(1-\beta)}{2[\kappa(2-\beta)+(2-\alpha)] b_{2}}|z|^{2} \leq|f(z)| \leq|z|+\frac{(1-\alpha)-\kappa(1-\beta)}{2[\kappa(2-\beta)+(2-\alpha)] b_{2}}|z|^{2} . \tag{3.15}
\end{equation*}
$$

The result is sharp for following function

$$
\begin{equation*}
f(z)=z+\frac{(1-\alpha)-\kappa(1-\beta)}{2[\kappa(2-\beta)+(2-\alpha)] b_{2}}|z|^{2} e^{i \theta_{2}} z^{2} \tag{3.16}
\end{equation*}
$$

Theorem 3.6. Let the function $f(z)$ defined by (1.1) be in the class $\kappa-V C T(f, g, \alpha ; \beta)$. Then

$$
\begin{equation*}
1-\frac{(1-\alpha)-\kappa(1-\beta)}{[\kappa(2-\beta)+(2-\alpha)] b_{2}}|z| \leq\left|f^{\prime}(z)\right| \leq 1+\frac{(1-\alpha)-\kappa(1-\beta)}{[\kappa(2-\beta)+(2-\alpha)] b_{2}}|z| \tag{3.17}
\end{equation*}
$$

The result is sharp for function given by (3.16).

4. Extreme Points

Theorem 4.1. Let the function $f(z)$ defined by (1.1) be in the class $\kappa-V S T(f, g, \alpha ; \beta)$, with $\arg \left(a_{n}\right)=\theta_{n}$, where $\theta_{n}+(n-1) \delta \equiv \pi(\bmod 2 \pi)(n \geq 2)$. Let

$$
f_{1}(z)=z
$$

and

$$
\begin{equation*}
f_{n}(z)=z+\frac{(1-\alpha)-\kappa(1-\beta)}{[\kappa(n-\beta)+(n-\alpha)] b_{n}} e^{i \theta_{n}} z^{n}(n \geq 2 ; z \in \mathbb{U}) \tag{4.1}
\end{equation*}
$$

Then $f(z) \in \kappa-\operatorname{VST}(f, g, \alpha ; \beta)$ if and only if $f(z)$ can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z) \tag{4.2}
\end{equation*}
$$

where $\lambda_{n} \geq 0$ and $\sum_{n=1}^{\infty} \lambda_{n}=1$.
Proof. If $f(z)$ is given by (4.2), with $\lambda_{n} \geq 0$ and $\sum_{n=1}^{\infty} \lambda_{n}=1$, then

$$
\begin{align*}
f(z)= & \sum_{n=1}^{\infty} \lambda_{n} f_{n}(z)=\lambda_{1} f_{1}(z)+\sum_{n=2}^{\infty} \lambda_{n} f_{n}(z) . \\
& =\left(1-\sum_{n=2}^{\infty} \lambda_{n}\right) z+\sum_{n=2}^{\infty} \frac{(1-\alpha)-\kappa(1-\beta)}{[\kappa(n-\beta)+(n-\alpha)] b_{n}} \lambda_{n} e^{i \theta_{n}} z^{n} \\
& =z+\sum_{n=2}^{\infty} \frac{(1-\alpha)-\kappa(1-\beta)}{[\kappa(n-\beta)+(n-\alpha)] b_{n}} \lambda_{n} e^{i \theta_{n}} z^{n} . \tag{4.3}
\end{align*}
$$

But according to (2.11), we see that

$$
\begin{align*}
& \sum_{n=2}^{\infty}[\kappa(n-\beta)+(n-\alpha)] b_{n} \cdot\left|\frac{(1-\alpha)-\kappa(1-\beta)}{[\kappa(n-\beta)+(n-\alpha)] b_{n}} \lambda_{n} e^{i \theta_{n}}\right| \\
= & \sum_{n=2}^{\infty}[\kappa(n-\beta)+(n-\alpha)] b_{n} \cdot \frac{(1-\alpha)-\kappa(1-\beta)}{[\kappa(n-\beta)+(n-\alpha)] b_{n}} \lambda_{n} \\
= & \sum_{n=2}^{\infty}(1-\alpha)-\kappa(1-\beta) \lambda_{n}=\left(1-\lambda_{1}\right)[(1-\alpha)-\kappa(1-\beta) \\
\leq & (1-\alpha)-\kappa(1-\beta) . \tag{4.4}
\end{align*}
$$

Then $f(z)$ satisfies (2.11), hence $f(z) \in \kappa-V S T(f, g, \alpha ; \beta)$.
Conversely, let the function $f(z)$ defined by (1.1) be in the class $\kappa-\operatorname{VST}(f, g, \alpha ; \beta)$, and define

$$
\begin{aligned}
& \lambda_{n}=\frac{[\kappa(n-\beta)+(n-\alpha)] b_{n}}{(1-\alpha)-\kappa(1-\beta)} a_{n}, n \geq 2 \\
& \lambda_{1}=1-\sum_{n=2}^{\infty} \lambda_{n} .
\end{aligned}
$$

Form Theorem 2.3, $\sum_{n=2}^{\infty} \lambda_{n} \leq 1$ and so $\lambda_{1} \geq 0$. Since $\lambda_{n} f_{n}(z)=\lambda_{n} z+a_{n} z^{n}$, then

$$
\sum_{n=1}^{\infty} \lambda_{n} f_{n}(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}=f(z)
$$

This completes the proof of Theorem 4.1.
Finally using the same technique used in Theorem 4.1 we get the following theorem.
Theorem 4.2. Let the function $f(z)$ defined by (1.1) be in the class $\kappa-V C T(f, g, \alpha ; \beta)$, with $\arg \left(a_{n}\right)=\theta_{n}$, where $\theta_{n}+(n-1) \delta \equiv \pi(\bmod 2 \pi)(n \geq 2)$. Define

$$
f_{1}(z)=z
$$

and

$$
f_{n}(z)=z+\frac{(1-\alpha)-\kappa(1-\beta)}{n[\kappa(n-\beta)+(n-\alpha)] b_{n}} e^{i \theta_{n}} z^{n}(n \geq 2 ; z \in \mathbb{U})
$$

Then $f(z) \in \kappa-V C T(f, g, \alpha ; \beta)$ if and only if $f(z)$ can be expressed in the form (4.2), where $\lambda_{n} \geq 0$ and $\sum_{n=1}^{\infty} \lambda_{k}=1$.

Remark 4.3. Taking $g(z)=\frac{z}{1-z}$ or ($b_{n}=1$, with $n \geq 2$) in our results, we obtain the results obtained by El-Ashwah et al. [2].
Remark 4.4. Specializing the function $g(z)$ in our results, we obtain new results associated to the subclasses $\kappa-S T(m, \alpha, \beta), \kappa-U C V(m, \alpha, \beta), \kappa-T S_{q, s}(n, \alpha, \beta)$ and $\kappa-T C_{q, s}(n, \alpha, \beta)$ defined in the introduction.

References

[1] Y.J. Sim, O.S. Kwon, N.E. Cho, H.M. Srivastava, Some classes of analytic functions associated with conic regions, Taiwanese J. Math. 16 (1) (2012) 387-408.
[2] R.M. El-Ashwah, M.K. Aouf, A.A. Hassan, A.H. Hassan, Certain new classes of analytic functions with varying arguments, J. Complex Analysis 2013 (2013) Article ID 958210.
[3] A. Cãtas, G.I. Oros, G. Oros, Differential subordinations associated with multiplier transformations, Abstract Appl. Anal. 2008 (2008) Article ID 845724.
[4] F.M. Al-Oboudi, On univalent functions defined by generalized Sălăgean operator, Internat. J. Math. Math. Sci. 27 (2004) 1429-1436.
[5] N.E. Cho, T.H. Kim, Multiplier transformation and strongly close-to-convex functions, Bull. Korean Math. Soc. 40 (3) (2003) 399-410.
[6] N.E. Cho, H.M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling 37 (1-2) (2003) 39-49.
[7] G.S. Sălăgean, Subclasses of univalent functions, Complex Analysis, Lecture Notes in Mathematics, Vol. 1013, Springer, Berlin, Heidelberg (1983), 362-372.
[8] J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999) 1-13.
[9] H. Sliverman, Univalent functions with varying arguments, Houston J. Math. 7 (2) (1981) 283-287.

[^0]: *Corresponding author.

