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1. Introduction

In 1997, Alber and Guerrer-Delabriere [1] introduced the concept of weakly contractive
maps in Hilbert spaces as a generalization of contraction maps and proved the existence
of fixed points of weakly contractive maps in the Hilbert space setting. Rhoades [2]
extended this concept to Banach spaces and proved the existence of fixed points of weakly
contractive maps. In 2009, Dutta and Choudhury [3] proved a fixed point theorem by
introducing a new generalization of weakly contractive maps by using the altering distance
functions. For more works in this line of research we refer [4, 5] and references therein.

Let (X, d) be a metric space. A function f : X → R is said to be lower semi-continuous
at a point x0 in X if, for any sequence {xn} in X with xn → x0 as n→∞, implies that
f(x0) ≤ lim infn→∞ f(xn).
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If f is lower semicontinuous at every point of X, then we say that f is lower semicon-
tinuous on X.

Throughout this paper, we denote R+= [0,∞), Z+, the set of all natural numbers,
Ψ = {ψ : R+ → R+/ ψ is continuous, nondecreasing and ψ(t) = 0⇔ t = 0} and
Φ = {φ : R+ → R+/ φ is lower semi-continuous and φ(t) = 0⇔ t = 0}.

In 1987, Guo and Lakshmikantham [6] introduced the notion of mixed monotone op-
erators. In 2006, Bhaskar and Lakshmikantham[7] introduced the notion of coupled fixed
points and proved some coupled fixed point theorems for a mapping with mixed monotone
property in the setting of partially ordered metric spaces.

In 2009, Harjani, Sadarangani [8] extended the concept of weakly contractive maps to
partially ordered sets and proved fixed point results in the setting of partially ordered
sets.

Definition 1.1. [7] Let (X,�) be a partially ordered set and F : X ×X → X. Then F
is said to have the mixed monotone property if F (x, y) is monotone nondecreasing in x
and monotone nonincreasing in y, i.e., for any x, y in X,
x1, x2 ∈ X, x1 � x2 ⇒ F (x1, y) � F (x2, y) and
y1, y2 ∈ X, y1 � y2 ⇒ F (x, y1) � F (x, y2).

Definition 1.2. [7] Let X be a nonempty set and F : X ×X → X. An element (x, y) in
X ×X is said to be a coupled fixed point of F if F (x, y) = x and F (y, x) = y.

In 2009, Lakshmikantham and Ciric [9] extended the notion of mixed monotone prop-
erty to mixed g-monotone property and proved the existence of coupled coincidence and
coupled common fixed points in partially ordered metric spaces by using the concept of
commuting maps in the context of coupled fixed points.

Definition 1.3. (Lakshmikantham and Ciric [9]) Let (X,�) be a partially ordered set.
Let F : X ×X → X and g : X → X be maps. We say that F has the mixed g-monotone
property if for any x, y ∈ X,
x1, x2 ∈ X, gx1 � gx2 ⇒ F (x1, y) � F (x2, y),
y1, y2 ∈ X, gy1 � gy2 ⇒ F (x, y1) � F (x, y2).

Definition 1.4. [9] Let X be a nonempty set and F : X ×X → X and g : X → X be
maps. An element (x, y) ∈ X ×X is said to be a coupled coincidence point of F and g
if gx = F (x, y) and gy = F (y, x).

Definition 1.5. [9] Let X be a nonempty set and F : X ×X → X and g : X → X be
maps. An element (x, y) ∈ X ×X is said to be a coupled common fixed point of F and
g if x = gx = F (x, y) and y = gy = F (y, x).

Definition 1.6. [9] Let X be a nonempty set and F : X ×X → X and g : X → X be
maps. We say that F and g are commutative if g(F (x, y)) = F (gx, gy) for all x, y ∈ X.

In 2010, Choudhury and Kundu [10] introduced the concept of compatible maps in the
context of coupled fixed points and proved the existence of coupled coincidence points in
partially ordered metric spaces.

Definition 1.7. [10] Let (X, d) be a metric space. The maps F : X × X → X and
g : X → X are said to be compatible if lim

n→∞
d(g(F (xn, yn)), F (gxn, gyn)) = 0 and

lim
n→∞

d(g(F (yn, xn)), F (gyn, gxn)) = 0 whenever {xn} and {yn} are sequences in X such
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that lim
n→∞

gxn = lim
n→∞

F (xn, yn) = x and lim
n→∞

gyn = lim
n→∞

F (yn, xn) = y for some x, y ∈
X.

In 2011, Harjani, Lopez and Sadarangani [11] extended (ψ, φ)-contraction to the mixed
monotone operators and proved the existence of coupled fixed points in partially ordered
sets.

Theorem 1.8. (Harjani, Sadarangani [11]) Let (X,�) be a partially ordered set and
suppose that there exists a metric d on X such that (X, d) is a complete metric space. Let
F : X ×X → X be a mapping having the mixed monotone property on X. Assume that
there exist functions ψ, φ ∈ Ψ such that

ψ(d(F (x, y), F (u, v)) ≤ ψ(max{d(x, u), d(y, v)})−φ(max{(d(x, u), d(y, v)}) (1.1)

for all x, y, u, v ∈ X with x � u, y � v. Also, suppose that either
(i) F is continuous (or)
(ii) X has the following properties:
(a) if {xn} is a nondecreasing sequence in X with xn → x then xn � x for all n,
(b) if {yn} is a non-increasing sequence in X with yn → y then yn � y for all n.
If there exist x0, y0 ∈ X such that x0 � F (x0, y0) and y0 � F (y0, x0), then there exist
x, y ∈ X such that x = F (x, y) and y = F (y, x).

In 2011, Choudhury, Metiya and Kundu [12] extended Theorem 1.8 to a pair of com-
patible mappings, and proved the existence of coupled coincidence points.

Theorem 1.9. (Choudhury, Metiya and Kundu [12]) Let (X,�) be a partially ordered
set and suppose that there exists a metric d on X such that (X, d) is a complete metric
space. Let F : X × X → X and g : X → X be maps such that F has the mixed g
monotone property on X. Assume that there exist ψ ∈ Ψ and φ : R+ → R+ satisfying φ
is continuous, φ(t) = 0 if and only if t = 0 such that

ψ(d(F (x, y), F (u, v)) ≤ ψ(max{d(gx, gu), d(gy, gv)})
−φ(max{(d(gx, gu), d(gy, gv)})

(1.2)

for all x, y, u, v ∈ X with gx � gu, gy � gv. Suppose that F (X × X) ⊆ gX, g is
continuous and F and g are compatible mappings. Also, assume that

(i) F is continuous or
(ii) X has the following properties:

(a) if {xn} is a nondecreasing sequence in X with xn → x then gxn � gx for
all n ≥ 0,

(b) if {yn} is a non-increasing sequence in X with yn → y then gyn � gy for
all n ≥ 0.

If there exist x0, y0 ∈ X such that gx0 � F (x0, y0) and gy0 � F (y0, x0) then there
exist x, y ∈ X such that gx = F (x, y) and gy = F (y, x). i.e., F and g have a coupled
coincidence point in X.

On the otherhand, in 2004, Berinde [13] introduced ‘almost contraction maps’ as a
generalization of contraction maps in complete metric spaces. In 2008, Babu, Sandhya
and Kameswari [14] modified this definition by introducing ‘ condition (B)’ and proved
the existence and uniqueness of fixed points in metric spaces. For more works in this
direction we refer [15–17].
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Samet and Vetro [18] introduced an F -invariant set in four variables and proved the
existence of coupled fixed points.

Definition 1.10. [18] Let X be a nonempty set and M be a nonempty subset of X4. We
say that M is an F -invariant subset of X4 if the following two conditions hold:
For all x, y, z, w ∈ X,

(i) (x, y, z, w) ∈M ⇔ (w, z, y, x) ∈M ,
(ii) (x, y, z, w) ∈M ⇒ (F (x, y), F (y, x), F (z, w), F (w, z)) ∈M .

Sintunavarat, Petrusel and Kumam [19] extended the notion of an F -invariant set to
a pair of mappings and proved common coupled fixed point results for w∗-compatible
mappings without using mixed monotone property in the setting of cone metric spaces.

Definition 1.11. [19] Let X be a nonempty set and F : X ×X → X and g : X → X be
given maps. Let M be a nonempty subset of X4. We say that M is an (F, g)-invariant
subset of X4 if for all x, y, z, w ∈ X,

(i) (gx, gy, gz, gw) ∈M ⇔ (gw, gz, gy, gx) ∈M ,
(ii) (gx, gy, gz, gw) ∈M ⇒ (F (x, y), F (y, x), F (z, w), F (w, z)) ∈M .

Here we observe that if g is the identity mapping, then M is an F -invariant subset of
X4.

Recently, Sintunavarat, Kumam, Cho [20] introduced new property called ‘transitivity
property’ and proved coupled fixed point results for nonlinear contractions without using
mixed monotone property.

Definition 1.12. [20] Let X be a nonempty set and M be a nonempty subset of X4. We
say that M satisfies ‘transitivity property’ if for all x, y, z, w, a, b ∈ X, (x, y, z, w) ∈ M
and (z, w, a, b) ∈M ⇒ (x, y, a, b) ∈M .

For more literature on the works of coupled fixed point results under an F -invariant
set, we refer [18, 21–23].

Example 1.13. [20] Let (X,�) be a partially ordered set and F : X × X → X be a
mapping satisfying the mixed monotone property, that is, for all x, y ∈ X, we have
x1, x2 ∈ X, x1 � x2 ⇒ F (x1, y) � F (x2, y)
and y1, y2 ∈ X, y1 � y2 ⇒ F (x, y2) � F (x, y1).
Let us define a subset M ⊆ X4 by M = {(a, b, c, d) ∈ X4 : a � c, b � d}. Then M is
an F -invariant subset of X4, which satisfies the transitivity property.

Example 1.14. [19] Let (X,�) be a partially ordered set and F : X × X → X and
g : X → X be maps. Let F satisfy the mixed g-monotone property, that is, for all
x, y ∈ X, we have x1, x2 ∈ X, gx1 � gx2 ⇒ F (x1, y) � F (x2, y) and
y1, y2 ∈ X, gy1 � gy2 ⇒ F (x, y2) � F (x, y1).

Let us define a subset M ⊆ X4 by M = {(a, b, c, d) ∈ X4 : a � c, b � d}. Then M
is an (F, g)-invariant subset of X4 which satisfies the transitivity property.

Motivated by the works of Doric, Kadelburg and Radenovic [21], Sintunavarat, Ku-
mam, Cho [20] and Sintunavarat, Petrusel and Kumam [19], in Section 2 of this paper
we define an almost generalized (ψ, φ)-weakly contractive maps and prove the existence
of coupled coincidence points of such maps under an (F, g)-invariant set without using
the mixed g-monotone property in a metric space setting. Also, we apply our results to
obtain the existence of coupled coincidence points in partially ordered metric spaces in
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Section 3. Our results generalize the results of Choudhury, Metiya and Kundu [12]. We
also provide examples in support of our results.

2. Main Results

Definition 2.1. Let (X, d) be a metric space and F : X × X → X and g : X → X
be maps. Let M be a nonempty (F, g)-invariant subset of X4. If there exist functions
ψ ∈ Ψ, φ ∈ Φ and a constant L ≥ 0 such that

ψ(d(F (x, y), F (u, v))) ≤ψ(max{d(gx, gu), d(gy, gv)})−φ(max{d(gx, gu), d(gy, gv)})
+Lmin{d(gx, F (x, y)), d(gx, F (u, v)), d(gu, F (x, y)), d(gu, F (u, v))}

(2.1)

for every x, y, u, v ∈ X with (gx, gy, gu, gv) ∈M , then we say that the maps F and g are
almost generalized (ψ, φ)-weakly contractive maps.

The following two lemmas are useful in proving the main results in this paper.

Lemma 2.2. Suppose that (X, d) is a metric space and let F : X×X → X and g :X → X
be maps. Let {gxn} and {gyn} be sequences in X such that

max{d(gxn, gxn+1), d(gyn, gyn+1)} → 0 as n→∞. (2.2)

If at least one of {gxn} and {gyn} is not a Cauchy sequence, then there exist an ε > 0
and sequences of positive integers {nk} and {mk} with nk > mk > k such that
max{d(gxnk

, gxmk
), d(gynk

, gymk
)} ≥ ε and

max{d(gxmk
, gxnk−1), d(gymk

, gynk−1)} < ε
and the following four identities hold:

(i) lim
k→∞

max{d(gxnk
, gxmk

), d(gynk
, gymk

)} = ε

(ii) lim
k→∞

max{d(gxnk+1, gxmk+1), d(gynk+1, gymk+1)} = ε

(iii) lim
k→∞

max{d(gxmk
, gxnk+1), d(gymk

, gynk+1)} = ε

(iv) lim
k→∞

max{d(gxnk
, gxmk+1), d(gynk

, gymk+1)} = ε.

Proof. Suppose that at least one of {gxn} and {gyn} is not a Cauchy sequence. This
implies that either

lim
m,n→∞

d(gxm, gxn) 9 0 or lim
m,n→∞

d(gym, gyn) 9 0.

Hence max{ lim
m,n→∞

d(gxm, gxn), lim
m,n→∞

d(gym, gyn)}9 0.

i.e., lim
m,n→∞

max{d(gxm, gxn), d(gym, gyn)}9 0. Thus there exists an ε > 0, for which we

can find two sequences {nk} and {mk} of positive integers with nk > mk > k such that

max{d(gxnk
, gxmk

), d(gynk
, gymk

)} ≥ ε (2.3)

for all k ∈ {1, 2, 3, · · · }.
We now choose nk the smallest number exceeding mk for which (2.3) holds.
Hence, we have max{d(gxmk

, gxnk
), d(gymk

, gynk
)} ≥ ε and

max{d(gxmk
, gxnk−1), d(gymk

, gynk−1)} < ε. (2.4)

First we prove (i).
From the triangle inequality, we have

d(gxnk
, gxmk

) ≤ d(gxnk
, gxnk−1) + d(gxnk−1, gxmk

) < d(gxnk
, gxnk−1) + ε (2.5)
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and also we have

d(gynk
, gymk

) ≤ d(gynk
, gynk−1) + d(gynk−1, gymk

) < d(gynk
, gynk−1) + ε. (2.6)

From (2.3), (2.5) and (2.6), we get
ε ≤ max{d(gxnk

, gxmk
), d(gynk

, gymk
)}

≤ max{d(gxnk
, gxnk−1), d(gynk

, gynk−1)}+ ε (2.7)

On taking limit superior as k →∞ in (2.7) and from (2.2), it follows that
ε ≤ lim sup

k→∞
max{d(gxnk

, gxmk
), d(gynk

, gymk
)} ≤ ε.

Hence

lim sup
k→∞

max{d(gxnk
, gxmk

), d(gynk
, gymk

)} = ε (2.8)

Again, on taking limit inferior as k →∞ in (2.3) and from (2.8), we have
ε ≤ lim inf

k→∞
max{d(gxnk

, gxmk
), d(gynk

, gymk
)}

≤ lim sup
k→∞

max{d(gxnk
, gxmk

), d(gynk
, gymk

)} = ε.

Hence

lim inf
k→∞

max{d(gxnk
, gxmk

), d(gynk
, gymk

)} = ε. (2.9)

From (2.8) and (2.9), it follows that
lim
k→∞

max{d(gxnk
, gxmk

), d(gynk
, gymk

)} exists and

lim
k→∞

max{d(gxnk
, gxmk

), d(gynk
, gymk)} = ε so that (i) holds.

We now prove (ii).
By using the triangle inequality, we get

d(gxnk+1, gxmk+1) ≤ d(gxnk+1, gxnk
) + d(gxnk

, gxmk
) + d(gxmk

, gxmk+1) (2.10)

and

d(gynk+1, gymk+1) ≤ d(gynk+1, gynk
) + d(gynk

, gymk
) + d(gymk

, gymk+1). (2.11)

From (2.10)and (2.11), we obtain
max{d(gxnk+1, gxmk+1), d(gynk+1, gymk+1)}

≤ max{d(gxnk+1, gxnk
), d(gynk+1, gynk

)}
+ max{d(gxnk

, gxmk
), d(gynk

, gymk
)}

+ max{d(gxmk
, gxmk+1), d(gymk

, gymk+1)}.
(2.12)

Again, by the triangle inequality, we have

d(gxnk
, gxmk

) ≤ d(gxnk
, gxnk+1) + d(gxnk+1, gxmk+1) + d(gxmk+1, gxmk

) (2.13)

and

d(gynk
, gymk

) ≤ d(gynk
, gynk+1) + d(gynk+1, gymk+1) + d(gymk+1, gymk

). (2.14)

Now, from (2.3), (2.13) and (2.14), we obtain

ε ≤ max{d(gxnk
, gxmk

), d(gynk
, gymk

)}
≤ max{d(gxnk

, gxnk+1), d(gynk
, gynk+1)}

+ max{d(gxnk+1, gxmk+1), d(gynk+1, gymk+1)}
+ max{d(gxmk+1, gxmk

), d(gymk+1, gymk
)}.

(2.15)
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On taking limit superior as k → +∞ in (2.12), (2.15) and from (2.2), it
follows that

ε ≤ lim sup
k→∞

max{d(gxnk+1, gxmk+1), d(gynk+1, gymk+1)} ≤ ε.

Hence

lim sup
k→∞

max{d(gxnk+1, gxmk+1), d(gynk+1, gymk+1)} = ε. (2.16)

Also, from (2.15), we have,
max{d(gxnk+1, gxmk+1), d(gynk+1, gymk+1)}

≥ ε−max{d(gxnk+1, gxnk
), d(gynk+1, gynk

)}
−max{d(gxmk

, gxmk+1), d(gymk
, gymk+1)}.

(2.17)

On taking limit inferior as k → +∞ in (2.17) and from (2.2), it follows that
lim inf
k→+∞

max{d(gxnk+1, gxmk+1), d(gynk+1, gymk+1)}

≥ lim inf
k→+∞

[ε−max{d(gxnk+1, gxnk
), d(gynk+1, gynk

)}

−max{d(gxmk
, gxmk+1), d(gymk

, gymk+1)}]
≥ ε+ lim inf

k→+∞
[−max{d(gxnk+1, gxnk

), d(gynk+1, gynk
)}]

+ lim inf
k→+∞

[−max{d(gxmk+1, gxmk
), d(gymk+1, gymk

)}]

= ε− lim sup
k→+∞

max{d(gxnk+1, gxnk
), d(gynk+1, gynk

)}

− lim sup
k→+∞

max{d(gxmk+1, gxmk
), d(gymk+1, gymk

)}

= ε.

(2.18)

On the other hand, we have
lim inf
k→+∞

max{d(gxnk+1, gxmk+1), d(gynk+1, gymk+1)}

≤ lim sup
k→+∞

max{d(gxnk+1, gxmk+1), d(gynk+1, gymk+1)} = ε (from (2.16)). (2.19)

Hence, from (2.18) and (2.19), we get

lim inf
k→∞

max{d(gxnk+1, gxmk+1), d(gynk+1, gymk+1)} = ε. (2.20)

Therefore, from (2.16) and (2.20), we have
lim

k→+∞
max{d(gxnk+1, gxmk+1), d(gynk+1, gymk+1)} exists

and lim
k→+∞

max{d(gxnk+1, gxmk+1), d(gynk+1, gymk+1)} = ε.

Hence (ii) holds.
Now we prove (iii).
From the triangle inequality, we have
d(gxmk

, gxnk+1) ≤ d(gxmk
, gxnk−1) + d(gxnk−1, gxnk

) + d(gxnk
, gxnk+1)

≤ ε+ d(gxnk−1, gxnk
) + d(gxnk

, gxnk+1) (2.21)
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and
d(gymk

, gynk+1) ≤ d(gymk
, gynk−1) + d(gynk−1, gynk

) + d(gynk
, gynk+1)

≤ ε+ d(gynk−1, gynk
) + d(gynk

, gynk+1). (2.22)

Hence from (2.21) and (2.22), we have
max{d(gxmk

, gxnk+1), d(gymk
, gynk+1)}

≤ ε+ max{d(gxnk−1, gxnk
), d(gynk−1, gynk

)}
+ max{d(gxnk

, gxnk+1), d(gynk
, gynk+1)}.

(2.23)

Also, we have

d(gxnk
, gxmk

) ≤ d(gxnk
, gxnk+1) + d(gxnk+1, gxmk

) (2.24)

d(gynk
, gymk

) ≤ d(gynk
, gynk+1) + d(gynk+1, gymk

). (2.25)

Now from (2.3), (2.24) and (2.25), we have

ε ≤ max{d(gxnk
, gxmk

), d(gynk
, gymk

)}
≤ max{d(gxnk

, gxnk+1), d(gynk
, gynk+1)}

+ max{d(gxnk+1, gxmk
), d(gynk+1, gymk

)}.
(2.26)

On taking limit superior as k →∞ in (2.23) and (2.26), we obtain
ε ≤ lim sup

k→∞
max{d(gxmk

, gxnk+1), d(gymk
, gynk+1)} ≤ ε.

Hence

lim sup
k→∞

max{d(gxmk
, gxnk+1), d(gymk

, gynk+1)} = ε. (2.27)

Also, we have from (2.26)

max{d(gxmk
, gxnk+1), d(gymk

, gynk+1)}≥ε−max{d(gxnk
, gxnk+1), d(gynk

, gynk+1)}. (2.28)

On taking limit inferior as k →∞ in (2.28), we have
lim inf
k→∞

max{d(gxmk
, gxnk+1), d(gymk

, gynk+1)}

≥ lim inf
k→∞

[ε−max{d(gxnk
, gxnk+1), d(gynk

, gynk+1)}]

≥ ε+ lim inf
k→∞

[−max{d(gxnk
, gxnk+1), d(gynk

, gynk+1)}]

= ε− lim sup
k→∞

max{d(gxnk
, gxnk+1), d(gynk

, gynk+1)}

= ε. (2.29)

Also, we have
lim inf
k→∞

max{d(gxmk
, gxnk+1), d(gymk

, gynk+1)}

≤ lim sup
k→∞

max{d(gxmk
, gxnk+1), d(gymk

, gynk+1)} = ε. (2.30)

Hence, from (2.29) and (2.30), we have

lim inf
k→∞

max{d(gxmk
, gxnk+1), d(gymk

, gynk+1)} = ε. (2.31)
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Hence, from (2.27) and (2.31), we have
lim
k→∞

max{d(gxmk
, gxnk+1), d(gymk

, gynk+1)} exists and

lim
k→∞

max{d(gxmk
, gxnk+1), d(gymk

, gynk+1)} = ε.

Thus (iii) holds.
Now we prove (iv).
By using the triangle inequality, we have

d(gxnk
, gxmk+1) ≤ d(gxnk

, gxnk−1) + d(gxnk−1, gxmk
) + d(gxmk

, gxmk+1)

≤ ε+ d(gxnk
, gxnk−1) + d(gxmk

, gxmk+1)

(2.32)

and

d(gynk
, gymk+1) ≤ d(gynk

, gynk−1) + d(gynk−1, gymk
) + d(gymk

, gymk+1)

≤ ε+ d(gynk−1, gynk
) + d(gymk

, gymk+1).
(2.33)

Hence, from (2.32) and (2.33), we have
max{d(gxnk

, gxmk+1), d(gynk
, gymk+1)}

≤ ε+ max{d(gxnk
, gxnk−1), d(gynk

, gynk−1)}
+ max{d(gxmk

, gxmk+1), d(gymk
, gymk+1)}.

(2.34)

Also, we have

d(gxmk
, gxnk

) ≤ d(gxmk
, gxmk+1) + d(gxmk+1, gxnk

) (2.35)

and

d(gymk
, gynk

) ≤ d(gymk
, gymk+1) + d(gymk+1, gynk

). (2.36)

Hence, from (2.3), (2.35) and (2.36), we have

ε ≤ max{d(gxmk
, gxnk

), d(gymk
, gynk

)}
≤ max{d(gxmk

, gxmk+1), d(gymk
, gymk+1)}

+ max{d(gxmk+1, gxnk
), d(gymk+1, gynk

)}.
(2.37)

On taking limit superior as k →∞ in (2.34) and (2.37), we obtain

ε ≤ lim sup
k→∞

max{d(gxnk
, gxmk+1), d(gynk

, gymk+1)} ≤ ε.

Hence we have

lim sup
k→∞

max{d(gxnk
, gxmk+1), d(gynk

, gymk+1)} = ε. (2.38)

Also, from (2.37), we have
max{d(gxnk

, gxmk+1), d(gynk
, gymk+1)}

≥ ε−max{d(gxmk
, gxmk+1), d(gymk

, gymk+1)}. (2.39)

On taking limit inferior as k →∞, in (2.39), we have

lim inf
k→∞

max{d(gxnk
, gxmk+1), d(gynk

, gymk+1)}



1294 Thai J. Math. Vol. 19 (2021) /G. V. R. Babu and K. K. Tola

≥ lim inf
k→∞

[ε−max{d(gxmk
, gxmk+1), d(gymk

, gymk+1)}]
≥ ε+ lim inf

k→∞
[−max{d(gxmk

, gxmk+1), d(gymk
, gymk+1)}]

= ε− lim sup
k→∞

max{d(gxmk
, gxmk+1), d(gymk

, gymk+1)} = ε. (2.40)

Also, we have
lim inf
k→∞

max{d(gxnk
, gxmk+1), d(gynk

, gymk+1)}

≤ lim sup
k→∞

max{d(gxnk
, gxmk+1), d(gynk

, gymk+1)} = ε. (2.41)

Hence, from (2.40) and (2.41), we have

lim inf
k→∞

max{d(gxnk
, gxmk+1), d(gynk

, gymk+1)} = ε. (2.42)

Therefore, from (2.38) and (2.42), we have
lim
k→∞

max{d(gxnk
, gxmk+1), d(gynk

, gymk+1)} exists and

lim
k→∞

max{d(gxnk
, gxmk+1), d(gynk

, gymk+1)} = ε.

This proves (iv).

Lemma 2.3. Let X be a nonempty set. Let F : X ×X → X and g : X → X be maps
such that F (X × X) ⊆ gX. Assume that M is an (F, g)-invariant subset of X4 which
satisfies transitivity property.
If there exist x0, y0 ∈ X with (F (x0, y0), F (y0, x0), gx0, gy0) ∈M then we can
construct sequences {xn} and {yn} in X such that for any n,m ∈ Z+ with n > m we
have (gxn, gyn, gxm, gym) ∈M .

Proof. Let x0, y0 ∈ X such that

(F (x0, y0), F (y0, x0), gx0, gy0) ∈M. (2.43)

Since F (X ×X) ⊆ gX we can choose x1, y1 ∈ X such that gx1 = F (x0, y0) and
gy1 = F (y0, x0).
Again, since F (X ×X) ⊆ gX we can choose x2, y2 ∈ X such that
gx2 = F (x1, y1) and gy2 = F (y1, x1).
On continuing this process, inductively we can construct sequences {xn} and {yn} in X
defined by

gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn) (2.44)

for all n ≥ 0.
Now, since M is an (F, g)-invariant set, from (2.43) and (2.44), we have
(gx2, gy2, gx1, gy1) = (F (x1, y1), F (y1, x1), F (x0, y0), F (y0, x0)) ∈M. Again, by the same
argument, we can choose x3, y3 ∈ X such that
(gx3, gy3, gx2, gy2) = (F (x2, y2), F (y2, x2), F (x1, y1), F (y1, x1)) ∈M.
On continuing this process, we get by induction that

(gxn+1, gyn+1, gxn, gyn) ∈M (2.45)

for all n ≥ 0.
Now, for n > m where n,m ∈ Z+ we prove (gxn, gyn, gxm, gym) ∈M.
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We let n = m+ k for some k ≥ 1.
By (2.45) we have

(gxm+1, gym+1, gxm, gym) ∈M. (2.46)

Since M is an (F, g)-invariant set we have from (2.46)

(gxm+2, gym+2, gxm+1, gym+1) = (F (xm+1, ym+1), F (ym+1, xm+1),

F (xm, ym), F (ym, xm)) ∈M.
(2.47)

Now, from (2.46) and (2.47) and transitivity property of M , we have

(gxm+2, gym+2, gxm, gym) ∈M. (2.48)

Since M is an (F, g)-invariant set, we have from (2.48)

(gxm+3, gym+3, gxm+1, gym+1) ∈M. (2.49)

Again by the transitivity property of M and from (2.46) and (2.49), we have

(gxm+3, gym+3, gxm, gym) ∈M. (2.50)

On continuing this process inductively we get

(gxm+k, gym+k, gxm, gym) ∈M (2.51)

for every k ≥ 1. Now, on taking n = m+ k in (2.51) it follows that
(gxn, gyn, gxm, gym) ∈M for n > m.

In the following, we prove our main results of this section.

Theorem 2.4. Let (X, d) be a metric space. Let F : X × X → X and g : X → X be
maps and M be a nonempty (F, g)-invariant subset of X4. Assume that the maps F and
g are almost generalized (ψ,ϕ)-weakly contractive maps. Further assume that
(a) F (X ×X) ⊆ gX;
(b) gX is a complete subspace of X;
(c) M satisfies transitivity property;
(d) X has the following property: for any two sequences {xn} and {yn} in X with
(xn+1, yn+1, xn, yn) ∈M , xn → x, yn → y, then (x, y, xn, yn) ∈M for all n,
(e) there exist x0, y0 ∈ X with (F (x0, y0), F (y0, yx0), gx0, gy0) ∈ M . Then there exist
x, y ∈ X such that gx = F (x, y) and gy = F (y, x), i.e., F and g have a coupled coinci-
dence point (x, y) ∈ X ×X.

Proof. Let x0, y0 ∈ X be such that (F (x0, y0), F (y0, x0), gx0, gy0) ∈M .
By Lemma 2.3, we can construct sequences {xn} and {yn} in X such that
gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn) for every n = 0, 1, 2, ... .
If there exists a natural number n ≥ 1 such that gxn−1 = gxn and gyn−1 = gyn, then
gxn−1 = gxn = F (xn−1, yn−1) and gyn−1 = gyn = F (yn−1, xn−1).
Thus (xn−1, yn−1) is a coupled coincidence point of F and g.
Hence without lose of generality, we assume that gxn−1 6= gxn or gyn−1 6= gyn for all
n ∈ {1, 2, 3, · · · }.
By Lemma 2.3, we have
(gxn, gyn, gxn−1, gyn−1) ∈M for every n ≥ 1. Now, we denote

Rn = max{d(gxn+1, gxn), d(gyn+1, gyn)}. (2.52)
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Since (gxn, gyn, gxn−1, gyn−1) ∈M for all n ≥ 1, by using, (2.1) we have
ψ(d(gxn+1, gxn)) = ψ(d(F (xn, yn), F (xn−1, yn−1)))

≤ ψ(max{d(gxn, gxn−1), d(gyn, gyn−1)})
− φ(max{d(gxn, gxn−1), d(gyn, gyn−1)})
+ Lmin{d(gxn, F (xn, yn)), d(gxn, F (xn−1, yn−1)),

d(gxn−1, F (xn, yn)), d(gxn−1, F (xn−1, yn−1))}
= ψ(max{d(gxn, gxn−1), d(gyn, gyn−1)})
− φ(max{d(gxn, gxn−1), d(gyn, gyn−1)})
+ Lmin{d(gxn, gxn+1), d(gxn, gxn), d(gxn−1, gxn+1), d(gxn−1, gxn)}
= ψ(max{d(gxn, gxn−1), d(gyn, gyn−1)}) (2.53)

− φ(max{d(gxn, gxn−1), d(gyn, gyn−1)}).

Again, since (gyn−1, gxn−1, gyn, gxn) ∈M for every n ≥ 1, we have
ψ(d(gyn, gyn+1)) = ψ(d(F (yn−1, xn−1), F (yn, xn)))

≤ ψ(max{d(gyn−1, gyn), d(gxn−1, gxn)})
− φ(max{d(gyn−1, gyn), d(gxn−1, gxn)})
+ Lmin{d(gyn−1, F (yn−1, xn−1)), d(gyn−1, F (yn, xn)),

d(gyn, F (yn−1, xn−1)), d(gyn, F (yn, xn))}
= ψ(max{d(gyn−1, gyn), d(gxn−1, gxn)})
− φ(max{d(gyn−1, gyn), d(gxn−1, gxn)})
+ Lmin{d(gyn−1, gyn), d(gyn−1, gyn+1), d(gyn, gyn), d(gyn, gyn+1)}
= ψ(max{d(gyn−1, gyn), d(gxn−1, gxn)}) (2.54)

− φ(max{d(gyn−1, gyn), d(gxn−1, gxn)}).

Now, from (2.53) and (2.54) and using the monotone property of ψ, we have
ψ(max{d(gxn+1, gxn), d(gyn+1, gyn)})

= max{ψ(d(gxn+1, gxn)), ψ(d(gyn, gyn+1))}
≤ ψ(max{d(gyn−1, gyn), d(gxn−1, gxn)})
− φ(max{d(gyn−1, gyn), d(gxn−1, gxn)}),

(2.55)

i.e.,

ψ(Rn) ≤ ψ(Rn−1)− φ(Rn−1)

< ψ(Rn−1)
(2.56)

and hence by the monotone property of ψ, we have Rn ≤ Rn−1.
Therefore, {Rn} is a non-increasing sequence of nonnegative real numbers.
Hence it converges to some real number r (say), r ≥ 0.
Now we show that

r = 0. (2.57)

Suppose that r > 0. On taking limit superior as n→ +∞ in both sides of (2.56), by using
continuity of ψ and lower semi-continuity of φ, we get ψ(r) ≤ ψ(r)−φ(r), a contradiction.
Thus r = 0. i.e., lim

n→∞
max{d(gxn+1, gxn), d(gyn+1, gyn)} = 0.
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Now, we show that the sequences {gxn} and {gyn} are Cauchy. Suppose that at least
one of {gxn} and {gyn} is not Cauchy. Then there exists an ε > 0, for which we can
find two sequences {nk} and {mk} of positive integers with nk > mk > k such that
max{d(gxnk

, gxmk
), d(gynk

, gymk
)} ≥ ε for all k ∈ {1, 2, 3, · · · }. We may also assume

that max{d(gxmk
, gxnk−1), d(gymk

, gynk−1)} < ε.
Now, since nk > mk and M satisfies transitivity property, by Lemma 2.3 we have,
(gxnk

, gynk
, gxmk

, gymk
) ∈M .

Hence, on using (2.1) we have

ψ(d(gxnk+1, gxmk+1)) = ψ(d(F (xnk
, ynk

), F (xmk
, ymk

)))

≤ ψ(max{d(gxnk
, gxmk

), d(gynk
, gymk

)})
− φ(max{d(gxnk

, gxmk
), d(gynk

, gymk
)})

+ Lmin{d(gxnk
, gxnk+1), d(gxnk

, gxmk+1),

d(gxmk
, gxnk+1), d(gxmk

, gxmk+1)}.

(2.58)

Again, we have

ψ(d(gymk+1, gynk+1)) = ψ(d(F (ymk
, xmk

), F (ynk
, xnk

)))

≤ ψ(max{d(gymk
, gynk

), d(gxmk
, gxnk

)})
− φ(max{d(gymk

, gynk
), d(gxmk

, gxnk
)})

+ Lmin{d(gymk
, gymk+1), d(gymk

, gynk+1),

d(gynk
, gymk+1), d(gynk

, gynk+1)}.

(2.59)

Now, from (2.58), (2.59) and the monotone property of ψ, we have
ψ(max{d(gxnk+1, gxmk+1), d(gynk+1, gymk+1)})

= max{ψ(d(gxnk+1, gxmk+1)), ψ(d(gymk+1, gynk+1))}
≤ ψ(max{d(gymk

, gynk
), d(gxmk

, gxnk
)})

− φ(max{d(gymk
, gynk

), d(gxmk
, gxnk

)})
+ Lmin{max{d(gxnk

, gxnk+1), d(gynk
, gynk+1)},

max{d(gxnk
, gxmk+1), d(gynk

, gymk+1)}
max{d(gxmk

, gxmk+1), d(gymk
, gymk+1)},

max{d(gxmk
, gxnk+1), d(gymk

, gynk+1)}}.

(2.60)

Now, on taking limit superior as k → ∞ in both sides of (2.60), by using Lemma 2.2,
the continuity of ψ and lower semi-continuity of φ, we get ψ(ε) ≤ ψ(ε) − φ(ε) + L.0
= ψ(ε)− φ(ε), a contradiction.
Therefore, the sequences {gxn} and {gyn} are Cauchy in gX. Since gX is
complete, there exist x, y ∈ X such that lim

n→+∞
gxn = gx and lim

n→+∞
gyn = gy.

Since (gxn+1, gyn+1, gxn, gyn) ∈M and gxn → gx and gyn → gy it follows that
(gx, gy, gxn, gyn) ∈M for all n. Now, we prove that gx = F (x, y) and gy = F (y, x).
Since (gx, gy, gxn, gyn) ∈M for all n, we have
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ψ(d(F (x, y), gxn+1))

= ψ(d(F (x, y), F (xn, yn))

≤ ψ(max{d(gx, gxn), d(gy, gyn)})− φ(max{d(gx, gxn), d(gy, gyn)})
+ Lmin{d(gx, F (x, y)), d(gx, gxn+1), d(gxn, F (x, y)), d(gxn, gxn+1)}.

(2.61)

On taking limit superior as n → ∞ in both sides of (2.61), by using the continuity of ψ
and lower semi-continuity of φ, we get ψ(d(F (x, y), gx)) ≤ 0. Now, by the property of ψ,
we have d(F (x, y), gx) = 0, i.e., F (x, y) = gx.

Similarly, we have gy = F (y, x). Therefore (x, y) is a coupled coincidence point of F
and g.

Theorem 2.5. Let (X, d) be a complete metric space. Let F : X×X → X and g : X → X
be continuous maps and M be a nonempty (F, g)-invariant subset of X4. Assume that
the maps F and g are almost generalized (ψ, φ)-weakly contractive maps. Further assume
that

(a) F (X ×X) ⊆ gX;
(b) F and g are compatible ;
(c) M satisfies transitivity property; and
(d) there exist x0, y0 ∈ X with (F (x0, y0), F (y0, x0), gx0, gy0) ∈M .

Then F and g have a coupled coincidence point (x, y) ∈ X ×X.

Proof. On proceeding as in the proof of Theorem 2.4, the sequences {gxn} and {gyn}
defined by gxn+1 = F (xn, yn) and gyn+1 = F (yn, xn) are Cauchy in X.
Since X is complete, there exist x, y ∈ X such that lim

n→∞
gxn = x and lim

n→∞
gyn = y.

Since F and g are compatible maps we have
lim
n→∞

d(g(F (xn, yn)), F (gxn, gyn)) = 0 and lim
n→∞

d(g(F (yn, xn)), F (gyn, gxn)) = 0.

By using the triangle inequality, we have

d(gx, F (gxn, gyn)) ≤ d(gx, g(F (xn, yn)) + d(g(F (xn, yn), F (gxn, gyn))).

On taking limits as n→ +∞, by using the continuity of F and g, we get

d(gx, F (x, y)) = 0, i.e., gx = F (x, y).

Similarly, we have d(gy, F (y, x)) = 0, i.e., gy = F (y, x).
Therefore, gx = F (x, y) and gy = F (y, x).
Hence (x, y) is a coupled coincidence point of F and g.

3. Corollaries and Examples

Corollary 3.1. Let (X, d) be a metric space. Let F : X × X → X and g : X → X
be maps and M be a nonempty (F, g)-invariant subset of X4. Assume that there exist
functions ψ ∈ Ψ, φ ∈ Φ such that

ψ(d(F (x, y), F (u, v))) ≤ ψ(max{d(gx, gu), (gy, gv)})− φ(max{d(gx, gu), (gy, gv)}) (3.1)

for every x, y, u, v ∈ X with (gx, gy, gu, gv) ∈M .
Further assume that

(a) F (X ×X) ⊆ gX;
(b) gX is a complete subspace of X;
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(c) M satisfies transitivity property;
(d) X has the following property:

for any two sequences {xn} and {yn} in X with (xn+1, yn+1, xn, yn) ∈M ,
xn → x, yn → y, then (x, y, xn, yn) ∈M for all n,

(e) there exist x0, y0 ∈ X with (F (x0, y0), F (y0, x0), gx0, gy0) ∈M .

Then F and g have a coupled coincidence point (x, y) ∈ X ×X.

Proof. Follows by choosing L = 0 in the inequality (2.1) and by Theorem 2.4.

Corollary 3.2. Let (X, d) be a complete metric space. Let F : X ×X → X and g : X →
X be maps and M be a nonempty (F, g)-invariant subset of X4. Assume that there exist
functions ψ ∈ Ψ, φ ∈ Φ such that

ψ(d(F (x, y), F (u, v))) ≤ ψ(max{d(gx, gu), (gy, gv)})− φ(max{d(gx, gu), (gy, gv)}) (3.2)

for every x, y, u, v ∈ X with (gx, gy, gu, gv) ∈M.
Further assume that
(a) F (X ×X) ⊆ gX;
(b) g is continuous ;
(c) M satisfies transitivity property;
(d) F is continuous ;
(e) F and g are compatible;
(f) there exist x0, y0 ∈ X with (F (x0, y0), F (y0, x0), gx0, gy0) ∈M .
Then F and g have a coupled coincidence point (x, y) ∈ X ×X.

Proof. Follows by choosing L = 0 in the inequality (2.1) and by Theorem 2.5.

In the following, we deduce coupled coincidence point theorems in partially ordered
metric spaces as corollaries.

Corollary 3.3. Let (X,�) be a partially ordered set and suppose that there exists a
metric d on X such that (X, d) is a metric space. Let F : X ×X → X and g : X → X be
maps such that F has the mixed g-monotone property. Assume that there exist functions
ψ ∈ Ψ, φ ∈ Φ and a constant L ≥ 0 such that

ψ(d(F (x, y), F (u, v))) ≤ ψ(max{d(gx, gu), (gy, gv)})
− φ(max{d(gx, gu), (gy, gv)})
+ Lmin{d(gx, F (x, y)), d(gx, F (u, v)),

d(gu, F (x, y)), d(gu, F (u, v))}

(3.3)

for every x, y, u, v ∈ X with gx � gu and gy � gv.
Further assume that
(a) F (X ×X) ⊆ gX;
(b) gX is a complete subspace of X;
(c) X has the following properties:

(i) if {xn} is a nondecreasing sequence ∈ X with xn → x, then xn � x for all n;
(ii) if {yn} is a non-increasing sequence ∈ X with yn → y, then yn � y for all n.

If there exist x0, y0 ∈ X such that gx0 � F (x0, y0), F (y0, x0) � gy0 then there exist
x, y ∈ X such that gx = F (x, y) and gy = F (y, x).
i.e., F and g have a coupled coincidence point (x, y) ∈ X ×X.
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Proof. We define a set M = {(a, b, c, d) ∈ X4 : a � c, b � d}. From Example 1.14. we
conclude that M is an (F, g)-invariant set which satisfies transitivity property.
By (3.3) we have
ψ(d(F (x, y), F (u, v)))≤ψ(max{d(gx, gu), (gy, gv)})− φ(max{d(gx, gu), (gy, gv)})

+Lmin{d(gx, F (x, y)), d(gx,F (u, v)), d(gu, F (x, y)), d(gu,F (u, v))}
for every x, y, u, v ∈ X such that (gx, gy, gu, gv) ∈ M . Since there exist x0, y0 ∈ X,
gx0 � F (x0, y0), gy0 � F (y0, x0), we have (F (x0, y0), F (y0, x0), gx0, gy0) ∈ M . From
assumption (c) we get the condition (d) of Theorem 2.4. Now, all the hypotheses of
Theorem 2.4 are satisfied. Thus F and g have a coupled coincidence point in X.

Corollary 3.4. Let (X,�) be a partially ordered set and suppose that there exist a metric
d on X such that (X, d) is a complete metric space. Let F : X ×X → X and g : X → X
be maps such that F has the mixed g-monotone property. Assume that the inequality (3.3)
holds. Further assume that
(a) F (X ×X) ⊆ gX;
(b) F and g are continuous;
(c) F and g are compatible;
If there exist x0, y0 ∈ X such that gx0 � F (x0, y0), F (y0, x0) � gy0 then there exist
x, y ∈ X such that gx = F (x, y) and gy = F (y, x).
i.e., F and g have a coupled coincidence point x, y ∈ X.

Proof. We define a set M = {(a, b, c, d) ∈ X4 : a � c, b � d}. Now, proceeding as in the
proof of the Corollary 3.3, we see that all the hypotheses of Theorem 2.5 are satisfied.
Hence F and g have a coupled coincidence point in X.

Remark 3.5. By choosing L = 0 in (3.3) clearly Theorem 1.9 follows as a corollary to
Corollary 3.3 and Corollary 3.4.

The following is an example in support of Theorem 2.5.

Example 3.6. Let X = {0, 1, 2, 4} with the usual metric.
Let A = {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 2), (2, 4), (4, 2), (4, 4)},
B = {(0, 2), (2, 0), (2, 1), (0, 4), (4, 0), (1, 4), (4, 1)}.

We define F : X ×X → X and g : X → X by

F (x, y) =

 1 if (x, y) ∈ A

0 if (x, y) ∈ B
and g0 = 0, g1 = 1, g2 = 4, g4 = 2.
We define ψ, φ : R+ → R+ by ψ(t) = 3

4 t for t ≥ 0 and

φ(t)) =


1
4 t if 0 ≤ t ≤ 1

1
3 t if t > 1.

Then ψ ∈ Ψ and φ ∈ Φ.
Here we observe that F (X ×X) = {0, 1} ⊆ gX = {0, 1, 2, 4}; and F and g are compat-
ible. We write
M= {(0, 0, 1, 1), (1, 1, 0, 0), (1, 1, 1, 1), (1, 1, 4, 4), (4, 4, 1, 1), (2, 1, 2, 4), (4, 2, 1, 2)
(4, 4, 4, 4), (4, 4, 0, 0), (0, 0, 4, 4), (1, 1, 2, 2), (2, 2, 1, 1), (2, 2, 2, 2), (2, 1, 4, 2),
(2, 4, 1, 2), (0, 0, 2, 2), (2, 2, 0, 0), (0, 1, 1, 1), (1, 1, 1, 0), (2, 2, 4, 4), (4, 4, 2, 2),
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(2, 1, 1, 4), (4, 1, 1, 2), (2, 1, 1, 2), (0, 1, 1, 0), (0, 0, 0, 0), (4, 4, 1, 0), (0, 1, 4, 4)
(2, 2, 1, 0), (0, 1, 2, 2), (0, 0, 1, 0), (0, 1, 0, 0), (4, 1, 4, 2), (2, 4, 1, 4), (4, 1, 2, 4)
(4, 2, 1, 4), (4, 1, 1, 4)}.
Clearly M is an (F, g)-invariant subset of X4 which satisfies transitivity property.
We choose x0 = 1, y0 = 0, then (F (1, 0), F (0, 1), g1, g0) = (1, 1, 1, 0) ∈M .
We now verify the inequality (2.1) with L = 1. For (x, y, u, v) = (2, 1, 2, 4), we have
ψ(d(F (x, y), F (u, v)))= ψ(1)

= 3
4

≤ 7
2

= ψ(1)− φ(1) + 1.3
= ψ(max{(d(gx, gu), (gy, gv))})− φ(max{(d(gx, gu), (gy, gv))})
+Lmin{d(gx, F (x, y)), d(gx, F (u, v)), d(gu, F (x, y)), d(gu, F (u, v))}

so that the inequality (2.1) holds.
Similarly, it is easy to verify the inequality for the points (2, 1, 4, 2), (4, 1, 1, 2), (2, 1, 1, 2),
(4, 1, 4, 2), (2, 4, 1, 4), (4, 1, 2, 4) and (4, 2, 1, 4).
At the remaining points of M , the inequality (2.1) holds trivially.
Therefore F and g satisfy all the hypotheses of the Theorem 2.5 and (1, 1) is a coupled
coincidence point of F and g.
Here we observe that, when L = 0 then the inequality (2.1) fails to hold for any ψ ∈ Ψ
and φ ∈ Φ, by choosing (x, y, u, v) = (2, 1, 2, 4), which indicates the importance of L in
the inequality (2.1) of Theorem 2.5
Now, if we consider X = {0, 1, 2, 4} with the usual order ≤ and usual metric, the map F
does not satisfy the mixed g- monotone property, for let y1 = 0, y2 = 4 and x = 4, then
0 = g0 ≤ g4 = 2 but 0 = F (4, 0) � F (4, 4) = 1.
Also, when (x, y, u, v) = (2, 1, 2, 4) the inequality (1.2) fails to hold for any ψ ∈ Ψ and
φ ∈ Φ. Hence by Remark 3.5 it follows that Corollary 3.3 and Corollary 3.4 generalize
Theorem 1.9.

Now, we give an example in support of Corollary 3.1.

Example 3.7. Let X = [0, 2) with the usual metric.
We define F : X ×X → X and g : X → X by

F (x, y) =


x2+y2

4 if (x, y) ∈ [0, 1]

3
2 otherwise

and

gx =

 x2 if x ∈ [0, 1]

3
2 if x ∈ (1, 2).

Here we note that F (X×X) = [0, 12 ]
⋃
{ 32} ⊆ [0, 1]

⋃
{ 32} = gX, gX is a complete subspace

of X.
We choose M = [0, 1]4. Clearly M is an (F, g)-invariant set which satisfies transitivity
property. Also, we choose x0 = 0 and y0 = 1, then (F (0, 1), F (1, 0), g0, g1) = (1

4 ,
1
4 , 0, 1) ∈

M .
We define ψ, φ : R+ → R+ by ψ(t) = 1

2 t for t ≥ 0 and

φ(t)) =


1
6 t if 0 ≤ t ≤ 1

1
4 t if t > 1.
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Then ψ ∈ Ψ and φ ∈ Φ.
Now we verify the inequality (3.1). Let x, y, u, v ∈ X with (gx, gy, gu, gv) ∈M .
i.e., (x2, y2, u2, v2) ∈M .
In this case,

ψ(d(F (x, y), F (u, v))) = 1
2 |

x2+y2

4 − u2+v2

4 |

≤ 1

4
(
|x2 − u2|+ |y2 − v2|

2
) ≤ 1

4
max{|x2 − u2|, |y2 − v2|}. (3.4)

On the other hand, we have
ψ(max{d(gx, gu), d(gy, gv)})− φ(max{d(gx, gu), d(gy, gv)})
= 1

2max{|x2 − u2|, |y2 − v2|} − 1
6max{|x2 − u2|, |y2 − v2|}

=
1

3
max{|x2 − u2|, |y2 − v2|}. (3.5)

Hence, from (3.4) and (3.5), we have

ψ(d(F (x, y), F (u, v))) = |x
2+y2

4 − u2+v2

4 | ≤ 1
3max{|x2 − u2|, |y2 − v2|}

= ψ(max{d(gx, gu), d(gy, gv)})− φ(max{d(gx, gu), d(gy, gv)}).
Hence, the inequality (3.1) holds for all x, y, u, v ∈ X with (gx, gy, gu, gv) ∈M . There-
fore, F and g satisfy all the hypotheses of Corollary 3.1; and F and g have coupled
coincidence points. In fact (0, 0) and every point of (1, 2)× (1, 2) are coupled coincidence
points.

Here we observe that F does not satisfy the mixed g-monotone property under the
usual order on X, for, by choosing y1 = 0 and y2 = 1 then
0 = g0 ≤ 1 = g1, but at x = 1, 1

4 = F (1, 0) = F (x, y1) � F (x, y2) = F (1, 1) = 1
2 .
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