Thai Journal of **Math**ematics Volume 19 Number 4 (2021) Pages 1273–1283

http://thaijmath.in.cmu.ac.th

On Dislocated Symmetric Spaces

Sumati Kumari Panda^{1,*}, Muhammad Sarwar² and Kastriot Zoto³

¹Department of Mathematics, GMR Institute of Technology, Rajam - 532 127, Andhra Pradesh, India e-mail : mumy143143143@gmail.com, sumatikumari.p@gmrit.edu.in

² Department of Mathematics, University of Malakand, Chakdara 18800, Pakistan e-mail : sarwarswati@gmail.com

³ Department of Mathematics and Computer Sciences, Faculty of Natural Sciences, University of Gjirokastra, Gjirokastra, 6001, Albania e-mail : zotokastriot@yahoo.com

Abstract In this paper, we discuss some topological properties of dislocated symmetric space (simply *d*-symmetric space) and establish fixed point theorem by using cyclic contraction.

MSC: 47H10; 54H25 Keywords: dislocated symmetric space; convergence axioms; cyclic contraction

Submission date: 09.07.2018 / Acceptance date: 01.02.2020

1. INTRODUCTION

Definition 1.1. A Distance space (X, d) is said to be a symmetric space if it satisfies,

- (1) $d(x,y) \ge 0;$
- (2) d(x, y) = 0 iff x = y;
- (3) d(x, y) = d(y, x), for all $x, y \in X$.

In this case d is called a symmetric function on X and (X, d) called a symmetric space. If further d satisfies the triangle inequality:

(4) $d(x,z) \leq d(x,y) + d(y,z)$, for all $x, y, z \in X$.

Then d is called a *metric* and (X, d) is a *metric space*.

Investigations on the replacement of the triangular inequality in a metric space by various weaker forms have been under active considerations since long time. Several mathematicians including Frechet [1], E.W.Chittenden [2], Fisher [3], W.A.Wilson [4], V.Niemytzki [5] and others made extensive investigations in this regard and contributed substantively on the topological aspects by replacing the triangular inequality with appropriate reasonable conditions.

V.Niemytzki [5] calls a *distance function coherent* if for any sequences $\{x_n\}, \{y_n\}$ and x in X.

^{*}Corresponding author.

 $(C_1):\lim d(x_n, y_n) = 0 = \lim d(x_n, x) \Rightarrow \lim d(y_n, x) = 0.$

V.Niemytzki [5] calls (X, d) metrizable if there exists a metric δ on X such that

$$\lim d(x_n, x) = 0 \Leftrightarrow \lim \delta(x_n, x) = 0.$$

Also he proved that if (X, d) is coherent, then (X, d) is metrizable. His proof is however lengthy, an elegant proof was given by A. H. Frink [6] in 1937. A. D. Pitcher and E. W. Chittenden [7] consider the following two axioms for a distance space (X, d).

(C₂): $\lim d(x_n, x) = 0$, $\lim d(y_n, x) = 0 \Rightarrow \lim d(x_n, y_n) = 0$

(C₃): $\lim d(x_n, y_n) = 0$, $\lim d(y_n, z_n) = 0 \Rightarrow \lim d(x_n, z_n) = 0$

Seong Cho [8] discussed the implications and non implications among (C_1) and (C_2) and introduced the following axiom:

 (C_4) : for a sequence $\{x_n\} \in X, x, y \in X$,

$$\lim_{n \to \infty} d(x_n, x) = 0 \Rightarrow \lim_{n \to \infty} d(x_n, y) = d(x, y).$$

W. A. Wilson [4] introduced following axioms:

(C₅): for a sequence $\{x_n\} \in X, x, y \in X, \lim_{n \to \infty} d(x_n, x) = 0$ and $\lim_{n \to \infty} d(x_n, y) = 0$ imply x = y.

 W_1 : for each pair of distinct points a, b in X there corresponds a positive number r = r(a, b) such that $r < \inf_{c \in X} d(a, c) + d(b, c)$.

 W_2 : for each $a \in X$, for each k > 0, there corresponds a positive number r = r(a, k) such that if b is a point of X such that $d(a, b) \ge k$ and c is any point of X then $d(a, c) + d(c, b) \ge r$.

 W_3 : for each positive number k there is a positive number r = r(k) such that $d(a, c) + d(c, b) \ge r$ for all c in X and all a, b in X with $d(a, b) \ge k$.

We note that (C_2) , (C_3) , (C_4) are respectively equivalent to the axioms IV, V, III of W. A. Wilson [4]. He proved that a semi metric space is uniformly homeomorphic with a metric space if and only if axiom V holds. It was also proved that a semi metric space satisfying axiom IV is homeomorphic with a semi metric space with axiom V.

Recently, I. R. Sarma et al. [9] introduced d-symmetric space by deleting d(x, x) = 0 from the axioms of a symmetric space. Moreover, he introduced axiom C as below.

Axiom C: Every convergent sequence satisfies Cauchy criterion. That is, if (x_n) is a sequence in $X, x \in X$ and $\lim d(x_n, x) = 0$; then given $\epsilon > 0$ there exists $N(\epsilon) \in \mathbb{N}$ such that $d(x_n, x_m) < \epsilon$ whenever $m, n \ge N(\epsilon)$.

Furthermore, he presented implications and non-implications among such convergence axioms as,

 $C_3 \Rightarrow C_1 \Rightarrow C_5, C_3 \Rightarrow C_2, C_4 \Rightarrow C_5, C_1 \Rightarrow C \Rightarrow C_2, W_1 \Leftrightarrow C_5, W_2 \Leftrightarrow C_1 \text{ and } W_3 \Leftrightarrow C_3.$ Also he presented examples for following relationships:

 $C_5 \Rightarrow C_1, C_5 \Rightarrow C_4, C_1 \Leftrightarrow C_2, C_2 \Leftrightarrow C_5 \text{ and } C_1 \Leftrightarrow C_4.$

In 2003, Kirk et al. [10] introduced cyclic contractions in metric spaces and investigated the existence of proximity points and fixed points for cyclic contraction mappings.

In this paper, we discuss some topological properties of d-symmetric space and derive fixed point theorem by using cyclic contraction.

2. Preliminaries and Topological Aspects on *d*-Symmetric Spaces

Definition 2.1 ([9]). A distance space (X, d_s) is said to be *d*-symmetric space if *d* satisfies (*i*). $d_s(x, y) = 0 \Rightarrow x = y$;

(*ii*). $d_s(x, y) = d(y, x)$, for all x, y.

If $x \in X$ and $\epsilon > 0$, then the set $\mathcal{B}_{\epsilon}(x) = \{y/y \in X\}$ and $d_s(x, y) < \epsilon$ is called the *ball* with center x and radius ϵ . Notation: $V_{\epsilon}^x = \mathcal{B}_{\epsilon}^x \cup \{x\}$.

Example 2.2. 1. Let X = [0, 1]. Define

$$d_s(x,y) = \begin{cases} \frac{1}{x} + \frac{1}{y}, & \text{if } x \neq 0 \neq y \\ 1, & \text{if } x = y \end{cases}$$
(2.1)

 $d_s(x,0) = d_s(0,x) = x; if x \neq 0.$

Clearly d_s is d-symmetric and does not satisfy the triangle inequality since $d_s(\frac{1}{2}, 1) > d_s(\frac{1}{2}, 0) + d(0, 1)$.

2. Let X = [-1, 1]. Define

$$d_s(x,y) = \begin{cases} (x-y)^2, & \text{if } x \neq 0 \neq y \\ 1, & \text{if } x = y \end{cases}$$
(2.2)

 $d_s(x,0) = d_s(0,x) = |x|; \ if \ x \neq 0.$

Clearly d_s is d-symmetric and does not satisfy the triangle inequality since $d_s(-1,1) > d_s(-1,0) + d_s(0,1)$.

Remark 2.3. If triangle inequality does not hold, then limits need not be unique.

Proof. Let
$$X = \mathbb{R}$$
. Define

$$d_s(x,y) = \begin{cases} |x-y|, \text{ if } x \neq 0 \neq y \\ 1, \text{ if } x = y \end{cases}$$
(2.3)

 $d_s(x,0) = d_s(0,x) = \frac{|x-1|}{3}$; if $x \neq 0$. (X,d_s) is a *d*-symmetric space. Triangular inequality fails since $d_s(-1,2) \ge d_s(-1,0) + d_s(0,2)$. Further, $\lim d_s(1-\frac{1}{n},1) \to 0$ and $\lim d_s(1-\frac{1}{n},0) \to 0$. Hence, limits are not unique.

Define the set $\mathcal{C}(d_s, X, x) := \{\{x_\alpha\} \subset X : \lim_{n \to \infty} d_s(x_\alpha, x) = 0\}.$

In order to obtain below propositions, fixed point theorem on a *d*-symmetric space (X, d_s) , we need below additional axiom.

P.S-property: Let X be a non empty set and $d_s : X \times X \longrightarrow [0, +\infty)$ be a mapping. For every $x \in X$, define the set $\mathcal{C}(d_s, X, x) = \{\{x_\alpha\} \subset X : \lim_{n \to \infty} d_s(x_\alpha, x) = 0\}$. There exist a real number $\mathcal{C} > 0$ such that $d_s(x, y) \leq \mathcal{C} \lim_{n \to \infty} \sup d_s(x_\alpha, y)$ for all $(x, y) \in X \times X; \{x_\alpha\} \in \mathcal{C}(d_s, X, x)$.

A net $\{x_{\alpha}/\alpha \in \Delta\}$ converges in X if $\{x_{\alpha}\} \in \mathcal{C}(d_s, X, x)$ and $x \in X$ is a limit point of $A \subset X$ iff there is a net $\{x_{\alpha}/\alpha \in \Delta\}$ in A such that $\{x_{\alpha}\} \in \mathcal{C}(d_s, X, x)$.

We write $\mathcal{D}(A)$ for the set of all limit points of A and $\overline{A} = A \cup \mathcal{D}(A)$. We show that $A \to \overline{A}$ satisfies *Kuratowski's axioms* [11]. Further, $\overline{A} = A$ iff A is closed. Also A is open iff X - A is closed. Thus when d satisfies the triangle inequality or (C_1) ; the two topologies become the same.

Definition 2.4. If (X, d_s) be a *d*-symmetric space with P.S-property. Let $\{x_n\}$ be a sequence in X and $(x, y) \in X \times X$. If $\{x_n\}$ d_s -converges to x and $\{x_n\}$ d_s -converges to y, then x = y.

Proposition 2.5. Let (X, d) be a d-symmetric space satisfying (C_1) . If $A \subseteq X$ and $B \subseteq X$, then (i). $\mathcal{D}(A) = \phi$ if $A = \phi$; (ii). $\mathcal{D}(A) \subseteq \mathcal{D}(B)$ if $A \subseteq B$; (iii). $\mathcal{D}(A \cup B) = \mathcal{D}(A) \cup \mathcal{D}(B)$; (iv). $\mathcal{D}(\mathcal{D}(A)) \subseteq \mathcal{D}(A)$.

Proof. (i) and (ii) are clear. That $\mathcal{D}(A) \cup \mathcal{D}(B) \subseteq \mathcal{D}(A \cup B)$ follows from (ii). To prove the reverse inclusion, let $x \in \mathcal{D}(A \cup B)$ and $\lim d_s(x_\alpha, x) = 0$; where $\{x_\alpha / \alpha \in \Delta\}$ is a net in $A \cup B$. If there exists $\lambda \in \Delta$ such that $x_\alpha \in A$. For $\alpha \in \Delta$ and $\alpha = \lambda$, then $\{x_\alpha / \alpha = \lambda, \alpha \in \Delta\}$ is a *co-final* sub net of $\{x_\alpha / \alpha \in \Delta\}$ and $\lim_{\alpha \geq \lambda} d_s(x, x_\alpha) = \lim_{\alpha \in \Delta} d_s(x, x_\alpha) = 0$.

If no such λ exists in Δ , then for every $\alpha \in \Delta$, choose $\beta(\alpha) \in \Delta$ such that $x_{\beta(\alpha)} \in B$, then $\{x_{\beta(\alpha)}/\alpha \in \Delta\}$ is a co-final subnet in B of $\{x_{\alpha}/\alpha \in \Delta\}$ and $\lim_{\alpha \in \Delta} d(x_{\beta(\alpha)}, x) = \lim_{\alpha \in \Delta} d_s(x_{\alpha}, x) = 0$. So that $x \in \mathcal{D}(A)$. It now follows that $\mathcal{D}(A \cup B) \subseteq \mathcal{D}(A) \cup \mathcal{D}(B)$. Hence (iii) holds.

To prove (iv), Let $x \in \mathcal{D}(\mathcal{D}(A)), x = \lim_{\alpha \in \Delta} (x_{\alpha})$ where $x_{\alpha} \in \mathcal{D}(A)$ and for all $\alpha \in \Delta$ and let $\{x_{\alpha(\beta)} | \beta \in \Delta(\alpha)\}$ be a net A such that $x_{\alpha} = \lim_{\beta \in \Delta(\alpha)} x_{\alpha(\beta)}$.

For each positive integer *i* there exists $\alpha_i \in \Delta$ such that $d_s(x_{\alpha_i}, x) < \frac{1}{i}$ and $\beta_i \in \Delta(\alpha_i)$ such that $d_s(x_{\alpha_i\beta_i}, x_{\alpha_i}) < \frac{1}{i}$. If we write $\alpha_{i\beta_i} = \gamma_i$ for all *i*, then $\{\gamma_1, \gamma_2, \gamma_3, ...\}$ is directed set with $\gamma_i < \gamma_j$ if i < j and $\lim d_s(x_{\gamma_i}, x_{\alpha_i}) = 0$. From (C_1) , $\lim d(x_{\gamma_i}, x) = 0$. This implies that $x \in \mathcal{D}(A)$.

Corollary 2.6. If we write $\overline{A} = A \cup \mathcal{D}(A)$, for $A \subset X$, the operation $A \to \overline{A}$ satisfies Kuratawski's closure axioms [11] so that set $\Im = \{A/A \subset X \text{ and } \overline{A^c} = A^c\}$ is a topology on X.

Definition 2.7. Let (X, d_s) be a *d*-symmetric space. Then

- (1) Let $\{x_n\}$ be a sequence in X and $x \in X$. We say that $\{x_n\}$ is d_s -Cauchy sequence if $\lim_{m,n\to\infty} d_s(x_n, x_{n+m}) = 0$.
- (2) It is said to be d_s -complete if every $d_s d_s$ -Cauchy sequence in X is d_s -convergent to some element in X.

Proposition 2.8. In a d-symmetric space $(X, d_s), (C_1) \Rightarrow (C_5).$

Proposition 2.9. $x \in X$ is a limit point of $A \subset X$ iff for every $r > 0, A \cap V_r(x) \neq \phi$.

Proof. Suppose x is a limit point of $A \subset X$, then there exists a sequence $\{x_n\}$ in A such that $\lim_{n \to \infty} x_n = x$.

If r > 0, there exists $\alpha_0 \in \Delta$ such that $x_n \in V_r(x) \cap A$ for $n \ge n_0$.

Conversely suppose that for every r > 0, $V_r(x) \cap A \neq \phi$. Then for every positive integer n, there exists $x_n \in V_{\frac{1}{n}}(x) \cap A$, so that $d_s(x, x_n) < \frac{1}{n}$ and $x_n \in A$. Hence $\lim_{n \to \infty} d_s(x_n, x) = 0$ and x is a limit point of A.

Corollary 2.10. $x \in \overline{A}$ iff for every $r > 0, V_r(x) \cap A \neq \phi$.

Example 2.11. Let $X = \mathbb{R}^+$. Define

$$d_s(x,y) = \begin{cases} \frac{1}{x} + \frac{1}{y}, & \text{if } x \neq 0 \neq y \\ 1, & \text{if } x = y \end{cases}$$
(2.4)

 $d_s(x,0) = d_s(0,x) = x$; if $x \neq 0$. Since $d_s(x,y) \neq 0 \forall x, y, (X,d_s)$ is a *d*-symmetric space. We show that (X,d_s) satisfies (C_5) . By definition,

$$d_s(x_n, x) = \begin{cases} \frac{1}{x_n} + \frac{1}{x}, & \text{if } x_n \neq 0 \neq x \\ 1, & \text{if } x_n = x \end{cases}$$
(2.5)

 $d_s(x_n, 0) = x_n \text{ if } x_n \neq 0.$

Case(i): If x = 0. Let us suppose that $x_n = 0 \Rightarrow d_s(x_n, 0) = 1$, which is not possible. So $x_n \neq 0$ after certain stage and $\lim x_n = 0$.

Case(ii): If $x \neq 0$. Suppose $x_n = 0$ for infinitely many n, $d_s(x_n, x) = d_s(0, x) = x \neq 0$. So $x_n \neq 0$ after certain stage.

 $\Rightarrow \lim d(x_n, x) = \lim \left(\frac{1}{x_n} + \frac{1}{x}\right) = 0$

 $\Rightarrow \lim \frac{1}{x_n} = -\frac{1}{x}, x_n > 0, x > 0$. This can not happen.

So the only possibility is that x = 0 and $x_n \neq 0$ after certain stage $\lim x_n = 0$. Now $\lim d_s(x_n, y) = 0$, then y = 0. Hence x = y = 0, which satisfies (C_5) .

Since $\lim d_s(x_n, x) = 0 \Rightarrow x = 0$. Thus (X, d_s) satisfies (C_5) which is a *d*-symmetric space. But 3rd condition of KuratowsKi axiom does not satisfy, i.e., $\mathcal{D}(\mathcal{D}(A)) \nsubseteq \mathcal{D}(A)$.

Let $x \in \mathcal{D}(\mathcal{D}(A))$, then there exists a sequence $\{x_n\}$ in $\mathcal{D}(A)$ such that $\lim d_s(x_n, x) \to 0$. Since $\{x_n\}$ is in $\mathcal{D}(A)$, there exists a sequence $\{x_{n_k}\}$ in A such that $\lim_k d_s(x_{n_k}, x_n) \to 0$. From (C_5) , $x = x_{n_k}$.

Now we shall prove $x \in \mathcal{D}(A)$, which implies that it is enough to prove $\lim d_s(x_{n_k}, x) \to 0$. But $\lim d_s(x_{n_k}, x) \neq 0$, since $d_s(x_{n_k}, x) = 1$. Thus $\mathcal{D}(\mathcal{D}(A)) \nsubseteq \mathcal{D}(A)$.

Remark: From the above example it is clear that a *d*-symmetric function on a space X satisfying (C_5) may not yield a topology on X.

Proposition 2.12. Let (X, d_s) be a d-symmetric space. If $\epsilon > 0$ and $d_s(x, y) < \epsilon$, $d_s(y, z) < \epsilon \Rightarrow d_s(x, z) < \epsilon$, then $(C_1), (C_2), (C_3), (C_4)$ and (C_5) holds.

Proof. Take (C_1) , i.e., $\lim d_s(x_n, x) = 0$, $\lim d_s(y_n, x_n) = 0 \Rightarrow \lim d_s(y_n, x) = 0$, i.e., $\lim d_s(x_n, x) = 0$, $\lim d_s(y_n, x_n) = 0$

 $\Rightarrow \text{ for } \epsilon > 0, \text{ there exist } N \text{ such that } \lim d_s(x_n, x) < \epsilon \text{ and } \lim d_s(y_n, x_n) < \epsilon, \forall n \ge N.$ $\Rightarrow \lim d_s(y_n, x) < \epsilon, \forall n \ge N$

 $\Rightarrow \lim d_s(y_n, x) = 0.$

The arguments for the validity of $(C_2), (C_3)$ and (C_5) are similar, hence omitted. Now take (C_4) , i.e., $\lim d_s(x_n, x) = 0 \Rightarrow \lim d_s(x_n, y) = d_s(x, y), \forall y$. $\lim d_s(x_n, x) = 0 \Rightarrow$ for every $\epsilon > 0$, there exist N such that $\lim d_s(x_n, x) < d_s(x, y) + \epsilon, \forall n \ge N$.

Also $d_s(y, x) < d_s(x, y) + \epsilon$ $\Rightarrow d_s(x_n, y) < d_s(x, y) + \epsilon, \forall n \ge N.$ $\Rightarrow d_s(x_n, y) - d_s(x, y) < \epsilon, \forall n \ge N.$

We prove there exist N_1 such that $d_s(x,y) - d_s(x_n,y) < \epsilon \ \forall n \ge N_1$.

If $d_s(x, y) - \epsilon < 0$, this holds trivially. Suppose $d_s(x, y) - \epsilon > 0$, there exist N_1 such that $d_s(x_n, x) < d_s(x, y) - \epsilon \ \forall n \ge N_1$. Since $d_s(x, y) > d_s(x, y) - \epsilon$ either $d_s(x, x_n) > d_s(x, y) - \epsilon$ or $d_s(y, x_n) > d_s(x, y) - \epsilon$.

Since $d_s(x, x_n) < d_s(x, y) - \epsilon \ \forall n \ge N_1$. We must have $d_s(y, x_n) > d_s(x, y) - \epsilon \ \forall n \ge N_1$. $\epsilon > d_s(x, y) - d_s(x_n, y) \ \forall n \ge N_1$.

Hence $|d_s(x_n, y) - d_s(x, y)| < \epsilon$, for $n \ge max\{N, N_1\}$. Thus $\lim d_s(x_n, y) = d_s(x, y)$.

Proposition 2.13. If (X, d_s) is a d-symmetric space which satisfies (C_4) , then balls are open.

Proof. Let $x \in X, \delta > 0$ and $y \in V_{\delta}^{c}(x)$. We show that $y \in V_{\delta}^{c}(x)$. Since $y \in \overline{V_{\delta}^{c}(x)}$, there exist a sequence $\{y_{n}\}$ in $V_{\delta}^{c}(x)$ such that $\lim d_{s}(y_{n}, y) = 0$. From (C_{4}) , it follows that $\lim d_{s}(y_{n}, x) = d_{s}(y, x)$. Since $\{y_{n}\}$ in $V_{\delta}^{c}(x), d_{s}(y_{n}, x) \ge \delta \forall n$. Hence $d_{s}(y, x) \ge \delta$, so $y \in V_{\delta}^{c}(x)$. Hence $V_{\delta}^{c}(x)$ is closed so that $V_{\delta}(x)$ is open.

Corollary 2.14. If (X, d_s) is a d-symmetric space which satisfies (C_4) , then d_s induces a topology on X.

Proof. Follows from proposition 2.13.

Proposition 2.15. (X, d_s, \Im) is Haussdorff space.

Proof. Suppose $x \neq y$. Claim that $V_{\delta}(x) \cap V_{\delta}(x) = \phi$.

Let us suppose that $V_{\delta}(x) \cap V_{\delta}(x) \neq \phi$. For each positive integer n, choose $x_n \in V_{\frac{1}{n}}(x) \cap V_{\frac{1}{n}}(x)$. Thus $d_s(x_n, x) < \frac{1}{n}$ and $d_s(x_n, y) < \frac{1}{n}$, which implies $\lim d_s(x_n, x) \to 0$ and $d_s(x_n, y) \to 0$. Since $(C_1) \Rightarrow (C_5)$, x = y; which is a contradiction. Hence $V_{\delta}(x) \cap V_{\delta}(x) = \phi$.

Note: If $x \in X$, the collection $\{V_r(x)/x \in X\}$ is an open basis at x for (X, d_s, \mathfrak{F}) . Hence (X, d_s, \mathfrak{F}) is first countable.

Proposition 2.16. Let (X, d_s) be a d-symmetric space with induced topology \Im and $A \subset X$

(i). $A \in \Im$ iff A^c is closed.

(*ii*). A is closed iff $d(x, A) = 0 \Rightarrow x \in A$.

Proof. Proof of (i): Suppose that A is open. Claim: A^c is closed.

Let $\{x_n\}$ be a sequence in X - A and $\lim d_s(x_n, x) = 0$. Then we have to prove that $x \in X - A$. Suppose $x \notin X - A \Rightarrow x \in A$.

Since A is open, there exist $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq A$. From above, $x_n \in B_{\epsilon}(x) \subseteq A$. Which is a contradiction.

Conversely suppose that X - A is closed. Claim: A is open, i.e., for $x \in A$ there exist r > 0 such that $B_r(x) \subseteq A$.

Suppose for some $x \in A$ this does not hold. Then for all $n \ge 1, B_{\frac{1}{n}}(x) \notin A$.

So there exist $x_n \in B_{\frac{1}{n}}(x) \cap X - A \Rightarrow d_s(x, x_n) < \frac{1}{n}$. Since X - A is closed, $x \in X - A$. Which is a contradiction. Hence A is open.

Proof of (ii): Suppose A is closed. Claim: $d_s(x, A) = 0 \Rightarrow x \in A$. Since $d_s(x, A) = 0$, there exist a sequence $\{x_n\}$ in A such that $\lim d_s(x, x_n) \to 0$. Since A is closed, $x \in A$. Conversely suppose that $d_s(x, A) = 0 \Rightarrow x \in A$. Let $\{x_n\}$ be a sequence in A such that $\lim d_s(x, x_n) \to 0$. $\Rightarrow \forall n$, there exist k_n such that $d_s(x, x_{k_n}) < \frac{1}{n}$. $\Rightarrow \inf\{d_s(x, y)/y \in A\} = 0$. $\Rightarrow x \in A$. Hence A is closed.

Hence A is closed.

3. Continuity

Definition 3.1. Let (X, d_s) and (Y, d'_s) be *d*-symmetric spaces with (C_1) and (C_4) . $f : X \to Y$ is said to be *d*-symmetric continuous at $x \in X$ if for every $\epsilon > 0$, there exists $\delta > 0$ such that $f(V_{\delta}(x)) \subseteq V_{\epsilon}(f(x))$. f is *d*-symmetric continuous if f is *d*-symmetric continuous at every x in X.

Theorem 3.2. Let (X, d_s) and (Y, d'_s) be d-symmetric spaces with (C_1) and (C_4) . $f : (X, d_s) \to (Y, d'_s)$ be continuous at x iff $f : (X, d_s, \mathfrak{F}) \to (Y, d'_s, \mathfrak{F}')$ is continuous at x where \mathfrak{F} and \mathfrak{F}' are the corresponding induces topologies.

Proof. Assume that f is d-symmetric continuous at x.

Let V be an open set in (Y, d'_s, \mathfrak{F}') . Then there exists $\epsilon > 0$ such that $V_{\epsilon}(f(x)) \subseteq V$. By hypothesis, there exists $\delta > 0$ such that $f(V_{\delta}(x)) \subseteq V_{\epsilon}(f(x))$. Therefore $f(V_{\delta}(x)) \subseteq V$. Which implies $V_{\delta}(x) \subseteq f^{-1}(V)$. Thus $f^{-1}(V)$ is an open set in (X, d_s, \mathfrak{F}) . It follows that f is continuous from (X, d_s, \mathfrak{F}) to (Y, d'_s, \mathfrak{F}') .

Conversely suppose that $f : (X, d_s, \mathfrak{F}) \to (Y, d'_s, \mathfrak{F}')$ is continuous. Claim: f is d-symmetric continuous. Since $V_{\epsilon}(f(x)) \subset \mathfrak{F}', V_{\epsilon}(f(x))$ is open in (Y, d'_s, \mathfrak{F}') ,

which implies $f^{-1}(V_{\epsilon}(f(x)))$ is open in (X, d_s, \mathfrak{F}) . Thus there exists $\delta > 0$ such that $V_{\delta}(x) \subset f^{-1}(V_{\epsilon}(f(x)))$. Which implies $f(V_{\delta}(x)) \subseteq V_{\epsilon}(f(x))$.

Hence f is d-symmetric continuous.

Theorem 3.3. Let (X, d_s) and (Y, d'_s) be d-symmetric spaces (C_1) and (C_4) . Then f is d-symmetric continuous iff for every convergent sequence $\{x_n\} \to x$ in X, the sequence $f(x_n)$ converges to f(x).

Proof. Suppose that f is d-symmetric continuous. Claim: Suppose $\{x_n\} \to x$ in X. Which implies $\lim d_s(x_n, x) \to 0$. For every $\delta > 0$ there exists N_{δ} such that $d_s(x, x_n) < \delta$, for all $n \ge N_{\delta}$. Which implies that

$$x_n \in V_{\delta}(x), \text{ for all } n \ge N_{\delta}.$$
 (3.1)

Since f is d-symmetric continuous, given $\epsilon > 0$, there exists $\delta > 0$ such that

$$f(V_{\delta}(x)) \subseteq V_{\epsilon}(f(x)).$$

For this δ applying (6), then there exists N such that (6) holds for $n \geq N$. Which implies $x_n \in V_{\delta}(x)$ for $n \geq N$.

$$\Rightarrow f(x_n) \in f(V_{\delta}(x)) \subseteq V_{\epsilon}(f(x)) \text{ for } n \ge N.$$

 $\Rightarrow d_s(f(x_n, f(x))) < \epsilon.$ $\Rightarrow f(x_n) \to f(x).$

To prove reverse inclusion first we shall prove the following lemma.

Lemma 3.4. Let (X, d_s) be a d-symmetric space (C_1) and (C_4) . Then following are equivalent.

(1) f is d-symmetric continuous.

- (2) For every subset A of X, one has $f(\overline{A}) \subset \overline{f(A)}$.
- (3) For every closed set B of Y, the set $f^{-1}(B)$ is closed in X.
- (4) For each $x \in X$ and each neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subset V$.

Proof. $(1) \Rightarrow (2)$: Assume that f is d-symmetric continuous.

Let A be a set of X. We prove that if $x \in \overline{A}$, then $f(x) \in \overline{f(A)}$.

Let $V_{\delta}(f(x))$ be a neighborhood of f(x). Then $f^{-1}(V_{\delta}(f(x)))$ is an open set of X containing x. Which implies $f^{-1}(V_{\delta}(f(x))) \cap A \neq \emptyset$. Then $V_{\delta}(f(x)) \cap f(A) \neq \emptyset$. Thus $f(x) \in \overline{f(A)}$.

 $(2) \Rightarrow (3)$: Let B be closed in Y and let $A = f^{-1}(B)$. We have to prove that A is closed in X. So it is enough to show $\overline{A} = A$.

Take $f(A) = f(f^{-1}(B)) \subseteq B$. If $x \in \overline{A}$ implies $f(x) \in f(\overline{A}) \subset \overline{f(A)} \subset \overline{B} = B$. $\Rightarrow \underline{x} \in f^{-1}(B) = A$

 $\Rightarrow \overline{A} \subset \underline{A}.$

Thus $A = \overline{A}$.

 $(3) \Rightarrow (1)$: Let V be an open set of V. The set B = Y - V. Then $f^{-1}(B) = f^{-1}(Y) - f^{-1}(V) = X - f^{-1}(V)$. Now B is a closed set of Y. Then $f^{-1}(B)$ is closed in X by hypothesis, so that $f^{-1}(V)$ is open in X.

 $(1) \Rightarrow (4)$: Let $x \in X$ and let V be a neighborhood of f(x). Then the set $U = f^{-1}(V)$ is a neighborhood of x such that $f(U) \subset V$.

 $(4) \Rightarrow (1)$: Let V be an open set of Y. Let x be a point of $f^{-1}(V)$. Then $f(x) \in V$, by hypothesis, there is a neighborhood U_x of x such that $f(U_x) \subset V$. Then $U_x \subset f^{-1}(V)$. It follows that $f^{-1}(V)$ can be written as the union of the open sets U_x , so that, it is open. Which ends the proof of the lemma.

Now coming to the proof of the theorem.

Let us assume that $x_n \to x$ implies $f(x_n) \to f(x)$. Claim: f is d-symmetric continuous. To prove this it is enough to show $f(\overline{A}) \subset \overline{f(A)}$. If $x \in \overline{A}$, then there exist $\{x_n\}$ in A such that $x_n \to x$. Which implies $f(x_n) \to f(x)$. Since $f(x_n) \in f(A)$, $f(x) \in \overline{f(A)}$. Hence $f(\overline{A}) \subset \overline{f(A)}$.

Theorem 3.5. $f: (X, d_s, \mathfrak{F}) \to (Y, d'_s, \mathfrak{F}')$ is d-symmetric continuous iff given $x \in X$ and $\epsilon > 0$, there exist $\delta > 0$ such that $d_s(x, y) < \delta$ implies $d'_s(f(x), f(y)) < \epsilon$.

Proof. Suppose that f is continuous. Consider the set $f^{-1}(V(f(x), \epsilon))$ which is open in X and contains the point x. Which implies there exists $\delta > 0$ such that $V_{\delta}(x) \subset f^{-1}(V(f(x)))$.

 $\Rightarrow f(V_{\delta}(x)) \subset V_{\delta}(f(x)).$

Let $y \in V_{\delta}(x)$ implies $d_s(x, y) < \delta$. Thus $d'_s(f(x), f(y)) < \epsilon$.

Conversely, suppose that for given $x \in X$ and $\epsilon > 0$ there exists $\delta > 0$ such that $d(x, y) < \delta$ implies $d'(f(x), f(y)) < \epsilon$. Claim: f is d-symmetric continuous.

Let V be open in Y. We show that $f^{-1}(V)$ is open in X. Let x be a point of the set $f^{-1}(V)$. Since $f(x) \in V$, there exists $\epsilon > 0$ such that $f(V_{\delta}(x)) \subseteq V_{\epsilon}(f(x)) \subset V$. Which implies $V_{\delta}(x) \subseteq f^{-1}(V)$. Thus $f^{-1}(V)$ is open in X.

4. A FIXED POINT THEOREM

Definition 4.1 ([10]). Let A and B be nonempty subsets of a metric space (X, d) and $T: A \cup B \to A \cup B$. T is called a *cyclic map* iff $T(A) \in B$ and $T(B) \in A$.

Definition 4.2 ([10]). Let A and B be nonempty subsets of a metric space (X, d). A cylic map $T : A \cup B \to A \cup B$ is said to be a *cyclic contraction* if there exist $k \in (0, 1)$ such that, for all $x \in A$ and $y \in B$,

$$d(Tx, Ty) \le k(d(x, y))$$

There is a huge literature pertinent to cyclic map and generalizations of metric space. The reader can refer to [12]-[21] for more informations. Motivated by above, we introducing the concept of a d_s -cyclic-Banach contraction.

Definition 4.3. Let A and B be nonempty subsets of a d-symmetric space. A cyclic map $T: A \cup B \to A \cup B$ is said to be a d_s -cyclic-Banach contraction if there exist $k \in (0, 1)$ such that

$$d_s(Tx, Ty) \le k(d_s(x, y)),$$

for all $x \in A$ and $y \in B$.

Proposition 4.4. Suppose that T is a d_s -cyclic-Banach contraction. Then any fixed point $w \in X$ of T satisfies $d_s(w, w) < \infty \Rightarrow d_s(w, w) = 0$.

Note that, for every $x \in X$, let $\delta(\mathcal{D}, f, x) = \sup\{\mathcal{D}(f^i(x), f^j(x)) : i, j \in \mathbb{N}\}.$

Theorem 4.5. Let A and B be nonempty closed subsets of a complete d-symmetric space (X, d_s) with P.S property. Let T be a cyclic mapping that satisfies the condition of a d_s -cyclic-Banach contraction. Further, there exists $x_0 \in X$ such that $\delta(d_s, T, x_0) < \infty$. Then $\{T^n(x_0)\} d_s$ -converges to $w \in A \cap B$, a fixed point of T.

Moreover, if $w^* \in X$ is another fixed point of T such that $d_s(w, w^*) < \infty$, then $w = w^*$.

Proof. Fix $x_0 \in A$ and $n \in \mathbb{N} (n \ge 1)$. Since T is d_s -cyclic-Banach contraction, for all $i, j \in \mathbb{N}$, we have

$$d_s(T^{n+i}(x_0), T^{n+j}(x_0)) \le k d_s(T^{n-1+i}(x_0), T^{n-1+j}(x_0)),$$

which implies that

 $\delta(d_s, T, T^n(x_0)) \le k\delta(d_s, T, T^{n-1}(x_0)).$

Then, for every $n \in \mathbb{N}$, we have

 $\delta(d_s, T, T^n(x_0)) \le k^n \delta(d_s, T, x_0).$

By using the above inequality, for every $n, m \in \mathbb{N}$, we get

$$d_s(T^n(x_0), T^{n+m}(x_0)) \le \delta(d_s, T, T^n(x_0)) \le k^n \delta(d_s, T, x_0).$$

Since $\delta(d_s, T, x_0) < \infty$ and $k \in (0, 1)$, we obtain

$$\lim_{n,m \to \infty} d_s(T^n(x_0), T^{n+m}(x_0)) = 0.$$

Which implies that $\{T^n(x_0)\}$ is a d_s -Cauchy sequence.

Since (X, d_s) is d_s -complete, there exists some $w \in X$ such that $\{T^n(x_0)\}$ is d_s -convergent to w.

We shall prove that $\{T^{2n}(x_0)\}, \{T^{2n-1}(x_0)\}\$ are sequences in A and B which tends to the same limit point w. From the P.S-property we have

$$d_s(T^{2n}(x_0), w) \le \mathcal{C} \lim_{n \to \infty} sup d_s(T^{2n}(x_0, T^n(x_0)))$$

Letting $n \to \infty$, we get

$$\lim_{n \to \infty} d_s(T^{2n}(x_0), w) = 0.$$

Similarly,

$$\lim_{n \to \infty} d_s(T^{2n-1}(x_0), w) = 0.$$

Since A and B are closed, we have $w \in A \cap B$, and then $A \cap B \neq \emptyset$. Now we will show that Tw = w. Since T is a d_s -cyclic-Banach contraction, for all $n \in \mathbb{N}$, we have

 $d_s(T^{n+1}(x_0), T(w) \le k(d_s(T^n(x_0), w)).$

Applying limits as $n \to \infty$, we get

$$\lim_{n \to \infty} d_s(T^{n+1}(x_0), T(w) = 0.$$

$$d_s(T^n(x_0), T(w)) \le \mathcal{C} \limsup_{n \to \infty} d_s(T^n(x_0), T^n(x_0)) \le \mathcal{C} \sup \lim_{n \to \infty} d_s(T^n(x_0), T^n(x_0))$$

Thus, $\lim_{n \to \infty} d_s(T^n(x_0), T(w)) = 0.$

Hence, $\{T^n(x_0)\}$ is d_s -convergent to T(w). By the uniqueness of the limit, we get w = T(w), that is, w is a fixed point of T. Finally, to prove the uniqueness of a fixed point, let $w^* \in X$ be another fixed point of T such that $Tw^* = w^*$ and $d_s(w, w^*) < \infty$. Then we have,

$$d_s(w, w^*) = d_s(T(w), T(w^*)) \le k d_s(w, w^*),$$

which implies $w = w^*$. Hence w is a unique fixed point of T.

ACKNOWLEDGEMENTS

We would like to thank the referees for their comments and suggestions on the manuscript.

References

- C.F. Frechet, Surquelques points du calcul fonctionnal, Rendiconti del Circolo Mathematico di Palermo 22 (1906) 1–74.
- [2] E.W. Chittenden, On the equivalence of ecart and voisinage, Trans. Amer. Math. Soc. 18 (1917) 161–166.
- [3] B. Fisher, Mappings on metric spaces, Acta. Math. Acad. Hung 32 (1978) 283–285.
- [4] W.A. Wilson, On Semi Metric Spaces, Amer. J. Math. 53 (2) (1931) 361–373.
- [5] V.W. Niemytzki, On the "third axiom of metric space", Trans. Amer. Math. Soc. 29 (1927) 507–513.
- [6] A.H. Frink, Distance functions and the metrication problem, Bull. Amer. Math. Soc. 43 (1937) 133–142.

- [7] A.D. Pitcher, E.W. Chittenden, On the foundations of the calcul fonctionnal of Frechet, Trans. Amer. Math. Soc. 19 (1918) 66–78.
- [8] S.H. Cho, G.Y. Lee, J.S. Bae, On coincidence and fixed-point theorems in symmetric spaces, Fixed Point Theory Appl. 2008 (2008) Article ID 562130.
- [9] I.R. Sarma, J.M. Rao, P.S. Kumari, D. Panthi, Convergence axioms on dislocated symmetric spaces, Abstr. Appl. Anal. 2014 (2014) Article ID 745031.
- [10] W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mapping satisfying cyclic contractive conditions, Fixed Point Theory 4 (2003) 79–89.
- [11] J.L. Kelley, General Topology, D. Van Nostrand Company, New York, 1960.
- [12] P.S. Kumari, T. Abdeljawad, C. Ravichandran, A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and nonlinear Telegraph equation via fixed point method, Chaos, Solitons & Fractals 130 (2020) Article ID 109439.
- [13] Z. Kastriot, P.S. Kumari, Fixed point theorems for $s \alpha$ contractions in dislocated and b-dislocated metric spaces, Thai J. Math. 17 (1) (2019) 263–276.
- [14] B. Alqahtani, A. Fulga, E. Karapnar, P.S. Kumari, Sehgal type contractions on dislocated spaces, Mathematics 7 (2) (2019) Article no. 153.
- [15] P.S. Kumari, O. Alqahtani, E. Karapnar, Some fixed-point theorems in b-dislocated metric space and applications, Symmetry 10 (12) (2018) Article no. 691.
- [16] P.S. Kumari, J. Nantadilok, M. Sarwar, Fixed point theorems for a class of generalized weak cyclic compatible contractions, Fixed Point Theory Appl. 2018 (2018) Article no. 13.
- [17] P.S. Kumari, D. Panthi, Cyclic compatible contraction and related fixed point theorems, Fixed Point Theory Appl. 2016 (2016) Article no. 28.
- [18] P.S. Kumari, D. Panthi, Connecting various types of cyclic contractions and contractive self-mappings with Hardy-Rogers self-mappings, Fixed Point Theory and Appl. 2016 (2016) Article no. 15.
- [19] P.S. Kumari, I.R. Sarma, J.M. Rao, Metrization theorem for a weaker class of uniformities, Afrika Matematika 27 (3) (2016) 667–672.
- [20] P.S. Kumari, I.R. Sarma, J.M. Rao, D. Panthi, Completion of a dislocated metric space, Abstr. Appl. Anal. 2015 (2015) Article ID 460893.
- [21] P.S. Kumari, D. Panthi, Cyclic contractions and fixed point theorems on various generating spaces, Fixed Point Theory Appl. 2015 (2015) Article no. 153.