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1. Introduction

Definition 1.1. A Distance space (X, d) is said to be a symmetric space if it satisfies,

(1) d(x, y) ≥ 0;
(2) d(x, y) = 0 iff x = y;
(3) d(x, y) = d(y, x), for all x, y ∈ X.

In this case d is called a symmetric function on X and (X, d) called a symmetric space.
If further d satisfies the triangle inequality:

(4) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X.
Then d is called a metric and (X, d) is a metric space.

Investigations on the replacement of the triangular inequality in a metric space by
various weaker forms have been under active considerations since long time. Several
mathematicians including Frechet [1], E.W.Chittenden [2], Fisher [3], W.A.Wilson [4],
V.Niemytzki [5] and others made extensive investigations in this regard and contributed
substantively on the topological aspects by replacing the triangular inequality with ap-
propriate reasonable conditions.

V.Niemytzki [5] calls a distance function coherent if for any sequences {xn}, {yn} and
x in X.
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(C1):lim d(xn, yn) = 0 =lim d(xn, x)⇒ lim d(yn, x) = 0.
V.Niemytzki [5] calls (X, d) metrizable if there exists a metric δ on X such that

lim d(xn, x) = 0⇔ lim δ(xn, x) = 0.

Also he proved that if (X, d) is coherent, then (X, d) is metrizable. His proof is however
lengthy, an elegant proof was given by A. H. Frink [6] in 1937. A. D. Pitcher and E. W.
Chittenden [7] consider the following two axioms for a distance space (X, d).

(C2): lim d(xn, x) = 0, lim d(yn, x) = 0⇒ lim d(xn, yn) = 0

(C3): lim d(xn, yn) = 0, lim d(yn, zn) = 0⇒ lim d(xn, zn) = 0

Seong Cho [8] discussed the implications and non implications among (C1) and (C2)
and introduced the following axiom:

(C4): for a sequence {xn} ∈ X,x, y ∈ X,

lim
n→∞

d(xn, x) = 0⇒ lim
n→∞

d(xn, y) = d(x, y).

W. A. Wilson [4] introduced following axioms:

(C5): for a sequence {xn} ∈ X,x, y ∈ X, limn→∞ d(xn, x) = 0
and limn→∞ d(xn, y) = 0 imply x = y.

W1 : for each pair of distinct points a, b in X there corresponds a positive number
r = r(a, b) such that r < infc∈Xd(a, c) + d(b, c).
W2 : for each a ∈ X, for each k > 0, there corresponds a positive number r = r(a, k)

such that if b is a point of X such that d(a, b) ≥ k and c is any point of X then d(a, c) +
d(c, b) ≥ r.
W3 : for each positive number k there is a positive number r = r(k) such that d(a, c) +

d(c, b) ≥ r for all c in X and all a, b in X with d(a, b) ≥ k.

We note that (C2), (C3), (C4) are respectively equivalent to the axioms IV, V, III of
W. A. Wilson [4]. He proved that a semi metric space is uniformly homeomorphic with
a metric space if and only if axiom V holds. It was also proved that a semi metric space
satisfying axiom IV is homeomorphic with a semi metric space with axiom V.

Recently, I. R. Sarma et al. [9] introduced d-symmetric space by deleting d(x, x) = 0
from the axioms of a symmetric space. Moreover, he introduced axiom C as below.

Axiom C : Every convergent sequence satisfies Cauchy criterion. That is, if (xn) is a
sequence in X, x ∈ X and lim d(xn, x) = 0; then given ε > 0 there exists N(ε) ∈ N such
that d(xn, xm) < ε whenever m,n ≥ N(ε).

Furthermore, he presented implications and non-implications among such convergence
axioms as,
C3 ⇒ C1 ⇒ C5, C3 ⇒ C2, C4 ⇒ C5, C1 ⇒ C ⇒ C2,W1 ⇔ C5,W2 ⇔ C1 and W3 ⇔ C3.

Also he presented examples for following relationships:
C5 ; C1, C5 ; C4, C1 < C2, C2 < C5 and C1 < C4.

In 2003, Kirk et al. [10] introduced cyclic contractions in metric spaces and investigated
the existence of proximity points and fixed points for cyclic contraction mappings.

In this paper, we discuss some topological properties of d-symmetric space and derive
fixed point theorem by using cyclic contraction.
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2. Preliminaries and Topological Aspects on d-Symmetric

Spaces

Definition 2.1 ([9]). A distance space (X, ds) is said to be d-symmetric space if d satisfies
(i). ds(x, y) = 0⇒ x = y;
(ii). ds(x, y) = d(y, x), for all x, y.

If x ∈ X and ε > 0, then the set Bε(x) = {y/y ∈ X} and ds(x, y) < ε is called the ball
with center x and radius ε.
Notation: V xε = Bxε ∪ {x}.

Example 2.2. 1. Let X = [0, 1]. Define

ds(x, y) =

{
1
x + 1

y , if x 6= 0 6= y

1, if x = y
(2.1)

ds(x, 0) = ds(0, x) = x; if x 6= 0.
Clearly ds is d-symmetric and does not satisfy the triangle inequality since ds(

1
2 , 1) >

ds(
1
2 , 0) + d(0, 1).

2. Let X = [−1, 1]. Define

ds(x, y) =

{
(x− y)2, if x 6= 0 6= y

1, if x = y
(2.2)

ds(x, 0) = ds(0, x) = |x|; if x 6= 0.
Clearly ds is d-symmetric and does not satisfy the triangle inequality since ds(−1, 1) >
ds(−1, 0) + ds(0, 1).

Remark 2.3. If triangle inequality does not hold, then limits need not be unique.

Proof. Let X = R. Define

ds(x, y) =

{
|x− y|, if x 6= 0 6= y

1, if x = y
(2.3)

ds(x, 0) = ds(0, x) = |x−1|
3 ; if x 6= 0. (X, ds) is a d-symmetric space.

Triangular inequality fails since ds(−1, 2) ≥ ds(−1, 0) + ds(0, 2).
Further, lim ds(1− 1

n , 1)→ 0 and lim ds(1− 1
n , 0)→ 0.

Hence, limits are not unique.

Define the set C(ds, X, x) := {{xα} ⊂ X : lim
n→∞

ds(xα, x) = 0}.
In order to obtain below propositions, fixed point theorem on a d-symmetric space

(X, ds), we need below additional axiom.

P.S-property: Let X be a non empty set and ds : X×X −→ [0,+∞) be a mapping. For
every x ∈ X, define the set C(ds, X, x) = {{xα} ⊂ X : lim

n→∞
ds(xα, x) = 0}. There exist a

real number C > 0 such that ds(x, y) ≤ C lim
n→∞

sup ds(xα, y) for all (x, y) ∈ X×X; {xα} ∈
C(ds, X, x).

A net {xα/α ∈ ∆} converges in X if {xα} ∈ C(ds, X, x) and x ∈ X is a limit point of
A ⊂ X iff there is a net {xα/α ∈ ∆} in A such that {xα} ∈ C(ds, X, x).
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We write D(A) for the set of all limit points of A and A = A ∪ D(A). We show that
A → A satisfies Kuratowski’s axioms [11]. Further, A = A iff A is closed. Also A is
open iff X − A is closed. Thus when d satisfies the triangle inequality or (C1); the two
topologies become the same.

Definition 2.4. If (X, ds) be a d-symmetric space with P.S-property. Let {xn} be a
sequence in X and (x, y) ∈ X ×X. If {xn} ds-converges to x and {xn} ds-converges to y,
then x = y.

Proposition 2.5. Let (X, d) be a d-symmetric space satisfying (C1). If A ⊆ X and
B ⊆ X, then
(i). D(A) = φ if A = φ;
(ii). D(A) ⊆ D(B) if A ⊆ B;
(iii). D(A ∪B) = D(A) ∪ D(B);
(iv). D(D(A)) ⊆ D(A).

Proof. (i) and (ii) are clear. That D(A) ∪ D(B) ⊆ D(A ∪B) follows from (ii).
To prove the reverse inclusion, let x ∈ D(A∪B) and lim ds(xα, x) = 0; where {xα/α ∈ ∆}
is a net in A ∪ B. If there exists λ ∈ ∆ such that xα ∈ A. For α ∈ ∆ and α = λ,
then {xα/α = λ, α ∈ ∆} is a co-final sub net of {xα/α ∈ ∆} and limα≥λ ds(x, xα) =
limα∈∆ ds(x, xα) = 0.

If no such λ exists in ∆, then for every α ∈ ∆, choose β(α) ∈ ∆ such that xβ(α) ∈ B,
then {xβ(α)/α ∈ ∆} is a co-final subnet in B of {xα/α ∈ ∆} and limα∈∆ d(xβ(α), x) =
limα∈∆ ds(xα, x) = 0. So that x ∈ D(A). It now follows that D(A ∪ B) ⊆ D(A) ∪ D(B).
Hence (iii) holds.

To prove (iv), Let x ∈ D(D(A)), x = limα∈∆(xα) where xα ∈ D(A) and for all α ∈ ∆
and let {xα(β)/β ∈ ∆(α)} be a net A such that xα = limβ∈∆(α) xα(β).

For each positive integer i there exists αi ∈ ∆ such that ds(xαi , x) < 1
i and βi ∈ ∆(αi)

such that ds(xαiβi
, xαi

) < 1
i . If we write αiβi

= γi for all i, then {γ1, γ2, γ3, ...} is directed

set with γi < γj if i < j and lim ds(xγi , xαi
) = 0. From (C1), lim d(xγi , x) = 0. This

implies that x ∈ D(A).

Corollary 2.6. If we write A = A ∪ D(A), for A ⊂ X, the operation A → A satisfies
Kuratawski’s closure axioms [11] so that set = = {A/A ⊂ X and Ac = Ac} is a topology
on X.

Definition 2.7. Let (X, ds) be a d-symmetric space. Then

(1) Let {xn} be a sequence in X and x ∈ X. We say that {xn} is ds-Cauchy
sequence if lim

m,n→∞
ds(xn, xn+m) = 0.

(2) It is said to be ds-complete if every dsds-Cauchy sequence in X is ds-convergent
to some element in X.

Proposition 2.8. In a d-symmetric space (X, ds), (C1)⇒ (C5).

Proposition 2.9. x ∈ X is a limit point of A ⊂ X iff for every r > 0, A ∩ Vr(x) 6= φ.

Proof. Suppose x is a limit point of A ⊂ X, then there exists a sequence {xn} in A such
that lim

n→∞
xn = x.
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If r > 0, there exists α0 ∈ ∆ such that xn ∈ Vr(x) ∩A for n ≥ n0.
Conversely suppose that for every r > 0, Vr(x)∩A 6= φ.Then for every positive integer

n,there exists xn ∈ V 1
n

(x)∩A, so that ds(x, xn) < 1
n and xn ∈ A. Hence lim

n→∞
ds(xn, x) = 0

and x is a limit point of A.

Corollary 2.10. x ∈ A iff for every r > 0, Vr(x) ∩A 6= φ.

Example 2.11. Let X = R+. Define

ds(x, y) =

{
1
x + 1

y , if x 6= 0 6= y

1, if x = y
(2.4)

ds(x, 0) = ds(0, x) = x; if x 6= 0. Since ds(x, y) 6= 0 ∀x, y, (X, ds) is a d-symmetric space.
We show that (X, ds) satisfies (C5). By definition,

ds(xn, x) =

{
1
xn

+ 1
x , if xn 6= 0 6= x

1, if xn = x
(2.5)

ds(xn, 0) = xn if xn 6= 0.

Case(i): If x = 0. Let us suppose that xn = 0 ⇒ ds(xn, 0) = 1, which is not possible.
So xn 6= 0 after certain stage and limxn = 0.

Case(ii): If x 6= 0. Suppose xn = 0 for infinitely many n, ds(xn, x) = ds(0, x) = x 6= 0.
So xn 6= 0 after certain stage.
⇒ lim d(xn, x) = lim( 1

xn
+ 1

x ) = 0

⇒ lim 1
xn

= − 1
x , xn > 0, x > 0. This can not happen.

So the only possibility is that x = 0 and xn 6= 0 after certain stage limxn = 0.
Now lim ds(xn, y) = 0, then y = 0. Hence x = y = 0,which satisfies (C5).
Since lim ds(xn, x) = 0⇒ x = 0. Thus (X, ds) satisfies (C5) which is a d-symmetric space.
But 3rd condition of KuratowsKi axiom does not satisfy, i.e., D(D(A)) * D(A).

Let x ∈ D(D(A)), then there exists a sequence {xn} in D(A) such that lim ds(xn, x)→
0. Since {xn} is in D(A), there exists a sequence {xnk

} in A such that lim
k
ds(xnk

, xn)→ 0.

From (C5), x = xnk
.

Now we shall prove x ∈ D(A), which implies that it is enough to prove lim ds(xnk
, x)→

0. But lim ds(xnk
, x) 6= 0, since ds(xnk

, x) = 1. Thus D(D(A)) * D(A).

Remark: From the above example it is clear that a d-symmetric function on a space X
satisfying (C5) may not yield a topology on X .

Proposition 2.12. Let (X, ds) be a d-symmetric space. If ε > 0 and ds(x, y) < ε, ds(y, z)
< ε⇒ ds(x, z) < ε, then (C1), (C2), (C3), (C4)and(C5) holds.

Proof. Take (C1), i.e., lim ds(xn, x) = 0, lim ds(yn, xn) = 0 ⇒ lim ds(yn, x) = 0, i.e.,
lim ds(xn, x) = 0, lim ds(yn, xn) = 0
⇒ for ε>0, there exist N such that lim ds(xn, x)<ε and lim ds(yn, xn)<ε, ∀n≥N.
⇒ lim ds(yn, x) < ε,∀n ≥ N
⇒ lim ds(yn, x) = 0.
The arguments for the validity of (C2), (C3) and (C5) are similar, hence omitted.

Now take (C4), i.e., lim ds(xn, x) = 0⇒ lim ds(xn, y) = ds(x, y),∀y.
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lim ds(xn, x) = 0⇒ for every ε > 0, there exist N such that lim ds(xn, x) < ds(x, y) +
ε, ∀n ≥ N.
Also ds(y, x) < ds(x, y) + ε
⇒ ds(xn, y) < ds(x, y) + ε,∀n ≥ N.
⇒ ds(xn, y)− ds(x, y) < ε,∀n ≥ N.

We prove there exist N1 such that ds(x, y)− ds(xn, y) < ε ∀n ≥ N1.
If ds(x, y)− ε < 0, this holds trivially. Suppose ds(x, y)− ε > 0, there exist N1 such that
ds(xn, x) < ds(x, y)−ε ∀n ≥ N1. Since ds(x, y) > ds(x, y)−ε either ds(x, xn) > ds(x, y)−ε
or ds(y, xn) > ds(x, y)− ε.
Since ds(x, xn) < ds(x, y)− ε ∀n ≥ N1. We must have ds(y, xn) > ds(x, y)− ε ∀n ≥ N1.
ε > ds(x, y)− ds(xn, y) ∀n ≥ N1.
Hence |ds(xn, y)− ds(x, y)| < ε, for n ≥ max{N,N1}. Thus lim ds(xn, y) = ds(x, y).

Proposition 2.13. If (X, ds) is a d-symmetric space which satisfies (C4), then balls are
open.

Proof. Let x ∈ X, δ > 0 and y ∈ V cδ (x). We show that y ∈ V cδ (x).

Since y ∈ V cδ (x), there exist a sequence {yn} in V cδ (x) such that lim ds(yn, y) = 0.
From (C4), it follows that lim ds(yn, x) = ds(y, x). Since {yn} in V cδ (x), ds(yn, x) ≥ δ∀n.
Hence ds(y, x) ≥ δ, so y ∈ V cδ (x). Hence V cδ (x) is closed so that Vδ(x) is open.

Corollary 2.14. If (X, ds) is a d-symmetric space which satisfies (C4), then ds induces
a topology on X.

Proof. Follows from proposition 2.13.

Proposition 2.15. (X, ds,=) is Haussdorff space.

Proof. Suppose x 6= y. Claim that Vδ(x) ∩ Vδ(x) = φ.
Let us suppose that Vδ(x) ∩ Vδ(x) 6= φ. For each positive integer n, choose xn ∈ V 1

n
(x) ∩

V 1
n

(x). Thus ds(xn, x) < 1
n and ds(xn, y) < 1

n , which implies lim ds(xn, x) → 0 and

ds(xn, y)→ 0. Since (C1)⇒ (C5), x = y; which is a contradiction. Hence Vδ(x)∩Vδ(x) =
φ.

Note: If x ∈ X, the collection {Vr(x)/x ∈ X} is an open basis at x for (X, ds,=). Hence
(X, ds,=) is first countable.

Proposition 2.16. Let (X, ds) be a d-symmetric space with induced topology = and
A ⊂ X

(i).A ∈ = iff Ac is closed.
(ii).A is closed iff d(x,A) = 0⇒ x ∈ A.

Proof. Proof of (i): Suppose that A is open. Claim: Ac is closed.
Let {xn} be a sequence in X − A and lim ds(xn, x) = 0. Then we have to prove that
x ∈ X −A. Suppose x /∈ X −A⇒ x ∈ A.
Since A is open, there exist ε > 0 such that Bε(x) ⊆ A. From above, xn ∈ Bε(x) ⊆ A.
Which is a contradiction.

Conversely suppose that X − A is closed. Claim:A is open, i.e., for x ∈ A there exist
r > 0 such that Br(x) ⊆ A.
Suppose for some x ∈ A this does not hold.Then for all n ≥ 1, B 1

n
(x) * A.
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So there exist xn ∈ B 1
n

(x) ∩X − A⇒ ds(x, xn) < 1
n . Since X − A is closed, x ∈ X − A.

Which is a contradiction. Hence A is open.
Proof of (ii): Suppose A is closed. Claim: ds(x,A) = 0⇒ x ∈ A.

Since ds(x,A) = 0,there exist a sequence {xn} in A such that lim ds(x, xn)→ 0.
Since A is closed,x ∈ A. Conversely suppose that ds(x,A) = 0⇒ x ∈ A.
Let {xn} be a sequence in A such that lim ds(x, xn)→ 0.
⇒ ∀n, there exist kn such that ds(x, xkn) < 1

n .
⇒ inf{ds(x, y)/y ∈ A} = 0.
⇒ ds(x,A) = 0.
⇒ x ∈ A.

Hence A is closed.

3. Continuity

Definition 3.1. Let (X, ds) and (Y, d′s) be d-symmetric spaces with (C1) and (C4). f :
X → Y is said to be d-symmetric continuous at x ∈ X if for every ε > 0, there exists
δ > 0 such that f(Vδ(x)) ⊆ Vε(f(x)). f is d-symmetric continuous if f is d-symmetric
continuous at every x in X.

Theorem 3.2. Let (X, ds) and (Y, d′s) be d-symmetric spaces with (C1) and (C4). f :
(X, ds) → (Y, d′s) be continuous at x iff f : (X, ds,=) → (Y, d′s,=′) is continuous at x
where = and =′ are the corresponding induces topologies.

Proof. Assume that f is d-symmetric continuous at x.
Let V be an open set in (Y, d′s,=′). Then there exists ε > 0 such that Vε(f(x)) ⊆ V.
By hypothesis, there exists δ > 0 such that f(Vδ(x)) ⊆ Vε(f(x)). Therefore f(Vδ(x)) ⊆ V.
Which implies Vδ(x) ⊆ f−1(V ). Thus f−1(V ) is an open set in (X, ds,=). It follows that
f is continuous from (X, ds,=) to (Y, d′s,=′).

Conversely suppose that f : (X, ds,=) → (Y, d′s,=′) is continuous. Claim: f is d-
symmetric continuous. Since Vε(f(x)) ⊂ =′, Vε(f(x)) is open in (Y, d′s,=′),
which implies f−1(Vε(f(x))) is open in (X, ds,=). Thus there exists δ > 0 such that
Vδ(x) ⊂ f−1(Vε(f(x))). Which implies f(Vδ(x)) ⊆ Vε(f(x)).
Hence f is d-symmetric continuous.

Theorem 3.3. Let (X, ds) and (Y, d′s) be d-symmetric spaces (C1) and (C4). Then f is
d-symmetric continuous iff for every convergent sequence {xn} → x in X, the sequence
f(xn) converges to f(x).

Proof. Suppose that f is d-symmetric continuous. Claim: Suppose {xn} → x in X.
Which implies lim ds(xn, x)→ 0. For every δ > 0 there exists Nδ such that ds(x, xn) < δ,
for all n ≥ Nδ. Which implies that

xn ∈ Vδ(x), for all n ≥ Nδ. (3.1)

Since f is d-symmetric continuous, given ε > 0, there exists δ > 0 such that

f(Vδ(x)) ⊆ Vε(f(x)).

For this δ applying (6), then there exists N such that (6) holds for n ≥ N.
Which implies xn ∈ Vδ(x) for n ≥ N.
⇒ f(xn) ∈ f(Vδ(x)) ⊆ Vε(f(x)) for n ≥ N.
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⇒ ds(f(xn, f(x)) < ε.
⇒ f(xn)→ f(x).

To prove reverse inclusion first we shall prove the following lemma.

Lemma 3.4. Let (X, ds) be a d-symmetric space (C1) and (C4). Then following are
equivalent.

(1) f is d-symmetric continuous.

(2) For every subset A of X, one has f(A) ⊂ f(A).
(3) For every closed set B of Y , the set f−1(B) is closed in X.
(4) For each x ∈ X and each neighborhood V of f(x), there is a neighborhood U

of x such that f(U) ⊂ V.

Proof. (1)⇒ (2) : Assume that f is d-symmetric continuous.

Let A be a set of X. We prove that if x ∈ A, then f(x) ∈ f(A).
Let Vδ(f(x)) be a neighborhood of f(x). Then f−1(Vδ(f(x))) is an open set of X contain-

ing x. Which implies f−1(Vδ(f(x)))∩A 6= ∅. Then Vδ(f(x))∩f(A) 6= ∅. Thus f(x) ∈ f(A).
(2) ⇒ (3) : Let B be closed in Y and let A = f−1(B). We have to prove that A is

closed in X. So it is enough to show A = A.
Take f(A) = f(f−1(B)) ⊆ B. If x ∈ A implies f(x) ∈ f(A) ⊂ f(A) ⊂ B = B.
⇒ x ∈ f−1(B) = A
⇒ A ⊂ A.

Thus A = A.
(3)⇒ (1) : Let V be an open set of V. The set B = Y − V. Then f−1(B) = f−1(Y )−

f−1(V ) = X − f−1(V ). Now B is a closed set of Y. Then f−1(B) is closed in X by
hypothesis, so that f−1(V ) is open in X.

(1)⇒ (4) : Let x ∈ X and let V be a neighborhood of f(x). Then the set U = f−1(V )
is a neighborhood of x such that f(U) ⊂ V.

(4)⇒ (1) : Let V be an open set of Y. Let x be a point of f−1(V ). Then f(x) ∈ V, by
hypothesis, there is a neighborhood Ux of x such that f(Ux) ⊂ V . Then Ux ⊂ f−1(V ). It
follows that f−1(V ) can be written as the union of the open sets Ux, so that, it is open.
Which ends the proof of the lemma.

Now coming to the proof of the theorem.
Let us assume that xn → x implies f(xn)→ f(x). Claim:f is d-symmetric continuous.

To prove this it is enough to show f(A) ⊂ f(A). If x ∈ A, then there exist {xn} in A such

that xn → x. Which implies f(xn)→ f(x). Since f(xn) ∈ f(A), f(x) ∈ f(A).

Hence f(A) ⊂ f(A).

Theorem 3.5. f : (X, ds,=) → (Y, d′s,=′) is d-symmetric continuous iff given x ∈ X
and ε > 0, there exist δ > 0 such that ds(x, y) < δ implies d′s(f(x), f(y)) < ε.

Proof. Suppose that f is continuous. Consider the set f−1(V (f(x), ε)) which is open
in X and contains the point x. Which implies there exists δ > 0 such that Vδ(x) ⊂
f−1(V (f(x))).
⇒ f(Vδ(x)) ⊂ Vδ(f(x)).

Let y ∈ Vδ(x) implies ds(x, y) < δ. Thus d′s(f(x), f(y)) < ε.
Conversely, suppose that for given x ∈ X and ε > 0 there exists δ > 0 such that

d(x, y) < δ implies d′(f(x), f(y)) < ε. Claim: f is d-symmetric continuous.
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Let V be open in Y . We show that f−1(V ) is open in X. Let x be a point of the set
f−1(V ). Since f(x) ∈ V, there exists ε > 0 such that f(Vδ(x)) ⊆ Vε(f(x)) ⊂ V.
Which implies Vδ(x) ⊆ f−1(V ). Thus f−1(V ) is open in X.

4. A Fixed Point Theorem

Definition 4.1 ([10]). Let A and B be nonempty subsets of a metric space (X, d) and
T : A ∪B → A ∪B. T is called a cyclic map iff T (A) ∈ B and T (B) ∈ A.

Definition 4.2 ([10]). Let A and B be nonempty subsets of a metric space (X, d). A
cylic map T : A ∪ B → A ∪ B is said to be a cyclic contraction if there exist k ∈ (0, 1)
such that, for all x ∈ A and y ∈ B,

d(Tx, Ty) ≤ k(d(x, y)).

There is a huge literature pertinent to cyclic map and generalizations of metric space.
The reader can refer to [12]-[21] for more informations. Motivated by above, we introduc-
ing the concept of a ds-cyclic-Banach contraction.

Definition 4.3. Let A and B be nonempty subsets of a d-symmetric space. A cyclic map
T : A ∪ B → A ∪ B is said to be a ds-cyclic-Banach contraction if there exist k ∈ (0, 1)
such that

ds(Tx, Ty) ≤ k(ds(x, y)),

for all x ∈ A and y ∈ B.

Proposition 4.4. Suppose that T is a ds-cyclic-Banach contraction. Then any fixed
point w ∈ X of T satisfies ds(w,w) <∞⇒ ds(w,w) = 0.

Note that, for every x ∈ X, let δ(D, f, x) = sup{D(f i(x), f j(x)) : i, j ∈ N}.

Theorem 4.5. Let A and B be nonempty closed subsets of a complete d-symmetric space
(X, ds) with P.S property. Let T be a cyclic mapping that satisfies the condition of a
ds-cyclic-Banach contraction. Further, there exists x0 ∈ X such that δ(ds, T, x0) < ∞.
Then {Tn(x0)} ds-converges to w ∈ A ∩B, a fixed point of T.
Moreover, if w∗ ∈ X is another fixed point of T such that ds(w,w

∗) <∞, then w = w∗.

Proof. Fix x0 ∈ A and n ∈ N(n ≥ 1). Since T is ds-cyclic-Banach contraction,
for all i, j ∈ N, we have

ds(T
n+i(x0), Tn+j(x0)) ≤ kds(Tn−1+i(x0), Tn−1+j(x0)),

which implies that

δ(ds, T, T
n(x0)) ≤ kδ(ds, T, Tn−1(x0)).

Then, for every n ∈ N, we have

δ(ds, T, T
n(x0)) ≤ knδ(ds, T, x0).

By using the above inequality, for every n,m ∈ N, we get

ds(T
n(x0), Tn+m(x0)) ≤ δ(ds, T, Tn(x0)) ≤ knδ(ds, T, x0).

Since δ(ds, T, x0) <∞ and k ∈ (0, 1), we obtain

lim
n,m→∞

ds(T
n(x0), Tn+m(x0)) = 0.
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Which implies that {Tn(x0)} is a ds-Cauchy sequence.
Since (X, ds) is ds-complete, there exists some w ∈ X such that {Tn(x0)} is ds-convergent
to w.

We shall prove that {T 2n(x0)}, {T 2n−1(x0)} are sequences in A and B which tends to
the same limit point w. From the P.S-property we have

ds(T
2n(x0), w) ≤ C lim

n→∞
supds(T

2n(x0, T
n(x0))

Letting n→∞, we get
lim
n→∞

ds(T
2n(x0), w) = 0.

Similarly,
lim
n→∞

ds(T
2n−1(x0), w) = 0.

Since A and B are closed, we have w ∈ A ∩B, and then A ∩B 6= ∅.
Now we will show that Tw = w. Since T is a ds-cyclic-Banach contraction, for all n ∈ N,
we have

ds(T
n+1(x0), T (w) ≤ k(ds(T

n(x0), w)).

Applying limits as n→∞, we get

lim
n→∞

ds(T
n+1(x0), T (w) = 0.

ds(T
n(x0), T (w)) ≤ C lim sup

n→∞
ds(T

n(x0), Tn(x0)) ≤ C sup lim
n→∞

ds(T
n(x0), Tn(x0)).

Thus, lim
n→∞

ds(T
n(x0), T (w)) = 0.

Hence, {Tn(x0)} is ds-convergent to T (w). By the uniqueness of the limit, we get w =
T (w), that is, w is a fixed point of T. Finally, to prove the uniqueness of a fixed point,
let w∗ ∈ X be another fixed point of T such that Tw∗ = w∗ and ds(w,w

∗) < ∞. Then
we have,

ds(w,w
∗) = ds(T (w), T (w∗)) ≤ kds(w,w∗),

which implies w = w∗. Hence w is a unique fixed point of T.
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