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1. Introduction and Preliminaries

In 1972, Chatterjea [1] introduced the notion of a C-contraction as follows.

Definition 1.1 ([1]). Let (X, d) be a metric space and T : X −→ X be a mapping. Then
T is called a C-contraction if there exists α ∈ [0, 1) such that for all x, y ∈ X,

d(Tx, Ty) ≤ α
[
d(x, Ty) + d(y, Tx)

]
.

This notion was generalized to a weak C-contraction by Choudhury [2] and a (µ, ψ)-
generalized f -weakly contractive mapping in metric spaces by Chandok [3].

Denote by Ψ the family of all lower semi-continuous functions ψ : [0,∞)2 −→ [0,∞)
such that ψ(x, y) = 0 if and only if x = y = 0.

Definition 1.2 ([2], Definition 1.3). Let (X, d) be a metric space and T : X −→ X be
a map. Then T is called a weak C-contraction if there exists ψ ∈ Ψ such that for all
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x, y ∈ X,

d(Tx, Ty) ≤
1

2

[
d(x, Ty) + d(y, Tx)

]
− ψ

(
d(x, Ty), d(y, Tx)

)
.

Definition 1.3 ([4]). A function µ : [0,∞) −→ [0,∞) is called an altering distance
function if the following properties are satisfied.

(1) µ is monotone increasing and continuous.
(2) µ(t) = 0 if and only if t = 0.

Definition 1.4 ([3]). Let (X, d) be a metric space and T, f : X −→ X be two mappings.
Then T is called a (µ, ψ)-generalized f -weakly contractive mapping if there exist ψ ∈ Ψ
and an altering distance function µ such that for all x, y ∈ X,

µ
(
d(Tx, Ty)

)
≤ µ

(1

2
[d(fx, Ty) + d(fy, Tx)]

)
− ψ

(
d(fx, Ty), d(fy, Tx)

)
.

Remark 1.5. If f and µ are two the identify mappings, then a (µ, ψ)-generalized f -
weakly contractive mapping becomes a weak C-contraction mapping.

There were some fixed point results for (µ, ψ)-generalized f -weakly contractive map-
pings in complete metric spaces [3, Theorem 2.1], and in complete partially ordered metric
space [5, Theorem 2.1]. In 2013, Dung and Hang [6] introduced the notion of a weak C-
contraction mapping in partially ordered 2-metric spaces and stated some fixed point
results for this mapping in complete partially ordered 2-metric spaces [6, Theorem 2.3,
Theorem 2.4, Theorem 2.5].

In 2014, Nashine [7] generalized the notion of a weak C-contraction in metric spaces
to two mappings as follows. Recall that

(1) Γ1 is the family of all strictly increasing and continuous functions ψ : [0,∞) −→
[0,∞) such that ψ(t) ≤ 1

2
t for all t ≥ 0. Notice that ψ(0) = 0.

(2) Ω1 is the family of all strictly increasing functions ϕ : [0,∞)2 −→ [0,∞) that
are continuous in each variable, and ϕ(x, y) = 0 if and only if x = y = 0, and
ϕ(x, y) ≤ x+ y for all x, y ∈ [0,∞).

(3) Γ2 is the family of all strictly increasing and continuous functions ψ : [0,∞) −→
[0,∞) such that ψ(t) ≤ 1

4
t for all t ≥ 0. Notice that ψ(0) = 0.

(4) Ω2 is the family of all strictly increasing functions ϕ : [0,∞)4 −→ [0,∞) that
are continuous in each variable, and ϕ(x, y, z, t) = 0 if and only if x = y = z =
t = 0, and ϕ(x, y, z, t) ≤ x+ y + z + t for all x, y, z, t ∈ [0,∞).

Definition 1.6 ([7], Definition 3.1). Let (X, d,�) be a partially ordered metric space
and T, S : X −→ X be two mappings. Then T is called a weakly (ψ, S,C)-contractive if
there exist ψ ∈ Γ1 and ϕ ∈ Ω1 such that for all x, y ∈ X with x � y or y � x,

d(Tx, Sy) ≤ ψ
[
d(x, Sy) + d(y, Tx)− ϕ(d(x, Sy), d(y, Tx))

]
.

Definition 1.7 ([7], Definition 4.1). Let (X, d,�) be a partially ordered metric space
and T, S : X −→ X be two mappings. Then T is called a generalized weakly (ψ, S,C)-
contraction if there exist ψ ∈ Γ2 and ϕ ∈ Ω2 such that for all x, y ∈ X with x � y or
y � x, we have

d(Tx, Sy) ≤ ψ
[
d(x, Tx) + d(y, Sy) + d(x, Sy) + d(y, Tx)

−ϕ(d(x, Tx), d(y, Sy), d(x, Sy), d(y, Tx))
]
. (1.1)
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There were many generalizations of a metric space and many fixed point theorems on
generalized metric spaces were stated [8]. The notion of a b-metric space was introduced
by Bakhtin [9] and then extensively used by Czerwik [10, 11] as follows.

Definition 1.8 ([11]). Let X be a non-empty set and d : X×X −→ [0,∞) be a function
such that for some s ≥ 1 and all x, y, z ∈ X,

(1) d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x).
(3) d(x, y) ≤ s

(
d(x, z) + d(z, y)

)
.

Then d is called a b-metric on X and (X, d, s) is called a b-metric space.

Remark 1.9. (X, d) is a metric space if and only if (X, d, 1) is a b-metric space.

The first important difference between a metric and a b-metric is that the b-metric
need not be a continuous function in its two variables, see [12, Example 13]. In recent
years, many fixed point theorems on b-metric spaces were stated, the readers may refer
to [13–22] and references therein.

The purpose of this paper is to introduce the notions of a weakly (ψ, S,C)-contractive
mapping and a generalized weakly (ψ, S,C)-contractive mapping in partially ordered b-
metric spaces and to state some common fixed point theorems for these classes of map-
pings. Also, some examples are given to illustrate the results.

First, we recall some notions and lemmas which will be useful in what follows.

Definition 1.10 ([11]). Let (X, d, s) be a b-metric space. Then

(1) A sequence {xn} is called convergent to x, written as lim
n→∞

xn = x, if

lim
n→∞

d(xn, x) = 0.

(2) A sequence {xn} is called Cauchy in X if lim
n,m→∞

d(xn, xm) = 0.

(3) (X, d, s) is called complete if every Cauchy sequence is a convergent sequence.

In 2014, Aghajani et al. [23] proved the following simple lemma about the convergence
in b-metric spaces.

Lemma 1.11 ([23]). Let (X, d, s) be a b-metric space and lim
n→∞

xn = x, lim
n→∞

yn = y .

Then

(1)
1

s2
d(x, y) ≤ lim inf

n→∞
d(xn, yn) ≤ lim sup

n→∞
d(xn, yn) ≤ s2d(x, y). In particular, if

x = y, then lim
n→∞

d(xn, yn) = 0.

(2) For each z ∈ X,
1

s
d(x, z) ≤ lim inf

n→∞
d(xn, z) ≤ lim sup

n→∞
d(xn, z) ≤ sd(x, z).

The following lemma is a equivalent condition for the Cauchy property of {xn} in
b-metric spaces.

Lemma 1.12. Let (X, d, s) be a b-metric space and {xn} be a sequence in (X, d, s). Then
the following statements are equivalent.

(1) {xn} is a Cauchy sequence in (X, d, s).
(2) {x2n} is a Cauchy sequence in (X, d, s) and lim

n→∞
d(xn, xn+1) = 0.
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Proof. (1) ⇒ (2). From the given assumption, we get {x2n} is a Cauchy sequence in
(X, d, s) and lim

n→∞
d(xn, xn+1) = 0.

(2)⇒ (1). For all n,m ≥ 0, we only consider three following cases.
Case 1. n = 2k + 1,m = 2l for all k, l ∈ N ∪ {0}. Then

d(xn, xm) = d(x2k+1, x2l) ≤ sd(x2k+1, x2k) + sd(x2k, x2l).

Case 2. n = 2k,m = 2l + 1 for all k, l ∈ N ∪ {0}. Then

d(xn, xm) = d(x2k, x2l+1) ≤ sd(x2k, x2l) + sd(x2l, x2l+1).

Case 3. n = 2k + 1,m = 2l + 1 for all k, l ∈ N ∪ {0}. Then

d(xn, xm) = d(x2k+1, x2l+1) ≤ sd(x2k+1, x2k) + s2d(x2k, x2l) + s2d(x2l, x2l+1).

By the above cases, we find that lim
n,m→∞

d(xn, xm) = 0. Therefore, {xn} is a Cauchy

sequence in (X, d, s).

Definition 1.13 ([24, 25]). Let (X,�) be a partially ordered set and T, S : X −→ X be
two mappings.

(1) The pair (T, S) is called weakly increasing if Sx � TSx and Tx � STx for all
x ∈ X.

(2) The mapping S is called T -weakly isotone increasing if Sx � TSx � STSx
for all x ∈ X.

Remark 1.14 ([7]). If the pair (T, S) is weakly increasing, then S is T -weakly isotone in-
creasing.

Definition 1.15 ([26]). Let (X,�) be a partially ordered set and T, S : X −→ X be
two mappings.

(1) For each x0 ∈ X, put x2n+1 = Sx2n, x2n+2 = Tx2n+1 for all n ∈ N∪{0}. Then
the set O(x0;T, S) = {xn : n ∈ N∪{0}} is called orbit of (T, S) at x0. If S = T ,
then O(x0;T, S) is denoted by O(x0;T ).

(2) The space (X, d, s) is called (T, S)-orbitally complete at x0 if every Cauchy
sequence in O(x0;T, S) converges to some x ∈ X.

(3) The mapping T is called orbitally continuous at x0 if it is continuous on
O(x0;T ).

(4) The pair (T, S) is called asymptotically regular at x0 if there exists a sequence
{xn} in X such that x2n+1 = Sx2n, x2n+2 = Tx2n+1 for all n ∈ N ∪ {0} and
lim
n→∞

d(xn, xn+1) = 0.

Definition 1.16. Let (X, d, s,�) be a partially ordered b-metric space. Then (X, d, s,�)
is called a regular space if {zn} is a non-decreasing sequence in X and lim

n→∞
zn = z, then

zn � z for all n ∈ N ∪ {0}.

2. Main Results

First, we introduce the notion of a weakly (ψ, S,C)-contractive in partially ordered
b-metric spaces. Denote by
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(1) Ψ1 the family of all increasing functions ψ : [0,∞) −→ [0,∞) such that for all

t ≥ 0, we have ψ(t) ≤ 1

2
t. Notice that ψ(0) = 0.

(2) Φ1 the family of all lower semi-continuous functions ϕ : [0,∞)2 −→ [0,∞) such
that ϕ(x, y) = 0 if and only if x = y = 0, and ϕ(x, y) ≤ x+ y for all x, y ∈ [0,∞).

Definition 2.1. Let (X, d, s,�) be a partially ordered b-metric space and T, S : X −→ X
be two mappings. Then T is called a weakly (ψ, S,C)-contraction if there exist ψ ∈ Ψ1

and ϕ ∈ Φ1 such that for all x, y ∈ X with x � y or y � x,

d(Tx, Sy) ≤ ψ
( 2

s(s2 + 1)

[
d(x, Sy) + d(y, Tx)− ϕ(d(x, Sy), d(y, Tx))

])
. (2.1)

Remark 2.2. A weakly (ψ, S,C)-contraction in Definition 1.6 is a particular case of a
weakly (ψ, S,C)-contractive in Definition 2.1 for s = 1.

The following lemma states the relation between the fixed point of T, S and the common
fixed point of T, S.

Lemma 2.3. Let (X, d, s,�) be a partially ordered b-metric space and T, S : X −→ X
be two mappings satisfying the condition (2.1). If z is a fixed point of T or S, then z is
a common fixed point of T and S.

Proof. Suppose that z is a fixed point of T. Form (2.1), we have

d(z, Sz) = d(Tz, Sz)

≤ ψ
( 2

s(s2 + 1)

[
d(z, Sz) + d(z, Tz)− ϕ(d(z, Sz), d(z, Tz))

])
= ψ

( 2

s(s2 + 1)

[
d(z, Sz)− ϕ(0, d(z, Sz))

])
≤ 1

s(s2 + 1)

[
d(z, Sz)− ϕ(0, d(z, Sz))

]
≤ d(z, Sz)− ϕ(0, d(z, Sz)).

This implies that ϕ(0, d(z, Sz)) = 0. Therefore, d(z, Sz) = 0 and hence z = Sz, that is, z
is a fixed point of S. So, z is a common fixed point of T and S.

Similarly, if z is a fixed point of S, then z is a common fixed point of T and S.

The following theorem is a sufficient condition for the existence and uniqueness of the
common fixed point for a weakly (ψ, S,C)-contractive in b-metric spaces.

Theorem 2.4. Let (X, d, s,�) be a complete, partially ordered b-metric space and T, S :
X −→ X be two mappings such that

(1) T is a weakly (ψ, S,C)-contraction.
(2) S is T -weakly isotone increasing.
(3) There exists x0 such that x0 � Sx0.
(4) T or S is continuous, or (X, d, s,�) is a regular space.

Then T and S have a common fixed point. Moreover, the set of common fixed points of
T, S is totally ordered if and only if T and S have a unique common fixed point.

Proof. Define a sequence {xn} in X by

x2n+1 = Sx2n, x2n+2 = Tx2n+1
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for all n ∈ N ∪ {0}, where x0 be defined by the assumption (3). Since S is T -weakly
isotone increasing, we have

x0 � x1 � . . . � xn � xn+1 � . . .
Sine x2n � x2n+1 for all n ∈ N ∪ {0}, from (2.1), we have

d(x2n+1, x2n+2) = d(Tx2n+1, Sx2n)

≤ ψ
( 2

s(s2 + 1)

[
d(x2n+1, Sx2n) + d(x2n, Tx2n+1)

−ϕ(d(x2n+1, Sx2n), d(x2n, Tx2n+1)
])

= ψ
( 2

s(s2 + 1)

[
d(x2n+1, x2n+1) + d(x2n, x2n+2) (2.2)

−ϕ(d(x2n+1, x2n+1), d(x2n, x2n+2))
])

≤ 1

s(s2 + 1)

[
d(x2n, x2n+2)− ϕ(0, d(x2n, x2n+2))

]
≤ 1

s(s2 + 1)
d(x2n, x2n+2)

≤ 1

s2 + 1

[
d(x2n, x2n+1) + d(x2n+1, x2n+2)

]
≤ 1

2

[
d(x2n, x2n+1) + d(x2n+1, x2n+2)

]
. (2.3)

This implies that

d(x2n+1, x2n+2) ≤ d(x2n, x2n+1) (2.4)

for all n ∈ N ∪ {0}. Similarly, we also have

d(x2n+2, x2n+3) ≤ d(x2n+1, x2n+2) (2.5)

for all n ∈ N∪{0}. Therefore, from (2.4) and (2.5), we have d(xn+1, xn+1) ≤ d(xn, xn+1)
for all n ∈ N∪{0}. Thus, {d(xn, xn+1)} is a non-increasing sequence of non-negative real
numbers. Then there exists r ≥ 0 such that

lim
n→∞

d(xn, xn+1) = r. (2.6)

Taking the limit as n→∞ in (2.2) and using (2.6), we get

r ≤ lim
n→∞

d(x2n, x2n+2)

s(s2 + 1)
≤ r + r

2
≤ r.

This implies that

lim
n→∞

d(x2n, x2n+2) = rs(s2 + 1). (2.7)

Taking the limit as n → ∞ in (2.2), using (2.6), (2.7) and the lower semi-continuous
property of ϕ, we have

r ≤
rs(s2 + 1)− ϕ

(
0, rs(s2 + 1)

)
s(s2 + 1)

= r −
ϕ
(
0, rs(s2 + 1)

)
s(s2 + 1)

≤ r.

This implies that ϕ
(
0, rs(s2 + 1)

)
= 0 and hence r = 0. Then (2.6) becomes

lim
n→∞

d(xn, xn+1) = 0. (2.8)
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Next, we will prove that {xn} is a Cauchy sequence. From Lemma 1.12 and (2.8), it is
sufficient to show that {x2n} is a Cauchy sequence. Suppose to the contrary that {x2n} is
not a Cauchy sequence. Then there exists ε > 0 for which we can find two subsequences
{x2n(k)}, {x2m(k)} of {x2n} where m(k) is a smallest integer such that m(k) > n(k) >
k and

d(x2n(k), x2m(k)) ≥ ε. (2.9)

This implies that

d(x2n(k), x2m(k)−2) < ε. (2.10)

Then from (2.9), we have

ε ≤ d(x2m(k), x2n(k))

≤ sd(x2m(k), x2m(k)−2) + sd(x2m(k)−2, x2n(k))

≤ sd(x2m(k), x2m(k)−2) + s2d(x2m(k)−2, x2n(k)−1)

+s2d(x2n(k)−1, x2n(k)). (2.11)

Taking the upper limit as k →∞ in (2.11) and using (2.8), we get

ε

s2
≤ lim sup

k→∞
d(x2n(k)−1, x2m(k)−2). (2.12)

From (2.10), we have

d(x2n(k)−1, x2m(k)−2) ≤ sd(x2n(k)−1, x2n(k)) + sd(x2n(k), x2m(k)−2)

< sd(x2n(k)−1, x2n(k)) + εs. (2.13)

Taking the upper limit as k →∞ in (2.13) and using (2.8), we get

lim sup
k→∞

d(x2n(k)−1, x2m(k)−2) ≤ εs. (2.14)

Therefore, from (2.12) and (2.14), we obtain

ε

s2
≤ lim sup

k→∞
d(x2n(k)−1, x2m(k)−2) ≤ εs. (2.15)

Similarly, we also have

ε

s2
≤ lim inf

n→∞
d(x2n(k)−1, x2m(k)−2) ≤ εs. (2.16)

Also, we have

d(x2n(k)−1, x2m(k)−2) ≤ sd(x2n(k)−1, x2n(k)) + sd(x2n(k), x2m(k)−2). (2.17)

Taking the upper limit as k →∞ in (2.17) and using (2.8), (2.10), (2.15), we get

ε

s3
≤ lim sup

k→∞
d(x2n(k), x2m(k)−2) ≤ ε. (2.18)

Similarly, we also have

ε

s3
≤ lim inf

k→∞
d(x2n(k), x2m(k)−2) ≤ ε. (2.19)
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Again, we have

d(x2m(k)−1, x2n(k)−1)

≤ sd(x2m(k)−1, x2n(k)) + sd(x2n(k), x2n(k)−1)

≤ s2d(x2m(k)−1, x2m(k)−2) + s2d(x2m(k)−2, x2n(k)) + sd(x2n(k), x2n(k)−1)

< s2d(x2m(k)−1, x2m(k)−2) + s2ε+ sd(x2n(k), x2n(k)−1). (2.20)

Taking the upper limit as k →∞ in (2.20) and using (2.8), we get

lim sup
k→∞

d(x2n(k)−1, x2m(k)−1) ≤ εs2. (2.21)

Also, we have

d(x2n(k)−1, x2m(k)−2) ≤ sd(x2n(k)−1, x2m(k)−1) + sd(x2m(k)−1, x2m(k)−2). (2.22)

Taking the upper limit as k →∞ in (2.22) and using (2.8), (2.12), we get

ε

s3
≤ lim sup

k→∞
d(x2n(k)−1, x2m(k)−1). (2.23)

Therefore, from (2.21) and (2.23), we have

ε

s3
≤ lim sup

k→∞
d(x2n(k)−1, x2m(k)−1) ≤ s2ε. (2.24)

Similarly, we also have
ε

s3
≤ lim inf

k→∞
d(x2n(k)−1, x2m(k)−1) ≤ s2ε. (2.25)

Since x2m(k)−2 � x2n(k)−1, from (2.1), we have

d(x2n(k), x2m(k))

≤ sd(x2n(k), x2m(k)−1) + sd(x2m(k)−1, x2m(k))

= sd(Tx2n(k)−1, Sx2m(k)−2) + sd(x2m(k)−1, x2m(k))

≤ sd(x2m(k)−1, x2m(k)) + sψ
( 2

s(s2 + 1)

[
d(x2n(k)−1, Sx2m(k)−2)

+d(x2m(k)−2, Tx2n(k)−1)− ϕ(d(x2n(k)−1, Sx2m(k)−2), d(x2m(k)−2, Tx2n(k)−1))
])

≤ sd(x2m(k)−1, x2m(k)) + sψ
( 2

s(s2 + 1)

[
d(x2n(k)−1, x2m(k)−1) + d(x2m(k)−2, x2n(k))

−ϕ(d(x2n(k)−1, x2m(k)−1), d(x2m(k)−2, x2n(k)))
])

≤ sd(x2m(k)−1, x2m(k)) +
1

s2 + 1

[
d(x2n(k)−1, x2m(k)−1) + d(x2m(k)−2, x2n(k))

−ϕ(d(x2n(k)−1, x2m(k)−1), d(x2m(k)−2, x2n(k)))
]
. (2.26)

Taking the upper limit as k → ∞ in (2.26) and using (2.8), (2.9), (2.18), (2.19), (2.24),
(2.25) and the lower semi-continuous property of ϕ, we get

ε ≤ 1

s2 + 1

[
εs2 + ε− lim inf

k→∞
ϕ(d(x2n(k)−1, x2m(k)−1), d(x2n(k), x2m(k)−2))

]
≤ ε− 1

s2 + 1
ϕ
[

lim inf
k→∞

d(x2n(k)−1, x2m(k)−1), lim inf
k→∞

d(x2n(k), x2m(k)−2)
]

< ε.
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It is a contradiction. Thus, {x2n} is a Cauchy sequence. By Lemma 1.12, {xn} is a
Cauchy sequence in (X, d, s). Since (X, d, s) is complete, there exists z ∈ X such that
lim
n→∞

xn = z.

Suppose that T or S is continuous. If T is continuous, then

z = lim
n→∞

x2n+2 = lim
n→∞

Tx2n+1 = T ( lim
n→∞

x2n+1) = Tz,

that is, z is a fixed point of T . By Lemma 2.3, z is a common fixed point of S and T .
Similarly, if S is continuous, we also see that z is a common fixed point of S and T .

Suppose that (X, d, s,�) is a regular space. Then x2n+1 � z for all n ≥ 0. From (2.1),
we have

d(x2n+2, Sz)

= d(Tx2n+1, Sz)

≤ ψ
( 2

s(s2 + 1)

[
d(x2n+1, Sz) + d(z, Tx2n+1)− ϕ(d(x2n+1, Sz), d(z, Tx2n+1))

])
≤ ψ

( 2

s(s2 + 1)

[
d(x2n+1, Sz) + d(z, x2n+2)− ϕ(d(x2n+1, Sz), d(z, x2n+2))

])
≤ 1

s(s2 + 1)

[
d(x2n+1, Sz) + d(z, x2n+2)− ϕ(d(x2n+1, Sz), d(z, x2n+2))

]
≤ 1

s(s2 + 1)

[
d(x2n+1, Sz) + d(z, x2n+2)]. (2.27)

Taking the upper limit as n→∞ in (2.27), using lim
n→∞

xn = z and Lemma 1.11, we get

1

s
d(z, Sz) ≤ 1

s(s2 + 1)

[
sd(z, Sz)

]
=

1

s2 + 1
d(z, Sz).

This implies that

d(z, Sz) ≤ s

s2 + 1
d(z, Sz) ≤ 1

2
d(z, Sz).

This implies that d(z, Sz) = 0 and hence Sz = z, that is, z is a fixed point of S. Therefore,
form Lemma 2.3, it follows that z is a common fixed point of T and S.

Now, suppose that the set of common fixed points of T and S is totally ordered. We
claim that there is a unique common fixed point of T and S. If there exist u, v ∈ X such
that Su = Tu = u and Sv = Tv = v, then, from (2.1), we have

d(u, v) = d(Tu, Sv) ≤ ψ
( 2

s(s2 + 1)

[
d(u, Sv) + d(v, Tu)− ϕ(d(u, Sv), d(v, Tu))

])
= ψ

( 2

s(s2 + 1)

[
(2d(u, v)− ϕ(d(u, v), d(v, u))

])
≤ 1

s(s2 + 1)

[
2d(u, v)− ϕ(d(u, v), d(v, u))

]
=

2

s(s2 + 1)
d(u, v)− 1

s(s2 + 1)
ϕ(d(u, v), d(v, u))

≤ d(u, v)− 1

s(s2 + 1)
ϕ(d(u, v), d(v, u)).
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This implies that ϕ(d(u, v), d(v, u)) = 0 and hence d(u, v) = 0. Therefore, u = v, that
is, the common fixed point of T and S is unique. Conversely, if T and S have a unique
common fixed point, then the set of common fixed pointsof T and S being a singleton is
totally ordered.

By using Remark 1.14, from Theorem 2.4, we get the following corollary.

Corollary 2.5. Let (X, d, s,�) be a complete, partially ordered b-metric space and T, S :
X −→ X be two mappings such that

(1) T is a weakly (ψ, S,C)-contraction.
(2) The pair (T, S) is weakly increasing.
(3) There exists x0 such that x0 � Sx0.
(4) S or T is continuous, or (X, d, s,�) is a regular space.

Then T and S have a common fixed point. Moreover, the set of fixed points of T, S is
totally ordered if and only if T and S have a unique common fixed point.

By taking ψ =
x

2
and ϕ(x, y) = (1 − α)(x + y) for all x, y ∈ [0,∞) and for some

α ∈ [0, 1) in Corollary 2.5, we get the following corollary.

Corollary 2.6. Let (X, d, s,�) be a complete, partially ordered b-metric space and T, S :
X −→ X be two mappings such that

(1) There exists λ ∈ [0, 1
s(s2+1) ) such that for all x, y ∈ X with x � y or x � y,

d(Tx, Sy) ≤ λ(d(x, Sy) + d(y, Tx)).

(2) The pair (T, S) is weakly increasing.
(3) There exists x0 such that x0 � Sx0.
(4) T or S is continuous, or (X, d, s,�) is a regular space.

Then T and S have a common fixed point. Moreover, the set of fixed points of T, S is
totally ordered if and only if T and S have a unique common fixed point.

In the next, we introduce the notion of a generalized weakly (ψ, S,C)-contraction in
partially ordered b -metric spaces.

Denote by

(1) Ψ2 the family of all increasing functions ψ : [0,∞) −→ [0,∞) such that for all

t > 0, we have ψ(t) ≤ 1

4
t. Notice that ψ(0) = 0.

(2) Φ2 the family of all lower semi-continuous functions ϕ : [0,∞)4 −→ [0,∞) such
that ϕ(x, y, z, t) = 0 if and only if x = y = z = t = 0, and ϕ(x, y, z, t) ≤ x+y+z+t
for all x, y, z, t ∈ [0,∞).

Definition 2.7. Let (X, d, s,�) be a partially ordered b-metric space and T, S : X −→ X
be two mappings. Then T is called a generalized weakly (ψ, S,C)-contractive if there exist
ψ ∈ Ψ2 and ϕ ∈ Φ2 such that for all x, y ∈ X with x � y or y � x,

d(Tx, Sy) ≤ ψ
( 4

s(s2 + 1)

[
d(x, Tx) + d(y, Sy) + d(x, Sy) + d(y, Tx)

−ϕ(d(x, Tx), d(y, Sy), d(x, Sy), d(y, Tx))
])
. (2.28)
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Notice that if s = 1, then the condition (2.28) becomes

d(Tx, Sy) ≤ ψ
(

2
[
d(x, Tx) + d(y, Sy) + d(x, Sy) + d(y, Tx)

−ϕ(d(x, Tx), d(y, Sy), d(x, Sy), d(y, Tx))
])
. (2.29)

The following example proves that the condition (2.29) is a proper generalization of
the condition (1.1).

Example 2.8. Let X =
{

1, 2, 3, 4, 5
}

with the usual order ≤. Define a metric d on X as
follows.

d(x, y) =


0 if x = y
1 if (x, y) ∈ {(1, 2), (2, 1), (1, 3), (3, 1)}
2 if (x, y) ∈

{
(3, 2), (2, 3), (4, 2), (2, 4), (5, 2), (2, 5), (1, 4), (4, 1), (1, 5), (5, 1)

}
3 otherwise.

Let T, S : X −→ X be defined by

T1 = T2 = T3 = T4 = T5 = 2 and S1 = S2 = 2, S3 = S4 = S5 = 1.

Define two functions by ϕ(x, y, z, t) =
x+ y + z + t

2
and ψ(x) =

x

4
for all x, y, z, t ∈

[0,∞). Then ϕ ∈ Φ1, ψ ∈ Ψ1. Put

F = ψ
(

2[d(x, Tx) + d(y, Sy) + d(x, Sy) + d(y, Tx)

−ϕ(d(x, Tx), d(y, Sy), d(x, Sy), d(y, Tx))]
)

=
1

2

(
d(x, Tx) + d(y, Sy) + d(x, Sy) + d(y, Tx)

−ϕ(d(x, Tx), d(y, Sy), d(x, Sy), d(y, Tx))
)

=
1

4
[d(x, Tx) + d(y, Sy) + d(x, Sy) + d(y, Tx)].

Let x, y ∈ X with x ≤ y or y ≥ x, we have

d(Tx, Sy) =

{
0 if x, y ∈ {1, 2} or x ∈ {3, 4, 5}, y ∈ {1, 2}
1 if x ∈ {1, 2}, y ∈ {3, 4, 5} or x, y ∈ {3, 4, 5}

and

F =



0 if x = y = 2
1
2 if (x, y) ∈ {(1, 2), (2, 1)}
1 if x = 2, y = 3 or x = 1, y ∈ {1, 3} or x ∈ {3, 4, 5}, y = 2
5
4 if x ∈ {1, 2}, y ∈ {4, 5}
3
2 if x ∈ {4, 5}, y = 1 or x = 3, y ∈ {1, 3, 4}
7
4 if x = 3, y = 5 or x ∈ {4, 5}, y = 3
2 if x, y ∈ {4, 5}.
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This implies that the condition (2.29) is satisfied. However, for all ϕ ∈ Ω2 and ψ ∈ Γ2,
by choosing (x, y) = (2, 3), we have d(T2, S3) = 1 and

ψ
(
d(2, T2) + d(3, S3) + d(2, S3) + d(3, T2)

−ϕ(d(2, T2), d(3, S3), d(2, S3), d(3, T2))
)

≤ 1

4

(
d(2, 2) + d(3, 1) + d(2, 1) + d(3, 2)− ϕ(d(2, 2), d(3, 1), d(2, 1), d(3, 2))

)
= 1− 1

4
ϕ(0, 1, 1, 2) < 1.

This implies that the condition (1.1) is not satisfied.

The following example proves that the condition (2.28) is a proper generalization of
the condition (2.1). Notice that we may not conclude that lim

n→∞
d(xn, xn+1) = 0 by using

the similar argument as in the proof of Theorem 2.4. So, by adding the assumptions as in
Theorem 2.4 to a generalized weakly (ψ, S,C)-contraction, we may not state the existence
and uniqueness of the common fixed point.

Example 2.9. Let X =
{

1, 2, 3, 4, 5
}

with the usual order ≤. Define a function d on X
as follows.

d(x, y) =


0 if x = y
1 if (x, y) ∈

{
(1, 2), (2, 1), (2, 3), (3, 2)

}
2 if (x, y) ∈

{
(1, 3), (3, 1)

}
22 if (x, y) ∈

{
(1, 5), (5, 1), (3, 5), (5, 3)

}
10 otherwise.

Then (X, d, s) is a complete b-metric space with s = 2. Let T, S : X −→ X be defined
by T1 = T2 = T3 = 2, T4 = T5 = 3 and S1 = S2 = S3 = 2, S4 = S5 = 1. Define two

functions by ϕ(x, y, z, t) =
x+ y + z + t

2
and ψ(x) =

x

4
for all x, y, z, t ∈ [0,∞). Then

ϕ ∈ Φ2, ψ ∈ Ψ2. Put

H = ψ
( 4

s(s2 + 1)

[
d(x, Tx) + d(y, Sy) + d(x, Sy) + d(y, Tx)

−ϕ(d(x, Tx), d(y, Sy), d(x, Sy), d(y, Tx))
])

= ψ
(2

5

[
d(x, Tx) + d(y, Sy) + d(x, Sy) + d(y, Tx)

−ϕ(d(x, Tx), d(y, Sy), d(x, Sy), d(y, Tx))
])

=
1

20
[d(x, Tx) + d(y, Sy) + d(x, Sy) + d(y, Tx)].

Let x, y ∈ X with x ≤ y or y ≥ x, we have

d(Tx, Sy) =

 0 if x, y ∈ {1, 2, 3}
2 if x, y ∈ {4, 5}
1 otherwise
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and

H =



0 if x = y = 2
2 if x = y = 4
22
5 if x = y = 5
16
5 if (x, y) ∈ {(4, 5), (5, 4)}
1
5 if x, y ∈ {1, 3}
1
10 if x = 2, y ∈ {1, 3} or x ∈ {1, 3}, y = 2
21
20 if (x, y) ∈ {(1, 4), (2, 4), (4, 2), (4, 3)}
23
20 if (x, y) ∈ {(4, 1), (3, 4)}
33
20 if (x, y) ∈ {(1, 5), (2, 5), (5, 2), (5, 3)}
35
20 if (x, y) ∈ {(5, 1), (3, 5)}.

This implies that the condition (2.28) is satisfied. However, for all ϕ ∈ Φ1 and ψ ∈ Ψ1,
by choosing (x, y) = (1, 4), we have d(T1, S4) = 1 and

ψ
(1

5

[
d(1, S4) + d(4, T1)− ϕ(d(1, S4), d(4, T1))

])
≤ 1

10

[
d(1, 1) + d(4, 2)− ϕ(d(1, 1), d(4, 2))

]
=

1

2
− 1

10
ϕ(0, 10) <

1

2
.

This implies that the condition (2.1) is not satisfied.

In what follows, we shall state the existence and uniqueness of the common fixed
point for a generalized weakly (ψ, S,C)-contraction in b-metric spaces. Now, by using the
similar argument as in the proof of Lemma 2.3, we get the following lemma.

Lemma 2.10. Let (X, d, s,�) be a partially ordered b-metric space and T, S : X −→ X
be two mappings satisfying the condition (2.28). If z is a fixed point of T or S, then z is
a common fixed point of T and S.

The following result is a sufficient condition for the existence and uniqueness of the
common fixed point for a generalized weakly (ψ, S,C)-contraction in b-metric spaces.

Theorem 2.11. Let (X, d, s,�) be a partially ordered b-metric space and T, S : X −→ X
be two mappings such that

(1) T is a generalized weakly (ψ, S,C)-contraction.
(2) S is T -weakly isotone increasing.
(3) There exists x0 such that x0 � Sx0.
(4) (T, S) is asymptotically continuous at x0 ∈ X.
(5) X is (T, S)-orbitally complete at x0.
(6) T or S is orbitally continuous at x0, or (X, d, s,�) is a regular space.

Then T and S have a common fixed point. Moreover, the set of common fixed points of
T, S is totally ordered if and only if T and S have a unique common fixed point.

Proof. Since (T, S) is asymptotically continuous at x0 in X where x0 defined by the
assumption (3), there exists a sequence {xn} in X such that

x2n+1 = Sx2n, x2n+2 = Tx2n+1

for all n ∈ N ∪ {0} and

lim
n→∞

d(xn, xn+1) = 0. (2.30)
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Since S is T -weakly isotone increasing, we also get

x0 � x1 � . . . � xn � xn+1 � . . .

Next, we will prove that {xn} is a Cauchy sequence. From Lemma 1.12, it is sufficient to
show that {x2n} is a Cauchy sequence. Suppose to the contrary that {x2n} is not a Cauchy
sequence. Then there exists ε > 0 for which we can find subsequences {x2n(k)}, {x2m(k)}
of {x2n} where m(k) is a smallest integer such that m(k) > n(k) > k and

d(x2n(k), x2m(k)) > ε. (2.31)

This implies that

d(x2n(k), x2m(k)−2) ≤ ε. (2.32)

Then from (2.31) and (2.32), by using the similar argument as in the proof of Theorem 2.4,
we get

ε

s3
≤ lim sup

k→∞
d(x2n(k), x2m(k)−2) ≤ ε, (2.33)

ε

s3
≤ lim inf

k→∞
d(x2n(k), x2m(k)−2) ≤ ε, (2.34)

ε

s3
≤ lim sup

k→∞
d(x2n(k)−1, x2m(k)−1) ≤ s2ε (2.35)

and
ε

s3
≤ lim inf

k→∞
d(x2n(k)−1, x2m(k)−1) ≤ s2ε. (2.36)

Since x2m(k)−2 � x2n(k)−1, from (2.28), we have

d(x2n(k), x2m(k))

≤ sd(x2n(k), x2m(k)−1) + sd(x2m(k)−1, x2m(k))

= sd(x2m(k)−1, x2m(k)) + sd(Tx2n(k)−1, Sx2m(k)−2)

≤ sd(x2m(k)−1, x2m(k)) + sψ
( 4

s(s2 + 1)

[
d(x2n(k)−1, Tx2n(k)−1)

+d(x2m(k)−2, Sx2m(k)−2) + d(x2n(k)−1, Sx2m(k)−2) + d(x2m(k)−2, Tx2n(k)−1)

−ϕ
(
d(x2n(k)−1, Tx2n(k)−1), d(x2m(k)−2, Sx2m(k)−2), d(x2n(k)−1, Sx2m(k)−2),

d(x2m(k)−2, Tx2n(k)−1)
)])

≤ sd(x2m(k)−1, x2m(k)) + sψ
( 4

s(s2 + 1)

[
d(x2n(k)−1, x2n(k)) + d(x2m(k)−2, x2m(k)−1)

+d(x2n(k)−1, x2m(k)−1) + d(x2m(k)−2, x2n(k))− ϕ
(
d(x2n(k)−1, x2n(k)),

d(x2m(k)−2, x2m(k)−1), d(x2n(k)−1, x2m(k)−1), d(x2m(k)−2, x2n(k))
)])

≤ sd(x2m(k)−1, x2m(k)) +
1

s2 + 1

[
d(x2n(k)−1, x2n(k)) + d(x2m(k)−2, x2m(k)−1)

+d(x2n(k)−1, x2m(k)−1) + d(x2m(k)−2, x2n(k))− ϕ
(
d(x2n(k)−1, x2n(k)),

d(x2m(k)−2, x2m(k)−1), d(x2n(k)−1, x2m(k)−1), d(x2m(k)−2, x2n(k))
)]
. (2.37)
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Taking the upper limit as k →∞ in (2.37) and using (2.30), (2.31), (2.33), (2.34) (2.35),
(2.36) and the lower semi-continuous property of ϕ, we get

ε ≤ 1

s2 + 1

[
εs2 + ε− lim inf

k→∞
ϕ
(
d(x2n(k)−1, x2n(k)),

d(x2m(k)−2, x2m(k)−1), d(x2n(k)−1, x2m(k)−1), d(x2m(k)−2, x2n(k))
)]

≤ ε− 1

s2 + 1
ϕ
(

lim inf
k→∞

d(x2n(k)−1, x2n(k)), lim inf
k→∞

d(x2m(k)−2, x2m(k)−1),

lim inf
k→∞

d(x2n(k)−1, x2m(k)−1), lim inf
k→∞

d(x2m(k)−2, x2n(k))
)

(2.38)

< ε.

It is a contradiction. Thus, {x2n} is a Cauchy sequence. By Lemma 1.12, {xn} is a
Cauchy sequence in O(x0;T, S). Since (X, d, s) is (T, S)-orbitally complete. Then there
exists z ∈ X such that lim

n→∞
xn = z.

Suppose that T or S is orbitally continuous at x0. If T is orbitally continuous at x0,
then z = lim

n→∞
x2n+2 = lim

n→∞
Tx2n+1 = T ( lim

n→∞
x2n+1) = Tz, that is, z is a fixed point of

T . By Lemma 2.10, z is a common fixed point of T and S. Similarly, if S is orbitally
continuous at x0, we also see that z is a common fixed point of T and S.

Suppose that (X, d, s,�) is a regular space. Then x2n+1 � z for all n ∈ N ∪ {0}.
From (2.28), we have

d(x2n+2, Sz)

= d(Tx2n+1, Sz)

≤ ψ
( 4

s(s2 + 1)

[
d(x2n+1, Tx2n+1) + d(z, Sz) + d(x2n+1, Sz) + d(z, Tx2n+1)

−ϕ
(
d(x2n+1, Tx2n+1), d(z, Sz), d(x2n+1, Sz), d(z, Tx2n+1)

)])
≤ ψ

( 4

s(s2 + 1)

[
d(x2n+1, x2n+2) + d(z, Sz) + d(x2n+1, Sz) + d(z, x2n+2)

−ϕ
(
d(x2n+1, x2n+2), d(z, Sz), d(x2n+1, Sz), d(z, x2n+2)

)])
≤ 1

s(s2 + 1)

[
d(x2n+1, x2n+2) + d(z, Sz) + d(x2n+1, Sz) + d(z, x2n+2)

−ϕ
(
d(x2n+1, x2n+2), d(z, Sz), d(x2n+1, Sz), d(z, x2n+2)

)]
.

Suppose that d(z, Sz) > 0. Then by taking the limit as n → ∞ in (2.39), using
lim
n→∞

xn = z , Lemma 1.11 and the lower semi-continuous property ϕ, we get

1

s
d(z, Sz) ≤ s+ 1

s(s2 + 1)
d(z, Sz)− 1

s(s2 + 1)
ϕ
(
0, d(z, Sz), lim inf

k→∞
d(x2n+1, Sz), 0

)
<

s+ 1

s(s2 + 1)
d(z, Sz).

This implies that

d(z, Sz) <
s+ 1

s2 + 1
d(z, Sz) ≤ d(z, Sz).

This implies that d(z, Sz) = 0 and hence Sz = z. Therefore, z is a fixed point of S. By
Lemma 2.10, z is a common fixed point of T and S.
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Now, suppose that the set of common fixed points of T and S is totally ordered. We
claim that there is a unique common fixed point of T and S. If there exist u, v such that
Su = Tu = u and Sv = Tv = v, then from (2.28), we have

d(u, v) = d(Tu, Sv) ≤ ψ
( 4

s(s2 + 1)

[
(d(u, Tu) + d(v, Sv) + d(u, Sv) + d(v, Tu)

−ϕ(d(u, Tu), d(v, Sv), d(u, Sv), d(v, Tu)
)])

= ψ
( 4

s(s+ 1)

[
2d(u, v)− ϕ(0, 0, d(u, v), d(v, u))

])
≤ 2

s(s2 + 1)
d(u, v)− 1

s(s2 + 1)
ϕ(0, 0, d(u, v), d(v, u))

≤ d(u, v)− 1

s(s2 + 1)
ϕ(0, 0, d(u, v), d(v, u)).

This implies that ϕ(0, 0, d(u, v), d(v, u)) = 0 and hence d(u, v) = 0. Therefore, u = v, that
is, the common fixed point of T and S is unique. Conversely, if T and S have a unique
common fixed point, then the set of common fixed points of T and S being a singleton is
totally ordered.

By taking T = S in Theorem 2.11, we get the following corollary.

Corollary 2.12. Let (X, d, s,�) be a partially ordered b-metric space and T : X −→ X
be a mapping such that

(1) There exist ψ ∈ Ψ2 and ϕ ∈ Φ2 such that for all x, y ∈ X with x � y or y � x,

d(Tx, Ty) ≤ ψ
( 4

s(s2 + 1)

[
d(x, Tx) + d(y, Ty) + d(x, Ty) + d(y, Tx)

−ϕ
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)])
.

(2) x � Tx for all x ∈ X.
(3) T is asymptotically regular at x0 ∈ X.
(4) X is T -orbitally complete at x0 ∈ X.
(5) T is orbitally continuous, or (X, d, s,�) is a regular space.

Then T has a fixed point. Moreover, the set of fixed points of T is totally ordered if and
only if T has a unique fixed point.

Remark 2.13. Since every metric space (X, d) is a b-metric space (X, d, 1), our results
are generalizations of the main results in [7].

Finally, we give some examples to support our results. The following example is an
illustration of Theorem 2.4.

Example 2.14. Let X =
{

1, 2, 3, 4, 5
}

with the usual order ≤. Define a function d on
X as follows.

d(x, y) =


0 if x = y
1 if (x, y) ∈ {(1, 2), (2, 1)}
20 if (x, y) ∈

{
(3, 2), (2, 3), (4, 2), (2, 4), (5, 2), (2, 5)

}
9 otherwise.
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Then (X, d, s) is a complete b-metric space with s = 2. Let T, S : X −→ X be defined
by T1 = T2 = T3 = T4 = T5 = 2 and S1 = S2 = 2, S3 = S4 = S5 = 1. Define two

functions by ϕ(x, y) =
x+ y

2
and ψ(x) =

x

2
for all x, y ∈ [0,∞). Then ϕ ∈ Φ1, ψ ∈ Ψ1.

Put

P = ψ
( 2

s(s2 + 1)

[
d(x, Sy) + d(y, Tx)− ϕ(d(x, Sy), d(y, Tx))

])
= ψ

(1

5

[
d(x, Sy) + d(y, Tx)− ϕ(d(x, Sy), d(y, Tx))

])
=

1

20

[
d(x, Sy) + d(y, Tx)

]
.

Let x, y ∈ X with x ≤ y or y ≥ x, we have

d(Tx, Sy) =

{
0 if x, y ∈ {1, 2} or x ∈ {3, 4, 5}, y ∈ {1, 2}
1 if x ∈ {1, 2}, y ∈ {3, 4, 5} or x, y ∈ {3, 4, 5}

and

P =



0 if x = y = 2
1 if x = 1, y ∈ {3, 4, 5} or x ∈ {3, 4, 5}, y = 2
1
10 if x = y = 1
1
20 if (x, y) ∈ {(1, 2), (2, 1)}
21
20 if x = 2, y ∈ {3, 4, 5} or x ∈ {3, 4, 5}, y = 1
29
20 if x, y ∈ {3, 4, 5}.

This implies that the condition (2.1) holds and hence the assumption (1) of Theorem
2.4 is satisfied. Moreover, other assumptions of Theorem 2.4 are fulfilled. Therefore,
Theorem 2.4 is applicable to T, S, ϕ,ψ and (X, d, s,≤).

However, since 20 = d(2, 3) ≥ d(2, 1) + d(1, 3) = 10, d is not a metric on X. Thus, [7,
Theorem 3.2] is not applicable to (X, d, s).

The following example is an illustration of Theorem 2.11.

Example 2.15. Let (X, d, s) be a b-metric space, T and S be two mappings, and ψ,ϕ
be two functions as in Example 2.9. It is easy to see that all assumptions of Theorem
2.11 are satisfied. Therefore, Theorem 2.11 is applicable to T , S, ϕ,ψ and (X, d, s,≤).
However, it is easy to see that d is not a metric on X and hence [7, Theorem 4.2] is not
applicable to (X, d, s).

Finally, we apply Corollary 2.6 to study the existence of solutions to the system of
nonlinear integral equations.

Example 2.16. Let C[a, b] be the set of all continuous function on [a, b], the b-metric d
with s = 2p−1 be defined by

d(u, v) = sup
t∈[a,b]

|u(t)− v(t)|p

for all u, v ∈ C[a, b] and some p > 1, and the partial order � be given by u � v if
u(t) ≤ v(t) for all t ∈ [a, b]. Consider the system of nonlinear integral equations as follows.

u(t) =

∫ b

a

K1(t, s, u(s))ds+ g(t)

u(t) =

∫ b

a

K2(t, s, u(s))ds+ g(t)

(2.39)
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where t ∈ [a, b], g : [a, b] −→ R,K1,K2 : [a, b] × [a, b] × u[a, b] −→ R for each u ∈ C[a, b].
Suppose that the following statements hold.

(1) K1(t, s, u(s)) and K2(t, s, u(s)) are integrable with respect to s on [a, b].
(2) Tu, Su ∈ C[a, b] for all u ∈ C[a, b], where

Tu(t) =

∫ b

a

K1(t, s, u(s))ds+ g(t),

Su(t) =

∫ b

a

K2(t, s, u(s))ds+ g(t)

for all t ∈ [a, b].
(3) For all t, s ∈ [a, b], u ∈ C[a, b],

K1(t, s, u(t)) ≤ K2

(
t, s,

∫ b

a

K1(s, z, u(z))dz + g(s)
)
,

K2(t, s, u(t)) ≤ K1

(
t, s,

∫ b

a

K2(s, z, u(z))dz + g(s)
)
.

(4) For all s, t ∈ [a, b] and u, v ∈ C[a, b] with u � v or v � u,

|K1(t, s, u(s))−K2(t, s, v(s))|p ≤ α(t, s)(|u(s)− Sv(s)|p + |v(s)− Tu(s)|p)

where α : [a, b]× [a, b] −→ [0,∞) is a continuous function satisfying

sup
t∈[a,b]

(∫ b

a

α(t, s)ds
)
≤ 1

2p−1(22p−2 + 1)(b− a)p−1
.

(5) There exists u0 ∈ C[a, b] such that u0(t) ≤
∫ b

a

K2(t, s, u0(s))ds + g(t) for all

t ∈ [a, b].

Then the system of nonlinear integral equations (2.39) has a solution u ∈ C[a, b].

Proof. Consider T, S : C[a, b] −→ C[a, b] defined by Tu(t) =

∫ b

a

K1(t, s, u(s))ds + g(t)

and Su(t) =

∫ b

a

K2(t, s, u(s))ds + g(t) for all u ∈ C[a, b] and t ∈ [a, b]. It follows from

the assumptions (1) and (2) that T and S are well-defined. Notice that the existence of
a solution to (2.39) is equivalent to the existence of the common fixed point of T and S.
Now, we prove that all assumptions of Corollary 2.6 are satisfied.
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(1). Let q > 1 with 1
p + 1

q = 1. For all u, v ∈ C[a, b] with v � u or u � v, from the

assumption (4), we have

|Tu(t)− Sv(t)|p ≤
(∫ b

a

|K1(t, s, u(s))−K2(t, s, v(s))|ds
)p

≤
[( b∫

a

ds
) 1

q
(∫ b

a

|K1(t, s, u(s))−K2(t, s, v(s))|pds
) 1

p
]p

≤ (b− a)
p
q

(∫ b

a

α(t, s)(|u(s)− Sv(s)|p + |v(s)− Tu(s)|p)ds
)

≤ (b− a)p−1
(∫ b

a

α(t, s)(d(u, Sv) + d(v, Tu))ds
)

≤ (b− a)p−1(d(u, Sv) + d(v, Tu))
(∫ b

a

α(t, s)ds
)

≤ λ(d(u, Sv) + d(v, Tu))

= d(u, Sv) + d(v, Tu)− (1− λ)(d(u, Sv) + d(v, Tu)).

where λ = (b − a)p−1 sup
t∈[a,b]

(∫ b

a

α(t, s)ds
)

. This implies that 0 ≤ λ <
1

2p−1(22p−2 + 1)

and
d(Tx, Sy) ≤ (d(u, Sv) + d(v, Tu))− (1− λ)(d(u, Sv) + d(v, Tu)).

Therefore, the assumption (1) in Corollary 2.6 holds with λ= (b−a)p−1 sup
t∈[a,b]

(∫ b

a

α(t, s)ds
)

.

(2) For all u ∈ C[a, b] and all t ∈ [a, b], from the assumption (3), we have

Tu(t) =

∫ b

a

K1(t, s, u(s))ds

≤
∫ b

a

K2

(
t, s,

∫ b

a

K1(s, z, u(z))dz + g(s)
)
ds

≤
∫ b

a

K2(t, s, Tu(s))ds

= STu(t)

and

Su(t) =

∫ b

a

K2(t, s, u(s))ds

≤
∫ b

a

K1

(
t, s,

∫ b

a

K1(s, z, u(z))dz + g(s)
)
ds

≤
∫ b

a

K1(t, s, Su(s))ds

= TSu(t).

This implies that Tu � STu and Su � TSu for all u ∈ C[a, b]. Therefore, the pair (T, S)
is weakly increasing.

(3). From the assumption (5), there exits x0 ∈ C[a, b] such that x0 � Sx0.
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(4). By using the similar argument as in the proof of [27, Theorem 3.1], we also see
that the space (X, d, s,�) is regular.

By the above, all assumptions of Corollary 2.6 are satisfied. Then T and S have a
common fixed point u ∈ C[a, b] and the system of integral equations (2.39) has a solution
u ∈ C[a, b].
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