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1. Introduction

In 1940, the stability problem of functional equations originated from a question of
Ulam [1] concerning the stability of group homomorphisms. In 1941, Hyers [2] gave first
an affirmative partial answer for the question of Ulam for Banach spaces. Since then,
In 1978, Hyers’s theorem was generalized by Th. M. Rassias [3] for linear mappings by
considering the unbounded Cauchy difference as follows:

Theorem 1.1. Let f be an approximately additive mapping from a normed vector space
E into a Banach space E′, i.e., f satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖r + ‖y‖r)

for all x, y ∈ E, where ε and r are constants with ε > 0 and 0 ≤ r < 1. Then the mapping
L : E → E′ defined by L(x) = limn→∞ 2−nf(2nx) is the unique additive mapping which
satisfies

‖f(x+ y)− L(x)‖ ≤ 2ε

2− 2r
‖x‖r

for all x ∈ E.
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The paper of Th. M. Rassias [3] has provided a lot of influence in the development
of what we call generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of func-
tional equations. In 1994, a generalization of the Th. M. Rassias theorem was obtained by
Gǎvruta [4] by replacing the unbounded Cauchy difference by a general control function
in the spirit of Th. M. Rassias’s approach.

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.1)

is called a quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping. In 1983, the generalized Hyers-
Ulam stability problem for the quadratic functional equation was proved by Skof [5] for
mappings f : X → Y , where X is a normed space and Y is a Banach space. In 1984,
Cholewa [6] noticed that the theorem of Skof is still true if the relevant domain X is
replaced by an Abelian group. In 1992, Czerwik [7] proved the generalized Hyers-Ulam
stability of the quadratic functional equation. The stability problems of several functional
equations have been extensively investigated by a number of authors and there are many
interesting results concerning this problem (see [8], [9], [10]–[21]).

Recently, in 2009, Gordji and Khodaei [10] introduced the quadratic functional equa-
tion

f(mx+ ny) + f(mx− ny) =
n(m+ n)

2

(
f(x+ y) + f(x− y)

)
(1.2)

+2(m2 −mn− n2)f(x) + (n2 −mn)f(y)

and they established the general solution of the generalized Hyers-Ulam-Rassias stability
problem for the functional equation (1.2) in Banach spaces as follows:

Theorem 1.2. Let X and Y be real vector spaces. A function f : X → Y satisfies the
functional equation (1.2) if and only if f : X → Y satisfies the functional equation (1.1).

The cubic function f(x) = cx3 satisfies the functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x). (1.3)

The equation (1.3) was solved by Jun and Kim [12]. By the similar method for a
quadratic functional equation, they also proved that a function f : X → Y is a solution
of the equation (1.3) if and only if there exists a function F : X3 → Y such that f(x) =
F (x, x, x) for all x ∈ X and F is symmetric for each fixed one variable and is additive for
fixed two variables. Every solution of the equation (1.3) is called a cubic function. Also,
the equation (1.3) is equivalent to the following equation:

f(x+ 2y) + f(x− 2y) + f(2x) = 4f(x+ y) + 4f(x− y) + 2f(x). (1.4)

Koh [14] introduced the following functional equation:

4f(x+my) + 4f(x−my) +m2f(2x) = 4m2
(
f(x+ y) + f(x− y)

)
+ 8f(x) (1.5)

and established the general solution for the generalized Hyers-Ulam-Rassias stability prob-
lem for the functional equation (1.5) in Banach spaces as follows:

Theorem 1.3. Let X and Y be real vector spaces. A function f : X → Y satisfies the
functional equation (1.5) if and only if f is cubic.
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It is easy to see that the function f(x) = cx3 is a solution of the functional equations
(1.3), (1.4) and (1.5). Thus it is natural that the functional equations (1.3), (1.4) and
(1.5) are called the cubic functional equation and every solution of these cubic functional
equations is called a cubic function.

Najati and Rahimi [18] introduced

f(rx+ sy) =
r + s

2
f(x+ y) +

r − s
2

f(x− y) (1.6)

for any r, s ∈ R with r 6= ±s and investigate the Hyers-Ulam- Rassias stability of the
functional equation (1.6) in Banach modules over a unital C∗-algebra.

In this paper, we prove stability of the functional equations (1.2), (1.5) and (1.6) in
random and non-Archimedean normed spaces.

2. Preliminaries

In the sequel, we adopt the usual terminology, notions and conventions of the theory
of random normed spaces as in [5].
Throughout this paper, let 4+ denote the set of all probability distribution functions
F : R ∪ [−∞,+∞] → [0, 1] such that F is left-continuous and nondecreasing on R and
F (0) = 0, F (+∞) = 1. It is clear that the set

D+ = {F ∈ 4+ : l−F (−∞) = 1},
where l−f(x) = limt→x− f(t), is a subset of 4+. The set 4+ is partially ordered by the
usual point-wise ordering of functions, that is, F ≤ G if and only if F (t) ≤ G(t) for all
t ∈ R. For any a ≥ 0, the element Ha(t) of D+ is defined by

Ha(t) =

{
0, if t ≤ a,
1, if t > a.

We can easily show that the maximal element in 4+ is the distribution function H0(t).

Definition 2.1. A function T : [0, 1]2 → [0, 1] is a continuous triangular norm (briefly, a
t-norm) if T satisfies the following conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T (x, 1) = x for all x ∈ [0, 1];
(d) T (x, y) ≤ T (z, w) whenever x ≤ z and y ≤ w for all x, y, z, w ∈ [0, 1].

Three typical examples of continuous t-norms are as follows:

T (x, y) = xy, T (x, y) = max{a+ b− 1, 0}, T (x, y) = min(a, b).

Recall that, if T is a t-norm and {xn} is a sequence in [0, 1], then Tni=1xi is defined
recursively by T 1

i=1x1 = x1 and Tni=1xi = T (Tn−1i=1 xi, xn) for all n ≥ 2. T∞i=nxi is defined
by T∞i=1xn+i.

Definition 2.2. A random normed space (briefly, RN -space) is a triple (X,Ψ, T ), where
X is a vector space, T is a continuous t-norm and Ψ : X → D+ is a mapping such that
the following conditions hold:

(a) Ψx(t) = H0(t) for all t > 0 if and only if x = 0;
(b) Ψαx(t) = Ψx( t

|α| ) for all α ∈ R with α 6= 0, x ∈ X and t ≥ 0;

(c) Ψx+y(t+ s) ≥ T (Ψx(t),Ψy(s)) for all x, y ∈ X and t, s ≥ 0.
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Every normed space (X, ‖ · ‖) defines a random normed space (X,Ψ, TM ), where

Ψu(t) =
t

t+ ‖u‖
for all t > 0 and TM is the minimum t-norm. This space X is called the induced random
normed space.

If the t-norm T is such that sup0<a<1 T (a, a) = 1, then every RN -space (X,Ψ, T ) is
a metrizable linear topological space with the topology τ (called the Ψ-topology or the
(ε, δ)-topology, where ε > 0 and λ ∈ (0, 1)) induced by the base {U(ε, λ)} of neighborhoods
of θ, where

U(ε, λ) = {x ∈ X : Ψx(ε) > 1− λ}.

Definition 2.3. Let (X,Ψ, T ) be an RN-space.
(1) A sequence {xn} in X is said to be convergent to a point x ∈ X (write xn → x as

n→∞) if limn→∞Ψxn−x(t) = 1 for all t > 0.
(2) A sequence {xn} in X is called a Cauchy sequence in X if limn→∞Ψxn−xm(t) = 1

for all t > 0.
(3) The RN -space (X,Ψ, T ) is said to be complete if every Cauchy sequence in X is

convergent.

Theorem 2.1. ([26]) If (X,Ψ, T ) is RN-space and {xn} is a sequence such that xn → x,
then limn→∞Ψxn(t) = Ψx(t).

Definition 2.4. Let X be a set. A function d : X ×X → [0,∞] is called a generalized
metric on X if d satisfies the following conditions:

(1) d(x, y) = 0 if and only if x = y for all x, y ∈ X;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 2.2. Let (X,d) be a complete generalized metric space and J : X → X be a
strictly contractive mapping with Lipschitz constant L < 1. Then, for all x ∈ X, either

d(Jnx, Jn+1x) =∞ (2.1)

for all nonnegative integers n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) <∞ for all n0 ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

Definition 2.5. By a non-Archimedean field we mean a field K equipped with a function
(valuation) | · | : K→ [0,∞) such that, for all r, s ∈ K, the following conditions hold:

(a) |r| = 0 if and only if r = 0;
(b) |rs| = |r||s|;
(c) |r + s| ≤ max{|r|, |s|}.

Clearly, by (b), |1| = | − 1| = 1 and so, by induction, it follows from (c) that |n| ≤ 1
for all n ≥ 1.

Definition 2.6. Let X be a vector space over a scalar field K with a non-Archimedean
non-trivial valuation | · |.
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(1) A function ‖ · ‖ : X → R is a non-Archimedean norm (valuation) if it satisfies the
following conditions:

(a) ‖x‖ = 0 if and only if x = 0 for all x ∈ X;
(b) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;
(c) the strong triangle inequality (ultra-metric) holds, that is,

‖x+ y‖ ≤ max{‖x‖, ‖y‖}
for all x, y ∈ X.

(2) The space (X, ‖ · ‖) is called a non-Archimedean normed space.

Note that
||xn − xm|| ≤ max{||xj+1 − xj || : m ≤ j ≤ n− 1}

for all m,n ∈ N with n > m.

Definition 2.7. Let (X, ‖ · ‖) be a non-Archimedean normed space.
(1) A sequence {xn} is a Cauchy sequence in X if {xn+1−xn} converges to zero in X.
(2) The non-Archimedean normed space (X, ‖·‖) is said to be complete if every Cauchy

sequence in X is convergent.

The most important examples of non-Archimedean spaces are p-adic numbers. A key
property of p-adic numbers is that they do not satisfy the Archimedean axiom: for all
x, y > 0, there exists a positive integer n such that x < ny.

Example 2.1. Fix a prime number p. For any nonzero rational number x, there exists
a unique positive integer nx such that x = a

b p
nx , where a and b are positive integers not

divisible by p. Then |x|p := p−nx defines a non-Archimedean norm on Q. The completion
of Q with respect to the metric d(x, y) = |x − y|p is denoted by Qp, which is called the
p-adic number field. In fact, Qp is the set of all formal series x =

∑∞
k≥nx akp

k, where

|ak| ≤ p−1. The addition and multiplication between any two elements of Qp are defined
naturally. The norm |

∑∞
k≥nx akp

k|p = p−nx is a non-Archimedean norm on Qp and Qp
is a locally compact filed.

3. Random Stability of the Functional Equation (1.2):
Direct Method

Let

Mf (x, y) = f(mx+ ny) + f(mx− ny)− n(m+ n)

2
f(x+ y)

− n(m+ n)

2
f(x− y)− 2(m2 −mn− n2)f(x)− (n2 −mn)f(y).

where m,n ∈ Z with n 6= ±m,−3m.

Theorem 3.1. Let X be a real linear space, (Z,Ψ,min) be an RN-space and ψ : X2 → Z
be a function such that there exists 0 < α < m2 such that

Ψψ(mx,0)(t) ≥ Ψαψ(x,0)(t) (3.1)

for all x ∈ X and t > 0, f(0) = 0 and limn→∞Ψψ(mnx,mny)(m
2nt) = 1 for all x, y ∈ X

and t > 0. Let (Y, µ,min) be a complete RN-space. If f : X → Y is a mapping such that

µMf (x,y)(t) ≥ Ψψ(x,y)(t) (3.2)



1214 Thai J. Math. Vol. 19 (2021) /H. A. Kenary et al.

for all x, y ∈ X and t > 0, then there is a unique quadratic mapping C : X → Y such
that C(x) = limn→∞m−2nf(mnx) and

µf(x)−C(x)(t) ≥ Ψψ(x,0)

(
(m2 − α)t

)
(3.3)

for all x ∈ X and t > 0.

Proof. Putting y = 0 in (3.2), we see that

µ f(mx)
m2 −f(x)

(t) ≥ Ψψ(x,0)(m
2t) (3.4)

for all x ∈ X. Replacing x by mnx in (3.4) and using (3.1), we obtain

µ f(mn+1x)

m2(n+1)
− f(m

nx)

m2n

(t) ≥ Ψψ(mnx,0)(m
2(n+1)t) ≥ Ψψ(x,0)

(m2(n+1)t

αn

)
(3.5)

and so

µ f(mnx)
m2n −f(x)

( n−1∑
k=0

tαk

m2(k+1)

)
= µ∑n−1

k=0
f(mk+1x)

m2(k+1)
− f(m

kx)

m2k

( n−1∑
k=0

tαk

m2(k+1)

)
≥ Tn−1k=0 µ f(mk+1x)

m2(k+1)
− f(m

kx)

m2k

( tαk

m2(k+1)

)
(3.6)

≥ Tn−1k=0

(
Ψψ(x,0)(t)

)
= Ψψ(x,0)(t).

This implies that

µ f(mnx)
m2n −f(x)

(t) ≥ Ψψ(x,0)

( t∑n−1
k=0

αk

m2(k+1)

)
. (3.7)

Replacing x by mpx in (3.7), we obtain

µ f(mn+px)

m2(n+p)
− f(m

px)

m2p

(t) ≥ Ψψ(mpx,0)

( t∑n−1
k=0

αk

m2(k+p+1)

)
≥ Ψψ(x,0)

( t∑n−1
k=0

αk+p

m2(k+p+1)

)
(3.8)

= Ψψ(x,0)

( t∑n+p−1
k=p

αk

m2(k+1)

)
.

Since

lim
p,n→∞

Ψψ(x,0)

( t∑n+p−1
k=p

αk

m2(k+1)

)
= 1,

it follows that
{
f(mnx)
m2n

}∞
n=1

is a Cauchy sequence in a complete RN-space (Y, µ,min)

and so there exists a point C(x) ∈ Y such that

lim
n→∞

m−2nf(mnx) = C(x).

Fix x ∈ X and put p = 0 in (3.8). Then we obtain

µ f(mnx)
m2n −f(x)

(t) ≥ Ψψ(x,0)

( t∑n−1
k=0

αk

m2(k+1)

)
, (3.9)
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and so, for any ε > 0,

µC(x)−f(x)(t+ ε) ≥ T
(
µ
C(x)− f(m

nx)

m2n
(ε), µ f(mnx)

m2n −f(x)
(t)
)

(3.10)

≥ T
(
µ
C(x)− f(m

nx)

m2n
(ε),Ψψ(x,0)

( t∑n−1
k=0

αk

m2(k+1)

))
.

Taking the limit as n→∞ in (3.10), we get

µC(x)−f(x)(t+ ε) ≥ Ψψ(x,0)

(
(m2 − α)t

)
. (3.11)

Since ε is arbitrary, by taking ε→ 0 in (3.11), we get

µC(x)−f(x)(t) ≥ Ψψ(x,0)

(
(m2 − α)t

)
. (3.12)

Replacing x and y by mnx and mny in (3.2), respectively, we get

µMf (mnx,mny)

m2n

(t) ≥ Ψψ(mnx,mny)(m
2nt) (3.13)

for all x, y ∈ X and t > 0. Since limn→∞Ψψ(mnx,mny)(m
2nt) = 1, we conclude that

C(mx+ ny) + C(mx− ny) =
n(m+ n)

2

{
C(x+ y) + C(x− y)

}
+2(m2 −mn− n2)C(x) + (n2 −mn)C(y).

To prove the uniqueness of the quadratic mapping C, assume that there exist another
quadratic mapping D : X → Y which satisfies (3.3). By induction, one can easily show
that

C(mnx) = m2nC(x), D(mnx) = m2nD(x)

for all n ∈ N and x ∈ X and so

µC(x)−D(x)(t) = lim
n→∞

µC(mnx)

m2n −D(mnx)

m2n
(t) (3.14)

≥ lim
n→∞

min
{
µC(mnx)

m2n − f(m
nx)

m2n

( t
2

)
, µD(mnx)

m2n − f(m
nx)

m2n

( t
2

)}
≥ lim

n→∞
Ψψ(mnx,0)

(m2n(m2 − α)

2

)
≥ lim

n→∞
Ψψ(x,0)

(m2n(m2 − α)t

2αn

)
.

Since limn→∞
m2n(m2−α)t

2αn =∞, we get

lim
n→∞

Ψψ(x,0)

(m2n(m2 − α)t

2αn

)
= 1.

Therefore, it follows that µC(x)−D(x)(t) = 1 for all t > 0 and so C(x) = D(x). This
complete the proof.

Corollary 3.2. Let X be a real linear space, (Z,Ψ,min) be an RN-space and (Y, µ,min)
be a complete RN-space. Let 0 < p < 1 and z0 ∈ Z. If f : X → Y is a mapping that

µMf (x,y)(t) ≥ Ψ||y||py0(t) (3.15)

for all x, y ∈ X and t > 0, then there exists a unique quadratic mapping C : X → Y such
that

C(x) = lim
n→∞

m−2nf(mnx) (3.16)
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and

µf(x)−C(x)(t) ≥ 1 (3.17)

for all x ∈ X and t > 0.

Proof. Let α = m2p and ψ : X2 → Z be a mapping defined by ψ(x, y) = ‖y‖pz0. Then,
from Theorem 3.1, the conclusion follows.

Corollary 3.3. Let X be a real linear space, (Z,Ψ,min) be an RN-space and (Y, µ,min)
be a complete RN-space. Let 0 < p < 1 and z0 ∈ Z. If f : X → Y is a mapping that

µMf (x,y)(t) ≥ Ψ(‖x‖p+‖y‖p)z0(t) (3.18)

for all x, y ∈ X and t > 0, then there exists a unique quadratic mapping C : X → Y such
that

C(x) = lim
n→∞

m−2nf(mnx) (3.19)

and

µf(x)−C(x)(t) ≥ Ψ‖x‖py0
(
(m2 −m2p)t

)
(3.20)

for all x ∈ X and t > 0.

Proof. Let α = m2p and ψ : X2 → Z be a mapping defined by ψ(x, y) = (‖x‖p + ‖y‖p)z0.
Then, from Theorem 3.1, the conclusion follows.

Corollary 3.4. Let X be a real linear space, (Z,Ψ,min) be an RN-space and (Y, µ,min)
a complete RN-space. Let p, q ∈ R+ with 0 < p + q < 1 and z0 ∈ Z. If f : X → Y is a
mapping that

µMf (x,y)(t) ≥ Ψ(‖x‖p+q+‖y‖p+q+‖x‖p‖y‖q)z0(t) (3.21)

for all x, y ∈ X and t > 0, then there exists a unique quadratic mapping C : X → Y such
that

C(x) = lim
n→∞

m−2nf(mnx) (3.22)

and

µf(x)−C(x)(t) ≥ Ψ‖x‖p+qz0
(
(m2 −m2(p+q))t

)
(3.23)

for all x ∈ X and t > 0.

Proof. Let α = m2(p+q) and ψ : X2 → Z be a mapping defined by

ψ(x, y) = (‖x‖p+q + ‖y‖p+q + ‖x‖p‖y‖q)z0.
Then, from Theorem 3.1, the conclusion follows.

Corollary 3.5. Let X be a real linear space, (Z,Ψ,min) be an RN-space and (Y, µ,min)
be a complete RN-space. Let z0 ∈ Z. If f : X → Y is a mapping that

µMf (x,y)(t) ≥ Ψδz0(t) (3.24)

for all x, y ∈ X and t > 0, then there exists a unique quadratic mapping C : X → Y such
that

C(x) = lim
n→∞

m−2nf(mnx) (3.25)
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and

µf(x)−C(x)(t) ≥ Ψδz0

(
(m2 − 1)t

)
(3.26)

for all x ∈ X and t > 0.

Proof. Let α = 1 and ψ : X2 → Z be a mapping defined by ψ(x, y) = δz0. Then, from
Theorem 3.1, the conclusion follows.

Example 3.1. Let p = 1, α = m4, ψ(x, y) = (‖x‖2 + ‖y‖2)z0 and f : X → Y be a
mapping satisfying

µMf (x,y)(t) ≥ Ψ(‖x‖2+‖y‖2)z0(t). (3.27)

As in Theorem (3.1), we obtain

µ f(mn+qx)

m2(n+q)
− f(m

qx)

m2q

(t) ≥ Ψ‖x‖2z0

(
t∑n+q−1

k=q
m4k

m2k+2

)
.

Since
n+q−1∑
k=q

m4k

m2k+2
=

1

m2

n+q−1∑
k=q

m2k =
m2(n+q−1) −m2q

1−m2

and

lim
n,q→∞

1−m2

m2(n+q−1) −m2q
6=∞,

we have

lim
n,q→∞

µ f(mn+qx)

m3(n+q)
− f(m

qx)

m3q

(t) = lim
n,q→∞

Ψ‖x‖2z0

(
1−m2

m2(n+q−1) −m2q

)
6= 1.

This means that the sequence
{
f(mnx)
m2n

}∞
n=1

is not a Cauchy sequence.

4. Random Stability of the Functional Equation (1.5)

Fixed Point Approach

In this section, we use fixed point technique to prove the generalized Hyres-Ulam
stability of the quadratic functional equations (1.5).

Let
ηf (x, y) = 4f(x+my) + 4f(x−my) +m2f(2x)

− 8f(x)− 4m2
(
f(x+ y) + f(x− y)

)
.

where m ∈ N with m ≥ 2.

Theorem 4.1. Let X be a linear space, (Y, µ, TM ) be a complete RN-space and Λ be a
mapping from X2 to D+ (Λ(x, y) is denoted by Λx,y) such that there exists 0 < α < 8
such that

Λ x
2 ,
y
2
(t) ≤ Λx,y(αt) (4.1)

for all x, y ∈ X and t > 0. Let f : X → Y be a cubic mapping satisfying

µηf (x,y) ≥ Λx,y(t) (4.2)
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for all x, y ∈ X and t > 0. Then

A(x) := lim
n→∞

f(2nx)

8n
(4.3)

exists for all x ∈ X and there exists a unique cubic mapping A : X → Y such that

µf(x)−A(x)(t) ≥ Λx,0((8− α)t) (4.4)

for all x ∈ X and t > 0.

Proof. Putting y = 0 in (4.2), we have

µ f(2x)
8 −f(x)(t) ≥ Λx,0(8t) (4.5)

for all x ∈ X and t > 0. Consider the set

S := {g : X → Y } (4.6)

and the generalized metric d in S defined by

d(f, g) = inf{u ∈ R+ : µg(x)−h(x)(ut) ≥ Λx,0(t),∀x ∈ X, t > 0}, (4.7)

where inf ∅ = +∞. It is easy to show that (S, d) is complete.
Now, we consider a linear mapping J : S → S such that

Jh(x) :=
1

8
h(2x) (4.8)

for all x ∈ X. First, we prove that J is a strictly contractive mapping with the Lipschitz
constant α

8 . In fact, let g, h ∈ S be such that d(g, h) < ε. Then

µg(x)−h(x)(εt) ≥ Λx,0(t) (4.9)

for all x ∈ X and t > 0 and so

µJg(x)−Jh(x)

(αεt
8

)
= µ 1

8 g(2x)−
1
8h(2x)

(αεt
8

)
= µg(2x)−h(2x)(αεt) (4.10)

≥ Λ2x,0(αt)

≥ Λx,0(t)

for all x ∈ X and t > 0. Thus d(g, h) < ε implies that d(Jg, Jh) < αε
8 . This means that

d(Jg, Jh) ≤ α

8
d(g, h) (4.11)

for all g, h ∈ S. It follows from (4.5) that

d(f, Jf) ≤ 1

8
< 1. (4.12)

By Theorem 2.2, there exists a mapping T : X → Y satisfying the following:
(1) A is a fixed point of J , that is,

A(2x) = 8A(x) (4.13)

for all x ∈ X. The mapping A is a unique fixed point of J in the set

Ω = {h ∈ S : d(g, h) <∞}. (4.14)

This implies that A is a unique mapping satisfying (4.13) such that there exists u ∈ (0,∞)
satisfying

µf(x)−A(x)(ut) ≥ Λx,0(t) (4.15)
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for all x ∈ X and t > 0.
(2) d(Jnf,A)→ 0 as n→∞. This implies the equality

lim
n→∞

1

8n
f(2nx) = A(x) (4.16)

for all x ∈ X.
(3) d(f,A) ≤ d(f,Jf)

1−α8
with f ∈ Ω, which implies the inequality

d(f,A) ≤ 1

8− α
(4.17)

and so

µf(x)−A(x)

( t

8− α

)
≥ Λx,0(t) (4.18)

for all x ∈ X and t > 0. This implies that the inequality (4.4) holds.
Now, we have

µ 1
8n ηf (2

nx,2ny)(t) = µηf (2nx,2ny)(8
nt) ≥ Λ2nx,2ny(8nt) ≥ Λx,y

(( 8

α

)n
t
)

(4.19)

for all x, y ∈ X, t > 0 and n ∈ N. Since limn→∞ Λx,y

((
8
α

)n
t
)

= 1 for all x, y ∈ X and

t > 0, then, by Theorem 2.1, we deduce that µηA(x,y) = 1 for all x, y ∈ X and t > 0.
Thus the mapping A : X → Y is cubic. This complete the proof.

Corollary 4.2. Let θ ≥ 0 and p be a real number with 0 < p < 1. Let X be a normed
vector space with norm ‖ · ‖. Let f : X → Y be a mapping satisfying

µηf (x,y)(t) ≥
t

t+ θ
(
‖x‖p + ‖y‖p

) (4.20)

for all x, y ∈ X and t > 0. Then

A(x) = lim
n→∞

f(2nx)

8n
(4.21)

exists for all x ∈ X and there exists a cubic mapping A : X → Y such that

µf(x)−A(x)(t) ≥
(8− 8p)t

(8− 8p)t+ θ‖x‖p
(4.22)

for all x ∈ X and t > 0.

Proof. The proof follows from Theorem 4.1 by taking

Λx,y(t) =
t

t+ θ
(
‖x‖p + ‖y‖p

) (4.23)

for all x, y ∈ X and t > 0. In fact, if we choose α = 8p, then we get the desired result.

Similarly, we can obtain the following and so we omit the proof.

Theorem 4.3. Let X be a linear space, (Y, µ, TM ) be a complete RN-space and Λ be a
mapping from X2 to D+ (Λ(x, y) is denoted by Λx,y) such that there exists 0 < α < 1

8
such that

Λ2x,2y(t) ≤ Λx,y(αt) (4.24)
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for all x, y ∈ X and t > 0. Let f : X → Y be a cubic mapping satisfying

µηf (x,y) ≥ Λx,y(t) (4.25)

for all x, y ∈ X and t > 0. Then

A(x) := lim
n→∞

8nf
( x

2n

)
(4.26)

exists for all x ∈ X and there exists a unique cubic mapping A : X → Y such that

µf(x)−A(x)(t) ≥ Λx,0

( (1− 8α)t

α

)
(4.27)

for all x, y ∈ X and t > 0.

Corollary 4.4. Let θ ≥ 0 and p be a real number with p > 1. Let X be a normed vector
space with norm ‖ · ‖. Let f : X → Y be a cubic mapping satisfying

µηf (x,y)(t) ≥
t

t+ θ
(
‖x‖p + ‖y‖p

) (4.28)

for all x, y ∈ X and t > 0. Then

A(x) = lim
n→∞

8nf
( x

2n

)
(4.29)

exists for all x ∈ X and there exists a unique cubic mapping A : X → Y such that

µf(x)−A(x)(t) ≥
(8p − 8)t

(8p − 8)t+ 8p+1θ‖x‖p
(4.30)

for all x ∈ X and t > 0.

Proof. The proof follows from Theorem 4.3 by taking

Λx,y(t) =
t

t+ θ(‖x‖p + ‖y‖p)
(4.31)

for all x, y ∈ X and t > 0. In fact, if we choose α = 8−p, then we get the desired result.

5. Random Stability of the Functional Equation (1.6)

In this section, we use fixed point technique to prove the generalized Hyres-Ulam
stability of the quadratic functional equations (1.6).

Theorem 5.1. Let m,n ∈ N with m 6= n, X be a vector space, (Z,Ψ,min) be an RN-
space and ψ : X2 → Z be a function such that there exists 0 < α < m + n such that

Ψψ((m+n)x,(m+n)y)(t) ≥ Ψαψ(x,y)(t) (5.1)

for all x, y ∈ X and t > 0 and

lim
n→∞

Ψψ((m+n)px,(m+n)py)((m+ n)pt) = 1

for all x, y ∈ X and t > 0. If (Y, µ,min) is a complete RN-space and f : X → Y is a
mapping such that

µf(mx+ny)−m+n
2 f(x+y)−m−n

2 f(x−y)(t) ≥ Ψψ(x,y)(t) (5.2)
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for all x, y ∈ X and t > 0, then there exists a unique additive mapping C : X → Y such
that

C(x) = lim
l→∞

(m+ n)−lf((m+ n)lx) (5.3)

and

µf(x)−C(x)(t) ≥ Ψψ(x,x)((m+ n− α)t) (5.4)

for all x, y ∈ X and t > 0.

Proof. Since the proof of Theorem 5.1 is similar to the proof of Theorem 3.1 and so we
omit the proof of Theorem 5.1.

Corollary 5.2. Let X be a real linear space, (Z,Ψ,min) be an RN-space and (Y, µ,min)
be a complete RN-space. Let 0 < p < 1 and z0 ∈ Z. If f : X → Y is a mapping such that

µf(mx+ny)−m+n
2 f(x+y)−m−n

2 f(x−y)(t) ≥ Ψ‖x‖pz0(t) (5.5)

for all x, y ∈ X and t > 0, then there exists a unique additive mapping C : X → Y such
that

C(x) = lim
l→∞

(m+ n)−lf((m+ n)lx) (5.6)

and

µf(x)−C(x)(t) ≥ Ψ‖x‖pz0((m+ n− (m+ n)p)t) (5.7)

for all x ∈ X and t > 0.

Proof. Let α = (m + n)p and ψ : X2 → Z be a mapping defined by ψ(x, y) = ‖x‖pz0.
Then, from Theorem 5.1, the conclusion follows.

Corollary 5.3. Let X be a real linear space, (Z,Ψ,min) be an RN-space and (Y, µ,min)
be a complete RN-space. Let 0 < p < 1 and z0 ∈ Z. If f : X → Y is a mapping such that

µf(mx+ny)−m+n
2 f(x+y)−m−n

2 f(x−y)(t) ≥ Ψ(‖x‖p+‖y‖p)z0(t) (5.8)

for all x, y ∈ X and t > 0, then there exists a unique additive mapping C : X → Y such
that

C(x) = lim
l→∞

(m+ n)−lf((m+ n)lx), (5.9)

and

µf(x)−C(x)(t) ≥ Ψ‖x‖p
( (m+ n− (m+ n)p)t

2

)
. (5.10)

for all x ∈ X and t > 0.

Proof. Let α = (m+n)p and ψ : X2 → Z be defined by ψ(x, y) = (‖x‖p+‖y‖p)z0. Then,
from Theorem 5.1, the conclusion follows.
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Corollary 5.4. Let X be a real linear space, (Z,Ψ,min) be an RN-space and (Y, µ,min)
be a complete RN-space. Let p, q ∈ R+ with 0 < p+ q < 1 and z0 ∈ Z. If f : X → Y is a
mapping such that

µf(mx+ny)−m+n
2 f(x+y)−m−n

2 f(x−y)(t) ≥ Ψ(‖x‖p+q+‖y‖p+q+‖x‖p·‖y‖q)z0(t) (5.11)

for all x, y ∈ X and t > 0, then there exists a unique additive mapping C : X → Y such
that

C(x) = lim
l→∞

(m+ n)−lf((m+ n)lx) (5.12)

and

µf(x)−C(x)(t) ≥ Ψ||x||p+qz0

( (m+ n− (m+ n)p+q)t

3

)
(5.13)

for all x ∈ X and t > 0.

Proof. Let α = (m+ n)p+q and ψ : X2 → Z be a mapping defined by

ψ(x, y) = (‖x‖p+q + ‖y‖p+q + ‖x‖p · ‖y‖q)z0.

Then, from Theorem 5.1, the conclusion follows.

Corollary 5.5. Let X be a real linear space, (Z,Ψ,min) be an RN-space and (Y, µ,min)
be a complete RN-space. Let z0 ∈ Z. If f : X → Y is a mapping such that

µf(mx+ny)−m+n
2 f(x+y)−m−n

2 f(x−y)(t) ≥ Ψδz0(t) (5.14)

for all x, y ∈ X and t > 0, then there exists a unique additive mapping C : X → Y such
that

C(x) = lim
l→∞

(m+ n)−lf((m+ n)lx) (5.15)

and

µf(x)−C(x)(t) ≥ Ψδz0((m+ n− 1)t) (5.16)

for all x ∈ X and t > 0.

Proof. Let α = 1 and ψ : X2 → Z be be a mapping defined by ψ(x, y) = δz0. Then, from
Theorem 5.1, the conclusion follows.

Example 5.1. Let p = 2, α = (m + n)2, ψ(x, y) = (‖x‖2 + ‖y‖2 + ‖x‖.‖y‖)z0 and
f : X → Y be a mapping satisfying

µf(mx+ny)−(m+n
2 )f(x+y)−(m−n

2 )f(x−y)(t) ≥ Ψ(‖x‖2+‖y‖2+‖x‖.‖y‖)z0(t). (5.17)

As in Theorem 3.1, we obtain

µ f((m+n)l+qx)

(m+n)l+q
− f((m+n)qx)

(m+n)q
(t) ≥ Ψ‖x‖2z0

(
t

3
∑l+q−1
k=q (m+ n)k−1

)
.

Since
l+q−1∑
k=q

(m+ n)k−1 =
(m+ n)l+q−2 − (m+ n)q−1

(m+ n)(1−m− n)
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and

lim
l,q→∞

(m+ n)(1−m− n)

(m+ n)l+q−2 − (m+ n)q−1
6=∞,

we have

lim
l,q→∞

µ f((m+n)l+qx)

(m+n)l+q
− f((m+n)qx)

(m+n)q
(t) = lim

n,q→∞
Ψ‖x‖2z0

(
(m+ n)(1−m− n)

3((m+ n)l+q−2 − (m+ n)q−1)

)
6= 1.

This means the sequence
{
f((m+n)lx)

(m+n)l

}∞
l=1

is not a Cauchy sequence.

6. Stability of the Functional Equation (1.2)
in Non-Archimedean Normed Spaces

In this section, we solve the stability problem of the functional equation (1.2) in non-
Archimedean normed spaces.

Throughout this section, let G be an additive semigroup and X be a complete non-
Archimedean space.

Theorem 6.1. Let ψ : G2 → [0,+∞) be a function such that

lim
n→∞

|m|−2nψ(mnx,mny) = 0 (6.1)

for all x, y ∈ G. Suppose that, for all x ∈ G, the limit

Ψ(x) = lim
n→∞

max
{ 1

|m|2k
ψ(mkx, 0); 0 ≤ k < n

}
exists and f : G→ X is a mapping satisfying the inequality∥∥Mf (x, y)

∥∥ ≤ ψ(x, y) (6.2)

for all x, y ∈ G. Then the limit

T (x) := lim
n→∞

m−2nf(mnx)

exist for all x ∈ G and T : G→ X is a mapping satisfying∥∥f(x)− T (x)
∥∥ ≤ 1

|m|2
Ψ(x) (6.3)

for all x ∈ G. Moreover, if

lim
k→∞

lim
n→∞

max
{ 1

|m|2j
ψ(mjx, 0) : k ≤ j < n+ k

}
= 0, (6.4)

then T is the unique mapping satisfying (6.3).

Proof. Putting y = 0 in (6.2), we have∥∥∥f(mx)

m2
− f(x)

∥∥∥ ≤ 1

|m|2
ψ(x, 0). (6.5)

Replacing x by mnx in (6.5) and dividing both sides by m2n, we get∥∥∥f(mn+1x)

m2(n+1)
− f(mnx)

m2n

∥∥∥ ≤ 1

|m|2n+2
ψ(mnx, 0). (6.6)
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Thus it follows from (6.1) and (6.6) that the sequence
{
f(mnx)
m2n

}∞
n=1

is a Cauchy sequence.

Since X is complete,
{
f(mnx)
m2n

}∞
n=1

is convergent and so set

T (x) := lim
n→∞

f(mnx)

m2n
.

By induction, we can see that∥∥∥f(mnx)

m2n
− f(x)

∥∥∥ ≤ 1

|m|2
max

{ 1

|m|2k
ψ(mkx, 0) : 0 ≤ k < n

}
. (6.7)

Indeed, (6.7) holds for n = 1 by (6.5). Now, if (6.7) holds for all 0 ≤ k < n, then, by
(6.6), we obtain∥∥∥f(mn+1x)

m2(n+1)
− f(x)

∥∥∥
=

∥∥∥f(mn+1x)

m2(n+1)
± f(mnx)

m2n
− f(x)

∥∥∥
≤ max

{∥∥∥f(mn+1x)

m2(n+1)
− f(mnx)

m2n

∥∥∥,∥∥∥f(mnx)

m2n
− f(x)

∥∥∥} (6.8)

≤ 1

|m|2
max

{ 1

|m|2n
ψ(mnx, 0),max

{ 1

|m|2k
ψ(mkx, 0) : 0 ≤ k < n

}}
=

1

|m|2
max

{ 1

|m|2k
ψ(mkx, 0) : 0 ≤ k < n+ 1

}
.

So, (6.7) holds for all n ∈ N and x ∈ G. By taking n→∞ in (6.8), we can obtain (6.3).
If S is another mapping satisfies (6.3), then we get

‖T (x)− S(x)‖ = lim
k→∞

|m|−2k‖T (mkx)− S(mkx)‖

≤ lim
k→∞

|m|−2k max
{
‖T (2kx)− f(2kx)‖, ‖f(2kx)− S(2kx)‖

}
≤ 1

|m|2
lim
k→∞

lim
n→∞

max
{ 1

|m|2j
ψ(mjx, 0) : k ≤ j < n+ k

}
= 0

for all x ∈ G. Therefore, we have T = S. This completes the proof.

Theorem 6.2. Let ψ : G2 → [0,+∞) be a function such that

lim
n→∞

|m|2nψ
( x

m2n
,
y

m2n

)
= 0 (6.9)

for all x, y ∈ G. Suppose that, for all x ∈ G, the limit

Ψ(x) = lim
n→∞

max
{
|m|2kψ

( x
2k
, 0
)

: 0 ≤ k < n
}

exists and f : G→ X is a mapping satisfying the inequality∥∥Mf (x, y)
∥∥ ≤ ψ(x, y) (6.10)

for all x, y ∈ G. Then the limit

T (x) := lim
n→∞

m2nf
( x

mn

)
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exist for all x ∈ G and T : G→ X is a mapping satisfying∥∥f(x)− T (x)
∥∥ ≤ 1

|m|2
Ψ(x) (6.11)

for all x ∈ G. Moreover, if

lim
k→∞

lim
n→∞

max
{
|m|2jψ

( x
2j
, 0
)

: k ≤ j < n+ k
}

= 0 (6.12)

for all x ∈ G, then T is the unique mapping satisfying (6.11).

Proof. As in the proof of Theorem (6.1), we obtain∥∥∥f(mx)

m2
− f(x)

∥∥∥ ≤ 1

|m|2
ψ(x, 0). (6.13)

Replacing x by x
mn in (6.13) , we get∥∥∥m2(n−1)f

( x

mn−1

)
−m2nf

( x

mn

)∥∥∥ ≤ |m|2n

|m|2
ψ
( x

mn
, 0
)

(6.14)

and so it follows from (6.9) and (6.14) that the sequence
{
m2nf

(
x
mn

)}∞
n=1

is a Cauchy

sequence. Since X is complete,
{
m2nf

(
x
mn

)}∞
n=1

is convergent and so it follows from

(6.14) that ∥∥∥m2nf
( x

mn

)
−m2pf

( x

mp

)∥∥∥
=

∥∥∥ n∑
k=p+1

m2(k−1)f
( x

mk−1

)
−m2kf

( x

mk

)∥∥∥
≤ max

{∥∥∥m2(k−1)f
( x

mk−1

)
−m2kf

( x

mk

)∥∥∥ : p+ 1 ≤ k < n
}

(6.15)

≤ 1

|m|2
max

{
|m|2kψ

( x

mk
, 0
)

: p+ 1 ≤ k < n
}

for all x ∈ G and m,n ∈ N with n − 1 > p ≥ 0. Letting p = 0 and n → ∞ in (6.15), we
obtain (6.11).

The rest of the proof is similar to the proof of Theorem 6.1. This complete the proof.

Corollary 6.3. Let λ : [0,∞)→ [0,∞) be a function satisfying

λ(|m|t) ≤ λ(|m|)λ(t), λ(|m|) < |m|2

for all t ≥ 0. Let δ > 0 and f : G→ X be a mapping satisfying the inequality∥∥Mf (x, y)
∥∥ ≤ δ(λ(‖x‖) + λ(‖y‖)

)
for all x, y ∈ G. Then there exists a unique mapping T : G→ X such that∥∥f(x)− T (x)

∥∥ ≤ δλ(‖x‖)
|m|2

(6.16)

for all x ∈ G.
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Proof. By induction, wee can show that

λ(|m|nt) ≤ (λ(|m|)nλ(|t|)) ≤ |m|2nλ(|t|) (6.17)

for all n ∈ N. If we Define a mapping ψ : G2 → [0,∞) by

ψ(x, y) := δ
(
λ(‖x‖) + λ(‖y‖)

)
for all x, y ∈ G, then, from λ(|m|)

|m|2 < 1, it follows that

lim
n→∞

ψ(mnx,mny)

|m|2n
≤ lim
n→∞

(λ(|m|)
|m|2

)n
ψ(x, y) = 0 (6.18)

for all x, y ∈ G. Also, for all x ∈ G, the limit

Ψ(x) = lim
n→∞

max
{ 1

|m|2k
ψ(mkx, 0) : 0 ≤ k < n

}
= ψ(x, 0) = δλ(‖x‖)

exists and

lim
k→∞

lim
n→∞

max
{ 1

|m|2j
ψ(mjx, 0) : k ≤ j < n+ k

}
= 0

for all x ∈ G. Therefore, the result follows by Theorem 6.1. This completes the proof.

Corollary 6.4. Let λ : [0,∞)→ [0,∞) be a function satisfying

λ(|m|−1t) ≤ λ(|m|−1)λ(t), λ(|m|−1) < |m|−2

for all t ≥ 0. Let δ > 0 and f : G→ X be a mapping satisfying the inequality∥∥Mf (x, y)
∥∥ ≤ δ(λ(‖x‖) + λ(‖y‖)

)
for all x, y ∈ G. Then there exists a unique quadratic mapping T : G→ X such that∥∥f(x)− T (x)

∥∥ ≤ δλ(||x||)
|m|2

(6.19)

for all x ∈ G.

However, the following example shows that Theorem 1.1 is not true in non-Archimedean
normed spaces.

Example 6.1. Let p > 2 and f : Qp → Qp be a mpping defined by f(x) = 2 for all
x ∈ Qp. Then, for ε = 1,

|f(x+ y)− f(x)− f(y)| = 1 ≤ ε

for all x, y ∈ Qp. However, neither
{
f(2nx)

2n

}∞
n=1

nor
{

2nf
(
x
2n

)}∞
n=1

is a Cauchy sequence.

In fact, by using the fact that |2| = 1, we have∣∣∣f(2nx)

2n
− f(2n+1x)

2n+1

∣∣∣ = |2−n · 2− 2−(n+1) · 2| = |2−n| = 1

and ∣∣∣2nf( x
2n

)
− 2n+1f

( x

2n+1

)∣∣∣ = |2n · 2− 2(n+1) · 2| = |2n+1| = 1

for all x, y ∈ Qp and n ∈ N. Hence these sequences are not convergent in Qp.
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7. Stability of the Functional Equation (1.5)

in Non-Archimedean Normed Spaces

In this section, we solve the stability problems of the functional equation (1.5) in
non-Archimedean normed spaces.

Throughout this section, let G be an additive semigroup and X be a complete non-
Archimedean space.

Theorem 7.1. Let ψ : G2 → [0,+∞) be a function such that

lim
n→∞

|8|−nψ(2nx, 2ny) = 0 (7.1)

for all x, y ∈ G. Suppose that, for all x ∈ G, the limit

Ψ(x) = lim
n→∞

max
{ 1

|8|k
ψ(2kx, 0) : 0 ≤ k < n

}
exists and f : G→ X is a mapping satisfying the inequality∥∥M∗f (x, y)

∥∥ ≤ ψ(x, y) (7.2)

for all x, y ∈ G. Then the limit

T (x) := lim
n→∞

8−nf(2nx)

exist for all x ∈ G and T : G→ X is a cubic mapping satisfying∥∥f(x)− T (x)
∥∥ ≤ 1

|8|
Ψ(x) (7.3)

for all x ∈ G. Moreover, if

lim
k→∞

lim
n→∞

max
{ 1

|8|j
ψ(2jx, 0) : k ≤ j < n+ k

}
= 0 (7.4)

for all x ∈ G, then T is the unique mapping satisfying (7.3).

Proof. Putting y = 0 in (7.2), we have∥∥∥f(2x)

8
− f(x)

∥∥∥ ≤ 1

|8|
ψ(x, 0). (7.5)

Replacing x by 2nx in (7.5) and dividing both sides by 8n, we get∥∥∥f(2n+1x)

8n+1
− f(2nx)

8n

∥∥∥ ≤ 1

|8|n+1
ψ(2nx, 0). (7.6)

Thus it follows from (7.1) and (7.6) that the sequence
{
f(2nx)

8n

}∞
n=1

is convergent and so

set

T (x) := lim
n→∞

f(mnx)

m2n
.

The rest of the proof is similar to proof of the Theorem 6.1.

Theorem 7.2. Let ψ : G2 → [0,+∞) be a function such that

lim
n→∞

|8|nψ
( x

2n
,
y

2n

)
= 0 (7.7)

for all x, y ∈ G. Suppose that, for all x ∈ G, the limit

Ψ(x) = lim
n→∞

max
{
|8|kψ

( x
2k
, 0
)

: 0 ≤ k < n
}
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exists and f : G→ X is a mapping satisfying the inequality∥∥M∗f (x, y)
∥∥ ≤ ψ(x, y) (7.8)

for all x, y ∈ G. Then the limit

T (x) := lim
n→∞

8nf
( x

2n

)
exist for all x ∈ G and T : G→ X is a cubic mapping satisfying∥∥f(x)− T (x)

∥∥ ≤ 1

|8|
Ψ(x) (7.9)

for all x ∈ G. Moreover, if

lim
k→∞

lim
n→∞

max
{
|8|jψ

( x
2j
, 0
)

: k ≤ j < n+ k
}

= 0 (7.10)

for all x ∈ G, then T is the unique mapping satisfying (7.9).

Corollary 7.3. Let λ : [0,∞)→ [0,∞) be a function satisfying

λ(|2|t) ≤ λ(|2|)λ(t), λ(|2|) < |8|

for all t ≥ 0. Let δ > 0 and f : G→ X be a mapping satisfying the inequality∥∥Mf (x, y)
∥∥ ≤ δ(λ(‖x‖) + λ(‖y‖)

)
for all x, y ∈ G. Then there exists a unique cubic mapping T : G→ X such that∥∥f(x)− T (x)

∥∥ ≤ δλ(‖x‖)
|8|

(7.11)

for all x ∈ G.

Corollary 7.4. Let λ : [0,∞)→ [0,∞) be a function satisfying

λ(|2|−1t) ≤ λ(|2|−1)λ(t), λ(|2|−1) < |8|−1

for all t ≥ 0. Let δ > 0 and f : G→ X be a mapping satisfying the inequality∥∥Mf (x, y)
∥∥ ≤ δ(λ(‖x‖) + λ(‖y‖)

)
for all x, y ∈ G. Then there exists a unique cubic mapping T : G→ X such that

‖f(x)− T (x)‖ ≤ δλ(‖x‖)
|8|

(7.12)

for all x ∈ G.

8. Stability of the Functional Equation (1.6)

in Non-Archimedean Normed Spaces

In this section, we solve the stability problems of the functional equation (1.6) in
non-Archimedean normed spaces.

Throughout this section, let G be an additive semigroup and X be a complete non-
Archimedean space.



On the Generalized HUR-Stability of Some Functional Equation 1229

Theorem 8.1. Let ψ : G2 → [0,+∞) be a function such that

lim
p→∞

|m+ n|−pψ((m+ n)px, (m+ n)py) = 0 (8.1)

for all x, y ∈ G. Suppose that, for all x ∈ G, the limit

Ψ(x) = lim
p→∞

max
{
|m+ n|−k+1ψ((m+ n)kx, (m+ n)ky) : 0 ≤ k < p

}
(8.2)

exists and f : G→ X is a mapping satisfying∥∥∥f(mx+ ny)− m+ n

2
f(x+ y)− m− n

2
f(x− y)

∥∥∥
X
≤ ψ(x, y) (8.3)

for all x, y ∈ G. Then the limit

T (x) = lim
l→∞

(m+ n)−lf((m+ n)lx)

exists for all x ∈ G and T : G→ X is a mapping satisfying∥∥f(x)− T (x)
∥∥
X
≤ 1

|m+ n|
Ψ(x) (8.4)

for all x ∈ G. Moreover, if

lim
j→∞

lim
p→∞

max
{
|m+ n|−k+1ψ((m+ n)kx, (m+ n)ky) : j ≤ k < p+ j

}
= 0 (8.5)

for all x ∈ G, then T is the unique mapping satisfying (8.4).

Proof. Putting y = x in (8.3), we get∥∥∥f((m+ n)x)

m+ n
− f(x)

∥∥∥
X
≤ 1

|m+ n|
ψ(x, x). (8.6)

Replacing x by (m+ n)p−1x in (8.6) and dividing both sides by (m+ n)p−1, we get∥∥∥f((m+ n)px)

(m+ n)p
− f((m+ n)p−1x)

(m+ n)p−1
)
∥∥∥
X
≤ |m+n|−pψ((m+n)p−1x, (m+n)p−1x),

(8.7)

for all x ∈ H. It follows from (8.1) and (8.7) that the sequence
{
f((m+n)px)

(m+n)p

}+∞

p=1
is a

Cauchy sequence. Since X is complete, so the sequence
{
f((m+n)px)

(m+n)p

}+∞

p=1
is convergent.

Set

T (x) := lim
p→∞

f((m+ n)px)

(m+ n)p
.

Using induction we see that∥∥∥f((m+ n)px)

(m+ n)p
−f(x)

∥∥∥
X
≤ 1

|m+ n|
max

{
|m+n|−k+1ψ((m+n)kx, (m+n)kx) ; 0≤k<p

}
.

The rest of the proof is similar to proof of the Theorem 6.1.
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Theorem 8.2. Let ψ : G2 → [0,+∞) be a function such that

lim
n→∞

|m+ n|pψ
( x

(m+ n)p
,

y

(m+ n)p

)
= 0 (8.8)

for all x, y ∈ G. Suppose that, for all x ∈ G, the limit

Ψ(x) = lim
n→∞

max
{
|m+ n|k−1ψ

( x

(m+ n)k
,

y

(m+ n)k

)
= 0 : 0 ≤ k < p

}
(8.9)

exists and f : G→ X is a mapping satisfying∥∥∥f(mx+ ny)− m+ n

2
f(x+ y)− m− n

2
f(x− y)

∥∥∥
X
≤ ψ(x, y) (8.10)

for all x, y ∈ G. Then the limit

T (x) = lim
l→∞

(m+ n)lf
( x

(m+ n)l

)
exists for all x ∈ G and T : G→ X is a mapping satisfying∥∥f(x)− T (x)

∥∥
X
≤ 1

|m+ n|
Ψ(x) (8.11)

for all x ∈ G. Moreover, if

lim
j→∞

lim
p→∞

max
{
|m+ n|k−1ψ

( x

(m+ n)k
,

y

(m+ n)k

)
: j ≤ k < n+ j

}
= 0 (8.12)

for all x ∈ G, then T is the unique mapping satisfying (8.11).

Proof. Letting y = x in (8.10), we get∥∥∥f((m+ n)x)− (m+ n)f(x)
∥∥∥
X
≤ ψ(x, x), (8.13)

for all x ∈ G. If we replace x by x
(m+n)p in (8.13), then we have∥∥∥(m+ n)p−1f

( x

(m+ n)p−1

)
− (m+ n)pf

( x

(m+ n)p

))∥∥∥
X
≤ |m+ n|p−1ψ

( x

(m+ n)p

,
x

(m+ n)p−1

)
, (8.14)

for all x ∈ G and all non-negative integer n. It follows from (8.14) and (8.8) that the

sequence
{

(m+ n)pf
(

x
(m+n)p

)}∞
p=1

is a Cauchy sequence in X for all x ∈ G. Since X is

complete, the sequence
{

(m+ n)pf
(

x
(m+n)p

)}∞
n=1

converges for all x ∈ G. On the other

hand, it follows from (8.15) that∥∥∥(m+ n)pf
( x

(m+ n)p

)
− (m+ n)qf

( x

(m+ n)q

)∥∥∥
X

=
∥∥∥ q−1∑
k=p

(m+ n)k+1f
( x

(m+ n)k+1

)
− (m+ n)kf

( x

(m+ n)k

)∥∥∥
X

(8.15)

≤ max
{∥∥∥(m+ n)k+1f

( x

(m+ n)k+1

)
− (m+ n)kf

( x

(m+ n)k

)∥∥∥
X

; p ≤ k < q
}

≤ 1

|m+ n|
max

{
|m+ n|k−1ψ

( x

(m+ n)k
,

x

(m+ n)k

)
; p ≤ k < q

}
,
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for all x ∈ G and all non-negative integers p, q with q > p ≥ 0. Letting p = 0 and passing
the limit q →∞ in the last inequality, we obtain (8.11).
The rest of the proof is similar to the proof of Theorem (6.1).

Corollary 8.3. Let γ : [0,∞)→ [0,∞) be a function satisfying

γ
( t

|m+ n|

)
≤ γ

( 1

|m+ n|

)
γ(t), γ

( 1

|m+ n|

)
<

1

|m+ n|
(8.16)

for all t ≥ 0. Let δ > 0 and f : G→ X be a mapping satisfying∥∥∥f(mx+ ny)− m+ n

2
f(x+ y)− m− n

2
f(x− y)

∥∥∥
X
≤ δ
(
γ(|x|) + γ(|y|)

)
(8.17)

for all x, y ∈ G. Then there exists a unique mapping T : G→ X such that∥∥f(x)− T (x)
∥∥
X
≤ 2δγ(|x|)
|m+ n|

(8.18)

for all x ∈ G.

Corollary 8.4. Let γ : [0,∞)→ [0,∞) is a function satisfying

γ(|m+ n|t) ≤ γ(|m+ n|)γ(t), γ(|m+ n|) < |m+ n| (8.19)

for all t ≥ 0. Let δ > 0 and f : G→ X be a mapping satisfying∥∥∥f(mx+ ny)− m+ n

2
f(x+ y)− m− n

2
f(x− y)

∥∥∥
X
≤ δ
(
γ(|x|+ γ(|y|)

)
(8.20)

for all x, y ∈ G. Then there exists a unique mapping T : H → X such that∥∥f(x)− T (x)
∥∥
X
≤ 2δγ(|x|)
|m+ n|

(8.21)

for all x ∈ G.

Proof. If ψ : G2 → [0,∞) is a mapping defined by ψ(x, y) := δ
(
γ(|x| + γ(|y|)

)
for all

x, y ∈ G, then, from Theorem 8.1, the result follows.

Corollary 8.5. Let γ : [0,∞)→ [0,∞) is a function satisfying

γ
( t

|m+ n|

)
≤ γ

( 1

|m+ n|

)
γ(t), γ

( 1

|m+ n|

)
<

1

|m+ n|
(8.22)

for all t ≥ 0. Let δ > 0 and f : G→ X be a mapping satisfying∥∥∥f(mx+ ny)− m+ n

2
f(x+ y)− m− n

2
f(x− y)

∥∥∥
X
≤ δ
(
γ(|x|) · γ(|y|)

)
(8.23)

for all x, y ∈ G. Then there exists a unique mapping T : G→ X such that∥∥f(x)− T (x)
∥∥
X
≤ δγ2(|x|)
|m+ n|

(8.24)

for all x ∈ G.

Proof. Define a mapping ψ : G2 → [0,∞) by ψ(x, y) = δ
(
γ(|x|) · γ(|y|)

)
for all x, y ∈ G.

Then, from Theorem 8.1, the conclusion follows.
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Corollary 8.6. Let γ : [0,∞)→ [0,∞) is a function satisfying

γ(|m+ n|t) ≤ γ(|m+ n|)γ(t), γ(|m+ n|) < |m+ n| (8.25)

for all t ≥ 0. Let δ > 0 and f : G→ X be a mapping satisfying∥∥∥f(mx+ ny)− m+ n

2
f(x+ y)− m− n

2
f(x− y)

∥∥∥ ≤ δ(γ(|x|) · γ(|y|)
)

(8.26)

for all x, y ∈ G. Then there exists a unique mapping T : G→ X such that∥∥f(x)− T (x)
∥∥
X
≤ δγ2(|x|)
|m+ n|

(8.27)

for all x ∈ G.

Proof. Define a mapping ψ : G2 → [0,∞) by ψ(x, y) = δ
(
γ(|x|) · γ(|y|)

)
for all x, y ∈ G.

Then, from Theorem 8.1, the conclusion follows.
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