Thai Journal of **Math**ematics Volume 19 Number 4 (2021) Pages 1209–1233

http://thaijmath.in.cmu.ac.th

On the Generalized HUR-Stability of Some Functional Equations

Hassan Azadi Kenary^{1,*}, Hamid Reza Goudarzi¹ and Yeol Je Cho²

¹Department of Mathematics, College of Science, Yasouj University, Yasouj 75914-353, Iran e-mail : azadi@yu.ac.ir (H. A. Kenary); goudarzi@yu.ac.ir (H. R. Goudarzi)

² Department of Mathematics Education and RINS, Gyeongsang National University, Chinju 660-701, Korea e-mail : yjcho@gnu.ac.kr (Y. J. Cho)

Abstract In this paper, we prove the stability of some quadratic and cubic functional equations in random and non-Archimedean normed spaces.

MSC: 39B22; 39B52; 39B22; 39B82; 46S10Keywords: fixed point theory; stability; random normed space; non-Archimedean normed spaces

Submission date: 12.01.2017 / Acceptance date: 17.01.2019

1. INTRODUCTION

In 1940, the stability problem of functional equations originated from a question of Ulam [1] concerning the stability of group homomorphisms. In 1941, Hyers [2] gave first an affirmative partial answer for the question of Ulam for Banach spaces. Since then, In 1978, Hyers's theorem was generalized by Th. M. Rassias [3] for linear mappings by considering the unbounded Cauchy difference as follows:

Theorem 1.1. Let f be an approximately additive mapping from a normed vector space E into a Banach space E', i.e., f satisfies the inequality

 $||f(x+y) - f(x) - f(y)|| \le \epsilon(||x||^r + ||y||^r)$

for all $x, y \in E$, where ϵ and r are constants with $\epsilon > 0$ and $0 \le r < 1$. Then the mapping $L : E \to E'$ defined by $L(x) = \lim_{n \to \infty} 2^{-n} f(2^n x)$ is the unique additive mapping which satisfies

$$||f(x+y) - L(x)|| \le \frac{2\epsilon}{2-2^r} ||x||^r$$

for all $x \in E$.

*Corresponding author.

Published by The Mathematical Association of Thailand. Copyright © 2021 by TJM. All rights reserved. The paper of Th. M. Rassias [3] has provided a lot of influence in the development of what we call *generalized Hyers-Ulam stability* or *Hyers-Ulam-Rassias stability* of functional equations. In 1994, a generalization of the Th. M. Rassias theorem was obtained by Găvruta [4] by replacing the unbounded Cauchy difference by a general control function in the spirit of Th. M. Rassias's approach.

The functional equation

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$
(1.1)

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. In 1983, the generalized Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [5] for mappings $f: X \to Y$, where X is a normed space and Y is a Banach space. In 1984, Cholewa [6] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. In 1992, Czerwik [7] proved the generalized Hyers-Ulam stability of the quadratic functional equation. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [8], [9], [10]–[21]).

Recently, in 2009, Gordji and Khodaei [10] introduced the quadratic functional equation

$$f(mx + ny) + f(mx - ny) = \frac{n(m+n)}{2} (f(x+y) + f(x-y)) + 2(m^2 - mn - n^2)f(x) + (n^2 - mn)f(y)$$
(1.2)

and they established the general solution of the generalized Hyers-Ulam-Rassias stability problem for the functional equation (1.2) in Banach spaces as follows:

Theorem 1.2. Let X and Y be real vector spaces. A function $f : X \to Y$ satisfies the functional equation (1.2) if and only if $f : X \to Y$ satisfies the functional equation (1.1).

The cubic function $f(x) = cx^3$ satisfies the functional equation

$$f(2x+y) + f(2x-y) = 2f(x+y) + 2f(x-y) + 12f(x).$$
(1.3)

The equation (1.3) was solved by Jun and Kim [12]. By the similar method for a quadratic functional equation, they also proved that a function $f : X \to Y$ is a solution of the equation (1.3) if and only if there exists a function $F : X^3 \to Y$ such that f(x) = F(x, x, x) for all $x \in X$ and F is symmetric for each fixed one variable and is additive for fixed two variables. Every solution of the equation (1.3) is called a *cubic function*. Also, the equation (1.3) is equivalent to the following equation:

$$f(x+2y) + f(x-2y) + f(2x) = 4f(x+y) + 4f(x-y) + 2f(x).$$
(1.4)

Koh [14] introduced the following functional equation:

$$4f(x+my) + 4f(x-my) + m^2 f(2x) = 4m^2 (f(x+y) + f(x-y)) + 8f(x) \quad (1.5)$$

and established the general solution for the generalized Hyers-Ulam-Rassias stability problem for the functional equation (1.5) in Banach spaces as follows:

Theorem 1.3. Let X and Y be real vector spaces. A function $f : X \to Y$ satisfies the functional equation (1.5) if and only if f is cubic.

It is easy to see that the function $f(x) = cx^3$ is a solution of the functional equations (1.3), (1.4) and (1.5). Thus it is natural that the functional equations (1.3), (1.4) and (1.5) are called the *cubic functional equation* and every solution of these cubic functional equations is called a *cubic function*.

Najati and Rahimi [18] introduced

$$f(rx + sy) = \frac{r+s}{2}f(x+y) + \frac{r-s}{2}f(x-y)$$
(1.6)

for any $r, s \in \mathbb{R}$ with $r \neq \pm s$ and investigate the Hyers-Ulam- Rassias stability of the functional equation (1.6) in Banach modules over a unital C^* -algebra.

In this paper, we prove stability of the functional equations (1.2), (1.5) and (1.6) in random and non-Archimedean normed spaces.

2. Preliminaries

In the sequel, we adopt the usual terminology, notions and conventions of the theory of random normed spaces as in [5].

Throughout this paper, let Δ^+ denote the set of all probability distribution functions $F : \mathbb{R} \cup [-\infty, +\infty] \to [0, 1]$ such that F is left-continuous and nondecreasing on \mathbb{R} and $F(0) = 0, F(+\infty) = 1$. It is clear that the set

$$D^{+} = \{ F \in \triangle^{+} : l^{-}F(-\infty) = 1 \},\$$

where $l^-f(x) = \lim_{t\to x^-} f(t)$, is a subset of \triangle^+ . The set \triangle^+ is partially ordered by the usual point-wise ordering of functions, that is, $F \leq G$ if and only if $F(t) \leq G(t)$ for all $t \in \mathbb{R}$. For any $a \geq 0$, the element $H_a(t)$ of D^+ is defined by

$$H_a(t) = \begin{cases} 0, & \text{if } t \le a, \\ 1, & \text{if } t > a. \end{cases}$$

We can easily show that the maximal element in \triangle^+ is the distribution function $H_0(t)$.

Definition 2.1. A function $T : [0,1]^2 \to [0,1]$ is a *continuous triangular norm* (briefly, a *t*-norm) if T satisfies the following conditions:

- (a) T is commutative and associative;
- (b) T is continuous;
- (c) T(x, 1) = x for all $x \in [0, 1];$
- (d) $T(x, y) \leq T(z, w)$ whenever $x \leq z$ and $y \leq w$ for all $x, y, z, w \in [0, 1]$.

Three typical examples of continuous *t*-norms are as follows:

 $T(x,y) = xy, \quad T(x,y) = \max\{a+b-1,0\}, \quad T(x,y) = \min(a,b).$

Recall that, if T is a t-norm and $\{x_n\}$ is a sequence in [0,1], then $T_{i=1}^n x_i$ is defined recursively by $T_{i=1}^1 x_1 = x_1$ and $T_{i=1}^n x_i = T(T_{i=1}^{n-1} x_i, x_n)$ for all $n \ge 2$. $T_{i=n}^{\infty} x_i$ is defined by $T_{i=1}^{\infty} x_{n+i}$.

Definition 2.2. A random normed space (briefly, RN-space) is a triple (X, Ψ, T) , where X is a vector space, T is a continuous *t*-norm and $\Psi : X \to D^+$ is a mapping such that the following conditions hold:

- (a) $\Psi_x(t) = H_0(t)$ for all t > 0 if and only if x = 0;
- (b) $\Psi_{\alpha x}(t) = \Psi_x(\frac{t}{|\alpha|})$ for all $\alpha \in \mathbb{R}$ with $\alpha \neq 0, x \in X$ and $t \geq 0$;
- (c) $\Psi_{x+y}(t+s) \ge T(\Psi_x(t), \Psi_y(s))$ for all $x, y \in X$ and $t, s \ge 0$.

Every normed space $(X, \|\cdot\|)$ defines a random normed space (X, Ψ, T_M) , where

$$\Psi_u(t) = \frac{t}{t + \|u\|}$$

for all t > 0 and T_M is the minimum t-norm. This space X is called the *induced random* normed space.

If the *t*-norm *T* is such that $\sup_{0 < a < 1} T(a, a) = 1$, then every *RN*-space (X, Ψ, T) is a metrizable linear topological space with the topology τ (called the Ψ -topology or the (ϵ, δ) -topology, where $\epsilon > 0$ and $\lambda \in (0, 1)$) induced by the base $\{U(\epsilon, \lambda)\}$ of neighborhoods of θ , where

$$U(\epsilon, \lambda) = \{ x \in X : \Psi_x(\epsilon) > 1 - \lambda \}.$$

Definition 2.3. Let (X, Ψ, T) be an RN-space.

(1) A sequence $\{x_n\}$ in X is said to be *convergent* to a point $x \in X$ (write $x_n \to x$ as $n \to \infty$) if $\lim_{n\to\infty} \Psi_{x_n-x}(t) = 1$ for all t > 0.

(2) A sequence $\{x_n\}$ in X is called a *Cauchy sequence* in X if $\lim_{n\to\infty} \Psi_{x_n-x_m}(t) = 1$ for all t > 0.

(3) The RN-space (X, Ψ, T) is said to be *complete* if every Cauchy sequence in X is convergent.

Theorem 2.1. ([26]) If (X, Ψ, T) is RN-space and $\{x_n\}$ is a sequence such that $x_n \to x$, then $\lim_{n\to\infty} \Psi_{x_n}(t) = \Psi_x(t)$.

Definition 2.4. Let X be a set. A function $d : X \times X \to [0, \infty]$ is called a generalized metric on X if d satisfies the following conditions:

(1) d(x, y) = 0 if and only if x = y for all $x, y \in X$;

(2) d(x, y) = d(y, x) for all $x, y \in X$;

(3) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

Theorem 2.2. Let (X,d) be a complete generalized metric space and $J : X \to X$ be a strictly contractive mapping with Lipschitz constant L < 1. Then, for all $x \in X$, either

$$d(J^n x, J^{n+1} x) = \infty \tag{2.1}$$

for all nonnegative integers n or there exists a positive integer n_0 such that

- (1) $d(J^n x, J^{n+1} x) < \infty$ for all $n_0 \ge n_0$;
- (2) the sequence $\{J^n x\}$ converges to a fixed point y^* of J;
- (3) y^* is the unique fixed point of J in the set $Y = \{y \in X : d(J^{n_0}x, y) < \infty\};$
- (4) $d(y, y^*) \leq \frac{1}{1-L}d(y, Jy)$ for all $y \in Y$.

Definition 2.5. By a *non-Archimedean field* we mean a field \mathbb{K} equipped with a function (valuation) $|\cdot| : \mathbb{K} \to [0, \infty)$ such that, for all $r, s \in \mathbb{K}$, the following conditions hold:

- (a) |r| = 0 if and only if r = 0;
- (b) |rs| = |r||s|;
- (c) $|r+s| \le \max\{|r|, |s|\}.$

Clearly, by (b), |1| = |-1| = 1 and so, by induction, it follows from (c) that $|n| \le 1$ for all $n \ge 1$.

Definition 2.6. Let X be a vector space over a scalar field \mathbb{K} with a non-Archimedean non-trivial valuation $|\cdot|$.

(1) A function $\|\cdot\|: X \to \mathbb{R}$ is a non-Archimedean norm (valuation) if it satisfies the following conditions:

(a) ||x|| = 0 if and only if x = 0 for all $x \in X$;

(b) ||rx|| = |r|||x|| for all $r \in \mathbb{K}$ and $x \in X$;

(c) the strong triangle inequality (ultra-metric) holds, that is,

$$|x+y|| \le \max\{||x||, ||y||\}$$

for all $x, y \in X$.

(2) The space $(X, \|\cdot\|)$ is called a non-Archimedean normed space.

Note that

 $||x_n - x_m|| \le max\{||x_{j+1} - x_j|| : m \le j \le n - 1\}$

for all $m, n \in \mathbb{N}$ with n > m.

Definition 2.7. Let $(X, \|\cdot\|)$ be a non-Archimedean normed space.

(1) A sequence $\{x_n\}$ is a Cauchy sequence in X if $\{x_{n+1} - x_n\}$ converges to zero in X.

(2) The non-Archimedean normed space $(X, \|\cdot\|)$ is said to be *complete* if every Cauchy sequence in X is convergent.

The most important examples of non-Archimedean spaces are *p*-adic numbers. A key property of *p*-adic numbers is that they do not satisfy the Archimedean axiom: for all x, y > 0, there exists a positive integer *n* such that x < ny.

Example 2.1. Fix a prime number p. For any nonzero rational number x, there exists a unique positive integer n_x such that $x = \frac{a}{b}p^{n_x}$, where a and b are positive integers not divisible by p. Then $|x|_p := p^{-n_x}$ defines a non-Archimedean norm on \mathbb{Q} . The completion of \mathbb{Q} with respect to the metric $d(x, y) = |x - y|_p$ is denoted by \mathbb{Q}_p , which is called the p-adic number field. In fact, \mathbb{Q}_p is the set of all formal series $x = \sum_{k\geq n_x}^{\infty} a_k p^k$, where $|a_k| \leq p-1$. The addition and multiplication between any two elements of \mathbb{Q}_p are defined naturally. The norm $|\sum_{k\geq n_x}^{\infty} a_k p^k|_p = p^{-n_x}$ is a non-Archimedean norm on \mathbb{Q}_p and \mathbb{Q}_p is a locally compact filed.

3. RANDOM STABILITY OF THE FUNCTIONAL EQUATION (1.2): DIRECT METHOD

Let

$$M_f(x,y) = f(mx+ny) + f(mx-ny) - \frac{n(m+n)}{2}f(x+y) - \frac{n(m+n)}{2}f(x-y) - 2(m^2 - mn - n^2)f(x) - (n^2 - mn)f(y)$$

where $m, n \in \mathbb{Z}$ with $n \neq \pm m, -3m$.

Theorem 3.1. Let X be a real linear space, (Z, Ψ, min) be an RN-space and $\psi : X^2 \to Z$ be a function such that there exists $0 < \alpha < m^2$ such that

$$\Psi_{\psi(mx,0)}(t) \ge \Psi_{\alpha\psi(x,0)}(t) \tag{3.1}$$

for all $x \in X$ and t > 0, f(0) = 0 and $\lim_{n\to\infty} \Psi_{\psi(m^n x, m^n y)}(m^{2n}t) = 1$ for all $x, y \in X$ and t > 0. Let (Y, μ, min) be a complete RN-space. If $f : X \to Y$ is a mapping such that

$$\mu_{M_f(x,y)}(t) \ge \Psi_{\psi(x,y)}(t) \tag{3.2}$$

for all $x, y \in X$ and t > 0, then there is a unique quadratic mapping $C : X \to Y$ such that $C(x) = \lim_{n \to \infty} m^{-2n} f(m^n x)$ and

$$\mu_{f(x)-C(x)}(t) \ge \Psi_{\psi(x,0)}((m^2 - \alpha)t)$$
(3.3)

for all $x \in X$ and t > 0.

Proof. Putting y = 0 in (3.2), we see that

$$\mu_{\frac{f(mx)}{m^2} - f(x)}(t) \ge \Psi_{\psi(x,0)}(m^2 t) \tag{3.4}$$

for all $x \in X$. Replacing x by $m^n x$ in (3.4) and using (3.1), we obtain

$$\mu_{\frac{f(m^{n+1}x)}{m^{2(n+1)}} - \frac{f(m^{n}x)}{m^{2n}}}(t) \ge \Psi_{\psi(m^{n}x,0)}(m^{2(n+1)}t) \ge \Psi_{\psi(x,0)}\left(\frac{m^{2(n+1)}t}{\alpha^{n}}\right)$$
(3.5)

and so

$$\mu_{\frac{f(m^{n}x)}{m^{2n}}-f(x)}\left(\sum_{k=0}^{n-1}\frac{t\alpha^{k}}{m^{2(k+1)}}\right) = \mu_{\sum_{k=0}^{n-1}\frac{f(m^{k+1}x)}{m^{2(k+1)}}-\frac{f(m^{k}x)}{m^{2k}}}\left(\sum_{k=0}^{n-1}\frac{t\alpha^{k}}{m^{2(k+1)}}\right) \\
\geq T_{k=0}^{n-1}\mu_{\frac{f(m^{k+1}x)}{m^{2(k+1)}}-\frac{f(m^{k}x)}{m^{2k}}}\left(\frac{t\alpha^{k}}{m^{2(k+1)}}\right) \\
\geq T_{k=0}^{n-1}\left(\Psi_{\psi(x,0)}(t)\right) \\
= \Psi_{\psi(x,0)}(t).$$
(3.6)

This implies that

$$\mu_{\frac{f(m^n x)}{m^{2n}} - f(x)}(t) \ge \Psi_{\psi(x,0)} \left(\frac{t}{\sum_{k=0}^{n-1} \frac{\alpha^k}{m^{2(k+1)}}}\right).$$
(3.7)

Replacing x by $m^p x$ in (3.7), we obtain

$$\mu_{\frac{f(m^{n+p_x})}{m^{2(n+p)}} - \frac{f(m^{p_x})}{m^{2p}}}(t) \geq \Psi_{\psi(m^{p_x},0)}\left(\frac{t}{\sum_{k=0}^{n-1} \frac{\alpha^{k}}{m^{2(k+p+1)}}}\right) \\
\geq \Psi_{\psi(x,0)}\left(\frac{t}{\sum_{k=0}^{n-1} \frac{\alpha^{k+p}}{m^{2(k+p+1)}}}\right) \\
= \Psi_{\psi(x,0)}\left(\frac{t}{\sum_{k=p}^{n+p-1} \frac{\alpha^{k}}{m^{2(k+1)}}}\right).$$
(3.8)

Since

$$\lim_{p,n \to \infty} \Psi_{\psi(x,0)} \left(\frac{t}{\sum_{k=p}^{n+p-1} \frac{\alpha^k}{m^{2(k+1)}}} \right) = 1,$$

it follows that $\left\{\frac{f(m^n x)}{m^{2n}}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in a complete RN-space (Y, μ, min) and so there exists a point $C(x) \in Y$ such that

$$\lim_{n \to \infty} m^{-2n} f(m^n x) = C(x).$$

Fix $x \in X$ and put p = 0 in (3.8). Then we obtain

$$\mu_{\frac{f(m^n x)}{m^{2n}} - f(x)}(t) \ge \Psi_{\psi(x,0)} \left(\frac{t}{\sum_{k=0}^{n-1} \frac{\alpha^k}{m^{2(k+1)}}}\right),\tag{3.9}$$

and so, for any $\epsilon > 0$,

$$\mu_{C(x)-f(x)}(t+\epsilon) \geq T\left(\mu_{C(x)-\frac{f(m^{n}x)}{m^{2n}}}(\epsilon), \mu_{\frac{f(m^{n}x)}{m^{2n}}-f(x)}(t)\right)$$

$$\geq T\left(\mu_{C(x)-\frac{f(m^{n}x)}{m^{2n}}}(\epsilon), \Psi_{\psi(x,0)}\left(\frac{t}{\sum_{k=0}^{n-1}\frac{\alpha^{k}}{m^{2(k+1)}}}\right)\right).$$

$$(3.10)$$

Taking the limit as $n \to \infty$ in (3.10), we get

$$\mu_{C(x)-f(x)}(t+\epsilon) \ge \Psi_{\psi(x,0)}((m^2-\alpha)t).$$
(3.11)

Since ϵ is arbitrary, by taking $\epsilon \to 0$ in (3.11), we get

$$\mu_{C(x)-f(x)}(t) \ge \Psi_{\psi(x,0)}((m^2 - \alpha)t).$$
(3.12)

Replacing x and y by $m^n x$ and $m^n y$ in (3.2), respectively, we get

$$\mu_{\frac{M_f(m^n x, m^n y)}{m^{2n}}}(t) \ge \Psi_{\psi(m^n x, m^n y)}(m^{2n} t)$$
(3.13)

for all $x, y \in X$ and t > 0. Since $\lim_{n \to \infty} \Psi_{\psi(m^n x, m^n y)}(m^{2n}t) = 1$, we conclude that

$$C(mx + ny) + C(mx - ny) = \frac{n(m+n)}{2} \Big\{ C(x+y) + C(x-y) \Big\} + 2(m^2 - mn - n^2)C(x) + (n^2 - mn)C(y).$$

To prove the uniqueness of the quadratic mapping C, assume that there exist another quadratic mapping $D: X \to Y$ which satisfies (3.3). By induction, one can easily show that

$$C(m^{n}x) = m^{2n}C(x), \quad D(m^{n}x) = m^{2n}D(x)$$

for all $n \in N$ and $x \in X$ and so

$$\mu_{C(x)-D(x)}(t) = \lim_{n \to \infty} \mu_{\frac{C(m^n x)}{m^{2n}} - \frac{D(m^n x)}{m^{2n}}}(t)$$

$$\geq \lim_{n \to \infty} \min \left\{ \mu_{\frac{C(m^n x)}{m^{2n}} - \frac{f(m^n x)}{m^{2n}}}(\frac{t}{2}), \mu_{\frac{D(m^n x)}{m^{2n}} - \frac{f(m^n x)}{m^{2n}}}(\frac{t}{2}) \right\}$$

$$\geq \lim_{n \to \infty} \Psi_{\psi(m^n x, 0)}\left(\frac{m^{2n}(m^2 - \alpha)}{2}\right)$$

$$\geq \lim_{n \to \infty} \Psi_{\psi(x, 0)}\left(\frac{m^{2n}(m^2 - \alpha)t}{2\alpha^n}\right).$$
(3.14)

Since $\lim_{n\to\infty} \frac{m^{2n}(m^2-\alpha)t}{2\alpha^n} = \infty$, we get

$$\lim_{n \to \infty} \Psi_{\psi(x,0)} \left(\frac{m^{2n} (m^2 - \alpha)t}{2\alpha^n} \right) = 1.$$

Therefore, it follows that $\mu_{C(x)-D(x)}(t) = 1$ for all t > 0 and so C(x) = D(x). This complete the proof.

Corollary 3.2. Let X be a real linear space, (Z, Ψ, min) be an RN-space and (Y, μ, min) be a complete RN-space. Let $0 and <math>z_0 \in Z$. If $f : X \to Y$ is a mapping that

$$\mu_{M_f(x,y)}(t) \ge \Psi_{||y||^p y_0}(t) \tag{3.15}$$

for all $x, y \in X$ and t > 0, then there exists a unique quadratic mapping $C : X \to Y$ such that

$$C(x) = \lim_{n \to \infty} m^{-2n} f(m^n x)$$
(3.16)

and

$$\mu_{f(x)-C(x)}(t) \ge 1 \tag{3.17}$$
for all $x \in X$ and $t > 0$.

Proof. Let $\alpha = m^{2p}$ and $\psi : X^2 \to Z$ be a mapping defined by $\psi(x, y) = ||y||^p z_0$. Then, from Theorem 3.1, the conclusion follows.

Corollary 3.3. Let X be a real linear space, (Z, Ψ, min) be an RN-space and (Y, μ, min) be a complete RN-space. Let $0 and <math>z_0 \in Z$. If $f: X \to Y$ is a mapping that

$$\mu_{M_f(x,y)}(t) \ge \Psi_{(\|x\|^p + \|y\|^p)z_0}(t) \tag{3.18}$$

for all $x, y \in X$ and t > 0, then there exists a unique quadratic mapping $C : X \to Y$ such that

$$C(x) = \lim_{n \to \infty} m^{-2n} f(m^n x) \tag{3.19}$$

and

$$\mu_{f(x)-C(x)}(t) \ge \Psi_{\|x\|^p y_0}\left((m^2 - m^{2p})t\right)$$
(3.20)

for all $x \in X$ and t > 0.

Proof. Let $\alpha = m^{2p}$ and $\psi : X^2 \to Z$ be a mapping defined by $\psi(x, y) = (||x||^p + ||y||^p)z_0$. Then, from Theorem 3.1, the conclusion follows.

Corollary 3.4. Let X be a real linear space, (Z, Ψ, min) be an RN-space and (Y, μ, min) a complete RN-space. Let $p, q \in \mathbb{R}^+$ with $0 and <math>z_0 \in Z$. If $f : X \to Y$ is a mapping that

$$\mu_{M_f(x,y)}(t) \ge \Psi_{(\|x\|^{p+q} + \|y\|^{p+q} + \|x\|^p \|y\|^q) z_0}(t)$$
(3.21)

for all $x, y \in X$ and t > 0, then there exists a unique quadratic mapping $C : X \to Y$ such that

$$C(x) = \lim_{n \to \infty} m^{-2n} f(m^n x)$$
(3.22)

and

$$\mu_{f(x)-C(x)}(t) \ge \Psi_{\|x\|^{p+q}z_0}\left((m^2 - m^{2(p+q)})t\right)$$
(3.23)

for all $x \in X$ and t > 0.

Proof. Let $\alpha = m^{2(p+q)}$ and $\psi: X^2 \to Z$ be a mapping defined by

$$\psi(x,y) = (\|x\|^{p+q} + \|y\|^{p+q} + \|x\|^p \|y\|^q) z_0$$

Then, from Theorem 3.1, the conclusion follows.

Corollary 3.5. Let X be a real linear space, (Z, Ψ, min) be an RN-space and (Y, μ, min) be a complete RN-space. Let $z_0 \in Z$. If $f: X \to Y$ is a mapping that

$$\mu_{M_f(x,y)}(t) \ge \Psi_{\delta z_0}(t) \tag{3.24}$$

for all $x, y \in X$ and t > 0, then there exists a unique quadratic mapping $C : X \to Y$ such that

$$C(x) = \lim_{n \to \infty} m^{-2n} f(m^n x)$$
(3.25)

-

and

$$\mu_{f(x)-C(x)}(t) \ge \Psi_{\delta z_0}\left((m^2 - 1)t\right)$$
(3.26)

for all $x \in X$ and t > 0.

Proof. Let $\alpha = 1$ and $\psi : X^2 \to Z$ be a mapping defined by $\psi(x, y) = \delta z_0$. Then, from Theorem 3.1, the conclusion follows.

Example 3.1. Let p = 1, $\alpha = m^4$, $\psi(x, y) = (||x||^2 + ||y||^2)z_0$ and $f : X \to Y$ be a mapping satisfying

$$\mu_{M_f(x,y)}(t) \ge \Psi_{(\|x\|^2 + \|y\|^2)z_0}(t). \tag{3.27}$$

As in Theorem (3.1), we obtain

$$\mu_{\frac{f(m^{n+q_x)}}{m^{2(n+q)}} - \frac{f(m^{q_x})}{m^{2q}}}(t) \ge \Psi_{\|x\|^2 z_0} \left(\frac{t}{\sum_{k=q}^{n+q-1} \frac{m^{4k}}{m^{2k+2}}}\right).$$

Since

$$\sum_{k=q}^{n+q-1} \frac{m^{4k}}{m^{2k+2}} = \frac{1}{m^2} \sum_{k=q}^{n+q-1} m^{2k} = \frac{m^{2(n+q-1)} - m^{2q}}{1 - m^2}$$

and

$$\lim_{n,q\to\infty}\frac{1-m^2}{m^{2(n+q-1)}-m^{2q}}\neq\infty,$$

we have

1

$$\lim_{n,q \to \infty} \mu_{\frac{f(m^{n+q}x)}{m^{3(n+q)}} - \frac{f(m^{q}x)}{m^{3q}}}(t) = \lim_{n,q \to \infty} \Psi_{\|x\|^{2}z_{0}}\left(\frac{1 - m^{2}}{m^{2(n+q-1)} - m^{2q}}\right) \neq 1.$$

This means that the sequence $\left\{\frac{J(m \ x)}{m^{2n}}\right\}_{n=1}$ is not a Cauchy sequence.

4. RANDOM STABILITY OF THE FUNCTIONAL EQUATION (1.5) FIXED POINT APPROACH

In this section, we use fixed point technique to prove the generalized Hyres-Ulam stability of the quadratic functional equations (1.5).

Let

$$\eta_f(x,y) = 4f(x+my) + 4f(x-my) + m^2 f(2x) - 8f(x) - 4m^2 (f(x+y) + f(x-y)).$$

where $m \in \mathbb{N}$ with $m \geq 2$.

Theorem 4.1. Let X be a linear space, (Y, μ, T_M) be a complete RN-space and Λ be a mapping from X^2 to D^+ ($\Lambda(x, y)$ is denoted by $\Lambda_{x,y}$) such that there exists $0 < \alpha < 8$ such that

$$\Lambda_{\frac{x}{2},\frac{y}{2}}(t) \le \Lambda_{x,y}(\alpha t) \tag{4.1}$$

for all $x, y \in X$ and t > 0. Let $f : X \to Y$ be a cubic mapping satisfying

$$\mu_{\eta_f(x,y)} \ge \Lambda_{x,y}(t) \tag{4.2}$$

for all $x, y \in X$ and t > 0. Then

$$A(x) := \lim_{n \to \infty} \frac{f(2^n x)}{8^n} \tag{4.3}$$

exists for all $x \in X$ and there exists a unique cubic mapping $A: X \to Y$ such that

$$\mu_{f(x)-A(x)}(t) \ge \Lambda_{x,0}((8-\alpha)t) \tag{4.4}$$

for all $x \in X$ and t > 0.

Proof. Putting y = 0 in (4.2), we have

$$\mu_{\frac{f(2x)}{2}-f(x)}(t) \ge \Lambda_{x,0}(8t) \tag{4.5}$$

for all $x \in X$ and t > 0. Consider the set

$$S := \{g : X \to Y\} \tag{4.6}$$

and the generalized metric d in S defined by

$$d(f,g) = \inf\{u \in \mathbb{R}^+ : \mu_{g(x)-h(x)}(ut) \ge \Lambda_{x,0}(t), \forall x \in X, t > 0\},$$
(4.7)

where $\inf \emptyset = +\infty$. It is easy to show that (S, d) is complete.

Now, we consider a linear mapping $J: S \to S$ such that

$$Jh(x) := \frac{1}{8}h(2x) \tag{4.8}$$

for all $x \in X$. First, we prove that J is a strictly contractive mapping with the Lipschitz constant $\frac{\alpha}{8}$. In fact, let $g, h \in S$ be such that $d(g, h) < \epsilon$. Then

$$\mu_{g(x)-h(x)}(\epsilon t) \ge \Lambda_{x,0}(t) \tag{4.9}$$

for all $x \in X$ and t > 0 and so

$$\mu_{Jg(x)-Jh(x)}\left(\frac{\alpha\epsilon t}{8}\right) = \mu_{\frac{1}{8}g(2x)-\frac{1}{8}h(2x)}\left(\frac{\alpha\epsilon t}{8}\right)$$
$$= \mu_{g(2x)-h(2x)}(\alpha\epsilon t)$$
$$\geq \Lambda_{2x,0}(\alpha t)$$
$$\geq \Lambda_{x,0}(t)$$
(4.10)

for all $x \in X$ and t > 0. Thus $d(g,h) < \epsilon$ implies that $d(Jg,Jh) < \frac{\alpha \epsilon}{8}$. This means that

$$d(Jg, Jh) \le \frac{\alpha}{8} d(g, h) \tag{4.11}$$

for all $g, h \in S$. It follows from (4.5) that

$$d(f, Jf) \le \frac{1}{8} < 1.$$
(4.12)

By Theorem 2.2, there exists a mapping $T: X \to Y$ satisfying the following:

(1) A is a fixed point of J, that is,

$$A(2x) = 8A(x) \tag{4.13}$$

for all $x \in X$. The mapping A is a unique fixed point of J in the set

$$\Omega = \{h \in S : d(g,h) < \infty\}.$$

$$(4.14)$$

This implies that A is a unique mapping satisfying (4.13) such that there exists $u \in (0, \infty)$ satisfying

$$\mu_{f(x)-A(x)}(ut) \ge \Lambda_{x,0}(t) \tag{4.15}$$

for all $x \in X$ and t > 0.

(2) $d(J^n f, A) \to 0$ as $n \to \infty$. This implies the equality

$$\lim_{n \to \infty} \frac{1}{8^n} f(2^n x) = A(x)$$
(4.16)

for all $x \in X$.

(3) $d(f, A) \leq \frac{d(f, Jf)}{1-\frac{\alpha}{2}}$ with $f \in \Omega$, which implies the inequality

$$d(f,A) \le \frac{1}{8-\alpha} \tag{4.17}$$

and so

$$\mu_{f(x)-A(x)}\left(\frac{t}{8-\alpha}\right) \ge \Lambda_{x,0}(t) \tag{4.18}$$

for all $x \in X$ and t > 0. This implies that the inequality (4.4) holds.

Now, we have

$$\mu_{\frac{1}{8^n}\eta_f(2^n x, 2^n y)}(t) = \mu_{\eta_f(2^n x, 2^n y)}(8^n t) \ge \Lambda_{2^n x, 2^n y}(8^n t) \ge \Lambda_{x, y}\left(\left(\frac{8}{\alpha}\right)^n t\right)$$
(4.19)

for all $x, y \in X$, t > 0 and $n \in \mathbb{N}$. Since $\lim_{n \to \infty} \Lambda_{x,y}\left(\left(\frac{8}{\alpha}\right)^n t\right) = 1$ for all $x, y \in X$ and t > 0, then, by Theorem 2.1, we deduce that $\mu_{\eta_A(x,y)} = 1$ for all $x, y \in X$ and t > 0. Thus the mapping $A: X \to Y$ is cubic. This complete the proof.

Corollary 4.2. Let $\theta \ge 0$ and p be a real number with 0 . Let <math>X be a normed vector space with norm $\|\cdot\|$. Let $f: X \to Y$ be a mapping satisfying

$$\mu_{\eta_f(x,y)}(t) \ge \frac{t}{t + \theta(\|x\|^p + \|y\|^p)}$$
(4.20)

for all $x, y \in X$ and t > 0. Then

$$A(x) = \lim_{n \to \infty} \frac{f(2^n x)}{8^n} \tag{4.21}$$

exists for all $x \in X$ and there exists a cubic mapping $A: X \to Y$ such that

$$\mu_{f(x)-A(x)}(t) \ge \frac{(8-8^p)t}{(8-8^p)t+\theta \|x\|^p}$$
(4.22)

for all $x \in X$ and t > 0.

Proof. The proof follows from Theorem 4.1 by taking

$$\Lambda_{x,y}(t) = \frac{t}{t + \theta(\|x\|^p + \|y\|^p)}$$
(4.23)

for all $x, y \in X$ and t > 0. In fact, if we choose $\alpha = 8^p$, then we get the desired result.

Similarly, we can obtain the following and so we omit the proof.

Theorem 4.3. Let X be a linear space, (Y, μ, T_M) be a complete RN-space and Λ be a mapping from X^2 to D^+ ($\Lambda(x, y)$ is denoted by $\Lambda_{x,y}$) such that there exists $0 < \alpha < \frac{1}{8}$ such that

$$\Lambda_{2x,2y}(t) \le \Lambda_{x,y}(\alpha t) \tag{4.24}$$

for all $x, y \in X$ and t > 0. Let $f : X \to Y$ be a cubic mapping satisfying

$$\mu_{\eta_f(x,y)} \ge \Lambda_{x,y}(t) \tag{4.25}$$

for all $x, y \in X$ and t > 0. Then

$$A(x) := \lim_{n \to \infty} 8^n f\left(\frac{x}{2^n}\right) \tag{4.26}$$

exists for all $x \in X$ and there exists a unique cubic mapping $A: X \to Y$ such that

$$\mu_{f(x)-A(x)}(t) \ge \Lambda_{x,0}\left(\frac{(1-8\alpha)t}{\alpha}\right) \tag{4.27}$$

for all $x, y \in X$ and t > 0.

Corollary 4.4. Let $\theta \ge 0$ and p be a real number with p > 1. Let X be a normed vector space with norm $\|\cdot\|$. Let $f: X \to Y$ be a cubic mapping satisfying

$$\mu_{\eta_f(x,y)}(t) \ge \frac{t}{t + \theta(\|x\|^p + \|y\|^p)}$$
(4.28)

for all $x, y \in X$ and t > 0. Then

$$A(x) = \lim_{n \to \infty} 8^n f\left(\frac{x}{2^n}\right) \tag{4.29}$$

exists for all $x \in X$ and there exists a unique cubic mapping $A: X \to Y$ such that

$$\mu_{f(x)-A(x)}(t) \ge \frac{(8^p - 8)t}{(8^p - 8)t + 8^{p+1}\theta \|x\|^p}$$
(4.30)

for all $x \in X$ and t > 0.

Proof. The proof follows from Theorem 4.3 by taking

$$\Lambda_{x,y}(t) = \frac{t}{t + \theta(\|x\|^p + \|y\|^p)}$$
(4.31)

for all $x, y \in X$ and t > 0. In fact, if we choose $\alpha = 8^{-p}$, then we get the desired result.

5. RANDOM STABILITY OF THE FUNCTIONAL EQUATION (1.6)

In this section, we use fixed point technique to prove the generalized Hyres-Ulam stability of the quadratic functional equations (1.6).

Theorem 5.1. Let $m, n \in \mathbb{N}$ with $m \neq n$, X be a vector space, (Z, Ψ, min) be an RN-space and $\psi : X^2 \to Z$ be a function such that there exists $0 < \alpha < m + n$ such that

$$\Psi_{\psi((m+n)x,(m+n)y)}(t) \ge \Psi_{\alpha\psi(x,y)}(t) \tag{5.1}$$

for all $x, y \in X$ and t > 0 and

$$\lim_{n \to \infty} \Psi_{\psi((m+n)^{p}x, (m+n)^{p}y)}((m+n)^{p}t) = 1$$

for all $x, y \in X$ and t > 0. If (Y, μ, min) is a complete RN-space and $f : X \to Y$ is a mapping such that

$$\mu_{f(mx+ny)-\frac{m+n}{2}f(x+y)-\frac{m-n}{2}f(x-y)}(t) \ge \Psi_{\psi(x,y)}(t)$$
(5.2)

for all $x, y \in X$ and t > 0, then there exists a unique additive mapping $C : X \to Y$ such that

$$C(x) = \lim_{l \to \infty} (m+n)^{-l} f((m+n)^{l} x)$$
(5.3)

and

$$\mu_{f(x)-C(x)}(t) \ge \Psi_{\psi(x,x)}((m+n-\alpha)t)$$
(5.4)

for all $x, y \in X$ and t > 0.

Proof. Since the proof of Theorem 5.1 is similar to the proof of Theorem 3.1 and so we omit the proof of Theorem 5.1.

Corollary 5.2. Let X be a real linear space, (Z, Ψ, min) be an RN-space and (Y, μ, min) be a complete RN-space. Let $0 and <math>z_0 \in Z$. If $f: X \to Y$ is a mapping such that

$$\mu_{f(mx+ny)-\frac{m+n}{2}f(x+y)-\frac{m-n}{2}f(x-y)}(t) \ge \Psi_{\|x\|^{p}z_{0}}(t)$$
(5.5)

for all $x, y \in X$ and t > 0, then there exists a unique additive mapping $C : X \to Y$ such that

$$C(x) = \lim_{l \to \infty} (m+n)^{-l} f((m+n)^{l} x)$$
(5.6)

and

$$\mu_{f(x)-C(x)}(t) \ge \Psi_{\|x\|_{p_{z_0}}}((m+n-(m+n)^p)t)$$
(5.7)

for all $x \in X$ and t > 0.

Proof. Let $\alpha = (m+n)^p$ and $\psi : X^2 \to Z$ be a mapping defined by $\psi(x,y) = ||x||^p z_0$. Then, from Theorem 5.1, the conclusion follows.

Corollary 5.3. Let X be a real linear space, (Z, Ψ, min) be an RN-space and (Y, μ, min) be a complete RN-space. Let $0 and <math>z_0 \in Z$. If $f: X \to Y$ is a mapping such that

$$\mu_{f(mx+ny)-\frac{m+n}{2}f(x+y)-\frac{m-n}{2}f(x-y)}(t) \ge \Psi_{(\|x\|^p+\|y\|^p)z_0}(t)$$
(5.8)

for all $x, y \in X$ and t > 0, then there exists a unique additive mapping $C : X \to Y$ such that

$$C(x) = \lim_{l \to \infty} (m+n)^{-l} f((m+n)^l x),$$
(5.9)

and

$$\mu_{f(x)-C(x)}(t) \ge \Psi_{\|x\|^p} \left(\frac{(m+n-(m+n)^p)t}{2} \right).$$
(5.10)

for all $x \in X$ and t > 0.

Proof. Let $\alpha = (m+n)^p$ and $\psi: X^2 \to Z$ be defined by $\psi(x,y) = (||x||^p + ||y||^p)z_0$. Then, from Theorem 5.1, the conclusion follows.

Corollary 5.4. Let X be a real linear space, (Z, Ψ, min) be an RN-space and (Y, μ, min) be a complete RN-space. Let $p, q \in \mathbb{R}^+$ with $0 and <math>z_0 \in Z$. If $f : X \to Y$ is a mapping such that

$$\mu_{f(mx+ny)-\frac{m+n}{2}f(x+y)-\frac{m-n}{2}f(x-y)}(t) \ge \Psi_{(\|x\|^{p+q}+\|y\|^{p+q}+\|x\|^{p},\|y\|^{q})z_{0}}(t)$$
(5.11)

for all $x, y \in X$ and t > 0, then there exists a unique additive mapping $C : X \to Y$ such that

$$C(x) = \lim_{l \to \infty} (m+n)^{-l} f((m+n)^l x)$$
(5.12)

and

$$\mu_{f(x)-C(x)}(t) \ge \Psi_{||x||^{p+q}z_0}\left(\frac{(m+n-(m+n)^{p+q})t}{3}\right)$$
(5.13)

for all $x \in X$ and t > 0.

Proof. Let $\alpha = (m+n)^{p+q}$ and $\psi: X^2 \to Z$ be a mapping defined by

$$\psi(x,y) = (\|x\|^{p+q} + \|y\|^{p+q} + \|x\|^p \cdot \|y\|^q) z_0.$$

Then, from Theorem 5.1, the conclusion follows.

Corollary 5.5. Let X be a real linear space, (Z, Ψ, min) be an RN-space and (Y, μ, min) be a complete RN-space. Let $z_0 \in Z$. If $f: X \to Y$ is a mapping such that

$$\mu_{f(mx+ny)-\frac{m+n}{2}f(x+y)-\frac{m-n}{2}f(x-y)}(t) \ge \Psi_{\delta z_0}(t)$$
(5.14)

for all $x, y \in X$ and t > 0, then there exists a unique additive mapping $C : X \to Y$ such that

$$C(x) = \lim_{l \to \infty} (m+n)^{-l} f((m+n)^l x)$$
(5.15)

and

$$\mu_{f(x)-C(x)}(t) \ge \Psi_{\delta z_0}((m+n-1)t)$$
(5.16)

for all $x \in X$ and t > 0.

Proof. Let $\alpha = 1$ and $\psi: X^2 \to Z$ be be a mapping defined by $\psi(x, y) = \delta z_0$. Then, from Theorem 5.1, the conclusion follows.

Example 5.1. Let p = 2, $\alpha = (m + n)^2$, $\psi(x, y) = (||x||^2 + ||y||^2 + ||x|| \cdot ||y||)z_0$ and $f: X \to Y$ be a mapping satisfying

$$\mu_{f(mx+ny)-(\frac{m+n}{2})f(x+y)-(\frac{m-n}{2})f(x-y)}(t) \ge \Psi_{(\|x\|^2+\|y\|^2+\|x\|.\|y\|)z_0}(t).$$
(5.17)

As in Theorem 3.1, we obtain

$$\mu_{\frac{f((m+n)^{l+q}x)}{(m+n)^{l+q}} - \frac{f((m+n)^{q}x)}{(m+n)^{q}}}(t) \ge \Psi_{\|x\|^{2}z_{0}}\left(\frac{t}{3\sum_{k=q}^{l+q-1}(m+n)^{k-1}}\right).$$

Since

$$\sum_{k=q}^{l+q-1} (m+n)^{k-1} = \frac{(m+n)^{l+q-2} - (m+n)^{q-1}}{(m+n)(1-m-n)}$$

and

$$\lim_{l,q \to \infty} \frac{(m+n)(1-m-n)}{(m+n)^{l+q-2} - (m+n)^{q-1}} \neq \infty,$$

we have

$$\lim_{l,q\to\infty}\mu_{\frac{f((m+n)^{l+q}x)}{(m+n)^{l+q}}-\frac{f((m+n)^{q}x)}{(m+n)^{q}}}(t) = \lim_{n,q\to\infty}\Psi_{\|x\|^2 z_0}\left(\frac{(m+n)(1-m-n)}{3((m+n)^{l+q-2}-(m+n)^{q-1})}\right) \neq 1.$$

This means the sequence $\left\{\frac{f((m+n)^l x)}{(m+n)^l}\right\}_{l=1}^{\infty}$ is not a Cauchy sequence.

6. STABILITY OF THE FUNCTIONAL EQUATION (1.2) IN NON-ARCHIMEDEAN NORMED SPACES

In this section, we solve the stability problem of the functional equation (1.2) in non-Archimedean normed spaces.

Throughout this section, let ${\cal G}$ be an additive semigroup and X be a complete non-Archimedean space.

Theorem 6.1. Let $\psi: G^2 \to [0, +\infty)$ be a function such that $\lim_{n \to \infty} |m|^{-2n} \psi(m^n x, m^n y) = 0$ (6.1)

for all $x, y \in G$. Suppose that, for all $x \in G$, the limit

$$\Psi(x) = \lim_{n \to \infty} \max\left\{ \frac{1}{|m|^{2k}} \psi(m^k x, 0); 0 \le k < n \right\}$$

exists and $f: G \to X$ is a mapping satisfying the inequality

$$\left\|M_f(x,y)\right\| \le \psi(x,y) \tag{6.2}$$

for all $x, y \in G$. Then the limit

$$T(x) := \lim_{n \to \infty} m^{-2n} f(m^n x)$$

exist for all $x \in G$ and $T : G \to X$ is a mapping satisfying

$$||f(x) - T(x)|| \le \frac{1}{|m|^2} \Psi(x)$$
(6.3)

for all $x \in G$. Moreover, if

$$\lim_{k \to \infty} \lim_{n \to \infty} \max\left\{ \frac{1}{|m|^{2j}} \psi(m^j x, 0) : k \le j < n+k \right\} = 0,$$
(6.4)

then T is the unique mapping satisfying (6.3).

Proof. Putting y = 0 in (6.2), we have

$$\left\|\frac{f(mx)}{m^2} - f(x)\right\| \le \frac{1}{|m|^2}\psi(x,0).$$
(6.5)

Replacing x by $m^n x$ in (6.5) and dividing both sides by m^{2n} , we get

$$\left\|\frac{f(m^{n+1}x)}{m^{2(n+1)}} - \frac{f(m^nx)}{m^{2n}}\right\| \leq \frac{1}{|m|^{2n+2}}\psi(m^nx,0).$$
(6.6)

Thus it follows from (6.1) and (6.6) that the sequence $\left\{\frac{f(m^n x)}{m^{2n}}\right\}_{n=1}^{\infty}$ is a Cauchy sequence. Since X is complete, $\left\{\frac{f(m^n x)}{m^{2n}}\right\}_{n=1}^{\infty}$ is convergent and so set

$$T(x) := \lim_{n \to \infty} \frac{f(m^n x)}{m^{2n}}.$$

By induction, we can see that

$$\left\|\frac{f(m^n x)}{m^{2n}} - f(x)\right\| \le \frac{1}{|m|^2} \max\left\{\frac{1}{|m|^{2k}}\psi(m^k x, 0) : 0 \le k < n\right\}.$$
 (6.7)

Indeed, (6.7) holds for n = 1 by (6.5). Now, if (6.7) holds for all $0 \le k < n$, then, by (6.6), we obtain

$$\begin{aligned} \left\| \frac{f(m^{n+1}x)}{m^{2(n+1)}} - f(x) \right\| \\ &= \left\| \frac{f(m^{n+1}x)}{m^{2(n+1)}} \pm \frac{f(m^{n}x)}{m^{2n}} - f(x) \right\| \\ &\leq \max\left\{ \left\| \frac{f(m^{n+1}x)}{m^{2(n+1)}} - \frac{f(m^{n}x)}{m^{2n}} \right\|, \left\| \frac{f(m^{n}x)}{m^{2n}} - f(x) \right\| \right\} \\ &\leq \frac{1}{|m|^{2}} \max\left\{ \frac{1}{|m|^{2n}} \psi(m^{n}x, 0), \max\left\{ \frac{1}{|m|^{2k}} \psi(m^{k}x, 0) : 0 \le k < n \right\} \right\} \end{aligned}$$
(6.8)
$$= \frac{1}{|m|^{2}} \max\left\{ \frac{1}{|m|^{2k}} \psi(m^{k}x, 0) : 0 \le k < n + 1 \right\}.$$

So, (6.7) holds for all $n \in \mathbb{N}$ and $x \in G$. By taking $n \to \infty$ in (6.8), we can obtain (6.3). If S is another mapping satisfies (6.3), then we get

$$\begin{aligned} \|T(x) - S(x)\| &= \lim_{k \to \infty} |m|^{-2k} \|T(m^k x) - S(m^k x)\| \\ &\leq \lim_{k \to \infty} |m|^{-2k} \max\left\{ \|T(2^k x) - f(2^k x)\|, \|f(2^k x) - S(2^k x)\|\right\} \\ &\leq \frac{1}{|m|^2} \lim_{k \to \infty} \lim_{n \to \infty} \max\left\{ \frac{1}{|m|^{2j}} \psi(m^j x, 0) : k \le j < n + k \right\} = 0 \end{aligned}$$

for all $x \in G$. Therefore, we have T = S. This completes the proof.

Theorem 6.2. Let $\psi: G^2 \to [0, +\infty)$ be a function such that

$$\lim_{n \to \infty} |m|^{2n} \psi\left(\frac{x}{m^{2n}}, \frac{y}{m^{2n}}\right) = 0 \tag{6.9}$$

for all $x, y \in G$. Suppose that, for all $x \in G$, the limit

$$\Psi(x) = \lim_{n \to \infty} \max\left\{ |m|^{2k} \psi\left(\frac{x}{2^k}, 0\right) : 0 \le k < n \right\}$$

exists and $f: G \rightarrow X$ is a mapping satisfying the inequality

$$\left\|M_f(x,y)\right\| \le \psi(x,y) \tag{6.10}$$

for all $x, y \in G$. Then the limit

$$T(x) := \lim_{n \to \infty} m^{2n} f\left(\frac{x}{m^n}\right)$$

exist for all $x \in G$ and $T : G \to X$ is a mapping satisfying

$$||f(x) - T(x)|| \le \frac{1}{|m|^2} \Psi(x)$$
(6.11)

for all $x \in G$. Moreover, if

$$\lim_{k \to \infty} \lim_{n \to \infty} \max\left\{ |m|^{2j} \psi\left(\frac{x}{2^j}, 0\right) : k \le j < n+k \right\} = 0$$
(6.12)

for all $x \in G$, then T is the unique mapping satisfying (6.11).

Proof. As in the proof of Theorem (6.1), we obtain

$$\left\|\frac{f(mx)}{m^2} - f(x)\right\| \le \frac{1}{|m|^2}\psi(x,0).$$
(6.13)

Replacing x by $\frac{x}{m^n}$ in (6.13), we get

$$\left\| m^{2(n-1)} f\left(\frac{x}{m^{n-1}}\right) - m^{2n} f\left(\frac{x}{m^n}\right) \right\| \leq \frac{|m|^{2n}}{|m|^2} \psi\left(\frac{x}{m^n}, 0\right)$$
(6.14)

and so it follows from (6.9) and (6.14) that the sequence $\left\{m^{2n}f\left(\frac{x}{m^n}\right)\right\}_{n=1}^{\infty}$ is a Cauchy sequence. Since X is complete, $\left\{m^{2n}f\left(\frac{x}{m^n}\right)\right\}_{n=1}^{\infty}$ is convergent and so it follows from (6.14) that

$$\left\| m^{2n} f\left(\frac{x}{m^{n}}\right) - m^{2p} f\left(\frac{x}{m^{p}}\right) \right\|$$

$$= \left\| \sum_{k=p+1}^{n} m^{2(k-1)} f\left(\frac{x}{m^{k-1}}\right) - m^{2k} f\left(\frac{x}{m^{k}}\right) \right\|$$

$$\le \max\left\{ \left\| m^{2(k-1)} f\left(\frac{x}{m^{k-1}}\right) - m^{2k} f\left(\frac{x}{m^{k}}\right) \right\| : p+1 \le k < n \right\}$$

$$\le \frac{1}{|m|^{2}} \max\left\{ |m|^{2k} \psi\left(\frac{x}{m^{k}}, 0\right) : p+1 \le k < n \right\}$$

$$(6.15)$$

for all $x \in G$ and $m, n \in \mathbb{N}$ with $n-1 > p \ge 0$. Letting p = 0 and $n \to \infty$ in (6.15), we obtain (6.11).

The rest of the proof is similar to the proof of Theorem 6.1. This complete the proof.

Corollary 6.3. Let $\lambda : [0, \infty) \to [0, \infty)$ be a function satisfying

$$\lambda(|m|t) \le \lambda(|m|)\lambda(t), \quad \lambda(|m|) < |m|^2$$

for all $t \ge 0$. Let $\delta > 0$ and $f : G \to X$ be a mapping satisfying the inequality

$$\left\|M_f(x,y)\right\| \le \delta\left(\lambda(\|x\|) + \lambda(\|y\|)\right)$$

for all $x, y \in G$. Then there exists a unique mapping $T : G \to X$ such that

$$\|f(x) - T(x)\| \le \frac{\delta\lambda(\|x\|)}{|m|^2}$$
(6.16)

for all $x \in G$.

Proof. By induction, we can show that

$$\lambda(|m|^n t) \le (\lambda(|m|)^n \lambda(|t|)) \le |m|^{2n} \lambda(|t|)$$
for all $n \in \mathbb{N}$. If we Define a mapping $\psi : G^2 \to [0, \infty)$ by
$$(6.17)$$

$$\psi(x,y) := \delta\Big(\lambda(\|x\|) + \lambda(\|y\|)\Big)$$

for all $x, y \in G$, then, from $\frac{\lambda(|m|)}{|m|^2} < 1$, it follows that

$$\lim_{n \to \infty} \frac{\psi(m^n x, m^n y)}{|m|^{2n}} \le \lim_{n \to \infty} \left(\frac{\lambda(|m|)}{|m|^2}\right)^n \psi(x, y) = 0$$
(6.18)

for all $x, y \in G$. Also, for all $x \in G$, the limit

$$\Psi(x) = \lim_{n \to \infty} \max\left\{\frac{1}{|m|^{2k}}\psi(m^k x, 0) : 0 \le k < n\right\} = \psi(x, 0) = \delta\lambda(||x||)$$

exists and

$$\lim_{k \to \infty} \lim_{n \to \infty} \max \left\{ \frac{1}{|m|^{2j}} \psi(m^j x, 0) : k \le j < n+k \right\} = 0$$

for all $x \in G$. Therefore, the result follows by Theorem 6.1. This completes the proof.

Corollary 6.4. Let $\lambda : [0, \infty) \to [0, \infty)$ be a function satisfying

 $\lambda(|m|^{-1}t) \le \lambda(|m|^{-1})\lambda(t), \quad \lambda(|m|^{-1}) < |m|^{-2}$

for all $t \ge 0$. Let $\delta > 0$ and $f : G \to X$ be a mapping satisfying the inequality

$$\left\|M_f(x,y)\right\| \le \delta\left(\lambda(\|x\|) + \lambda(\|y\|)\right)$$

for all $x, y \in G$. Then there exists a unique quadratic mapping $T: G \to X$ such that

$$||f(x) - T(x)|| \le \frac{\delta\lambda(||x||)}{|m|^2}$$
(6.19)

for all $x \in G$.

However, the following example shows that Theorem 1.1 is not true in non-Archimedean normed spaces.

Example 6.1. Let p > 2 and $f : \mathbb{Q}_p \to \mathbb{Q}_p$ be a mpping defined by f(x) = 2 for all $x \in \mathbb{Q}_p$. Then, for $\epsilon = 1$,

$$|f(x+y) - f(x) - f(y)| = 1 \le \epsilon$$

for all $x, y \in \mathbb{Q}_p$. However, neither $\left\{\frac{f(2^n x)}{2^n}\right\}_{n=1}^{\infty}$ nor $\left\{2^n f\left(\frac{x}{2^n}\right)\right\}_{n=1}^{\infty}$ is a Cauchy sequence. In fact, by using the fact that |2| = 1, we have

$$\left|\frac{f(2^n x)}{2^n} - \frac{f(2^{n+1} x)}{2^{n+1}}\right| = |2^{-n} \cdot 2 - 2^{-(n+1)} \cdot 2| = |2^{-n}| = 1$$

and

$$\left|2^{n}f\left(\frac{x}{2^{n}}\right) - 2^{n+1}f\left(\frac{x}{2^{n+1}}\right)\right| = |2^{n} \cdot 2 - 2^{(n+1)} \cdot 2| = |2^{n+1}| = 1$$

for all $x, y \in \mathbb{Q}_p$ and $n \in \mathbb{N}$. Hence these sequences are not convergent in \mathbb{Q}_p .

7. STABILITY OF THE FUNCTIONAL EQUATION (1.5) IN NON-ARCHIMEDEAN NORMED SPACES

In this section, we solve the stability problems of the functional equation (1.5) in non-Archimedean normed spaces.

Throughout this section, let G be an additive semigroup and X be a complete non-Archimedean space.

Theorem 7.1. Let $\psi: G^2 \to [0, +\infty)$ be a function such that

$$\lim_{n \to \infty} |8|^{-n} \psi(2^n x, 2^n y) = 0 \tag{7.1}$$

for all $x, y \in G$. Suppose that, for all $x \in G$, the limit

$$\Psi(x) = \lim_{n \to \infty} \max\left\{\frac{1}{|8|^k}\psi(2^k x, 0) : 0 \le k < n\right\}$$

exists and $f: G \rightarrow X$ is a mapping satisfying the inequality

$$\left\|M_{f}^{*}(x,y)\right\| \leq \psi(x,y) \tag{7.2}$$

for all $x, y \in G$. Then the limit

$$T(x) := \lim_{n \to \infty} 8^{-n} f(2^n x)$$

exist for all $x \in G$ and $T: G \to X$ is a cubic mapping satisfying

$$\left\|f(x) - T(x)\right\| \le \frac{1}{|8|}\Psi(x)$$
(7.3)

for all $x \in G$. Moreover, if

$$\lim_{k \to \infty} \lim_{n \to \infty} \max\left\{ \frac{1}{|8|^j} \psi(2^j x, 0) : k \le j < n+k \right\} = 0$$
(7.4)

for all $x \in G$, then T is the unique mapping satisfying (7.3).

Proof. Putting y = 0 in (7.2), we have

$$\left\|\frac{f(2x)}{8} - f(x)\right\| \le \frac{1}{|8|}\psi(x,0).$$
(7.5)

Replacing x by $2^n x$ in (7.5) and dividing both sides by 8^n , we get

$$\left\|\frac{f(2^{n+1}x)}{8^{n+1}} - \frac{f(2^nx)}{8^n}\right\| \leq \frac{1}{|8|^{n+1}}\psi(2^nx,0).$$
(7.6)

Thus it follows from (7.1) and (7.6) that the sequence $\left\{\frac{f(2^n x)}{8^n}\right\}_{n=1}^{\infty}$ is convergent and so set

$$T(x) := \lim_{n \to \infty} \frac{f(m^n x)}{m^{2n}}$$

The rest of the proof is similar to proof of the Theorem 6.1.

Theorem 7.2. Let $\psi: G^2 \to [0, +\infty)$ be a function such that

$$\lim_{n \to \infty} |8|^n \psi\left(\frac{x}{2^n}, \frac{y}{2^n}\right) = 0 \tag{7.7}$$

for all $x, y \in G$. Suppose that, for all $x \in G$, the limit

$$\Psi(x) = \lim_{n \to \infty} \max\left\{ |8|^k \psi\left(\frac{x}{2^k}, 0\right) : 0 \le k < n \right\}$$

exists and $f: G \to X$ is a mapping satisfying the inequality

$$\left\|M_{f}^{*}(x,y)\right\| \leq \psi(x,y) \tag{7.8}$$

for all $x, y \in G$. Then the limit

$$T(x) := \lim_{n \to \infty} 8^n f\left(\frac{x}{2^n}\right)$$

exist for all $x \in G$ and $T: G \to X$ is a cubic mapping satisfying

$$||f(x) - T(x)|| \le \frac{1}{|8|} \Psi(x)$$
(7.9)

for all $x \in G$. Moreover, if

$$\lim_{k \to \infty} \lim_{n \to \infty} \max\left\{ |8|^j \psi\left(\frac{x}{2^j}, 0\right) : k \le j < n+k \right\} = 0$$

$$(7.10)$$

for all $x \in G$, then T is the unique mapping satisfying (7.9).

Corollary 7.3. Let $\lambda : [0, \infty) \to [0, \infty)$ be a function satisfying

$$\lambda(|2|t) \le \lambda(|2|)\lambda(t), \quad \lambda(|2|) < |8|$$

for all $t \ge 0$. Let $\delta > 0$ and $f : G \to X$ be a mapping satisfying the inequality

$$\left\|M_f(x,y)\right\| \le \delta\left(\lambda(\|x\|) + \lambda(\|y\|)\right)$$

for all $x, y \in G$. Then there exists a unique cubic mapping $T : G \to X$ such that

$$\|f(x) - T(x)\| \le \frac{\delta\lambda(\|x\|)}{|8|}$$
(7.11)

for all $x \in G$.

Corollary 7.4. Let $\lambda : [0, \infty) \to [0, \infty)$ be a function satisfying

$$\lambda(|2|^{-1}t) \le \lambda(|2|^{-1})\lambda(t), \quad \lambda(|2|^{-1}) < |8|^{-1}$$

for all $t \ge 0$. Let $\delta > 0$ and $f: G \to X$ be a mapping satisfying the inequality

$$\left\|M_f(x,y)\right\| \le \delta\left(\lambda(\|x\|) + \lambda(\|y\|)\right)$$

for all $x, y \in G$. Then there exists a unique cubic mapping $T: G \to X$ such that

$$\|f(x) - T(x)\| \le \frac{\delta\lambda(\|x\|)}{|8|}$$
(7.12)

for all $x \in G$.

8. Stability of the Functional Equation (1.6) in Non-Archimedean Normed Spaces

In this section, we solve the stability problems of the functional equation (1.6) in non-Archimedean normed spaces.

Throughout this section, let G be an additive semigroup and X be a complete non-Archimedean space.

Theorem 8.1. Let $\psi: G^2 \to [0, +\infty)$ be a function such that

$$\lim_{p \to \infty} |m+n|^{-p} \psi((m+n)^p x, (m+n)^p y) = 0$$
(8.1)

for all $x, y \in G$. Suppose that, for all $x \in G$, the limit

$$\Psi(x) = \lim_{p \to \infty} \max\left\{ |m+n|^{-k+1} \psi((m+n)^k x, (m+n)^k y) : 0 \le k (8.2)$$

exists and $f: G \rightarrow X$ is a mapping satisfying

$$\left\| f(mx+ny) - \frac{m+n}{2} f(x+y) - \frac{m-n}{2} f(x-y) \right\|_{X} \le \psi(x,y)$$
(8.3)

for all $x, y \in G$. Then the limit

$$T(x) = \lim_{l \to \infty} (m+n)^{-l} f((m+n)^l x)$$

exists for all $x \in G$ and $T : G \to X$ is a mapping satisfying

$$\|f(x) - T(x)\|_X \le \frac{1}{|m+n|}\Psi(x)$$
(8.4)

for all $x \in G$. Moreover, if

$$\lim_{j \to \infty} \lim_{p \to \infty} \max\left\{ |m+n|^{-k+1} \psi((m+n)^k x, (m+n)^k y) : j \le k < p+j \right\} = 0 \quad (8.5)$$

for all $x \in G$, then T is the unique mapping satisfying (8.4).

Proof. Putting y = x in (8.3), we get

$$\left\|\frac{f((m+n)x)}{m+n} - f(x)\right\|_{X} \le \frac{1}{|m+n|}\psi(x,x).$$
(8.6)

Replacing x by $(m+n)^{p-1}x$ in (8.6) and dividing both sides by $(m+n)^{p-1}$, we get

$$\left\|\frac{f((m+n)^{p}x)}{(m+n)^{p}} - \frac{f((m+n)^{p-1}x)}{(m+n)^{p-1}}\right)\right\|_{X} \le |m+n|^{-p}\psi((m+n)^{p-1}x, (m+n)^{p-1}x),$$
(8.7)

for all $x \in H$. It follows from (8.1) and (8.7) that the sequence $\left\{\frac{f((m+n)^p x)}{(m+n)^p}\right\}_{p=1}^{+\infty}$ is a Cauchy sequence. Since X is complete, so the sequence $\left\{\frac{f((m+n)^p x)}{(m+n)^p}\right\}_{p=1}^{+\infty}$ is convergent. Set

$$T(x) := \lim_{p \to \infty} \frac{f((m+n)^p x)}{(m+n)^p}$$

Using induction we see that

$$\Big\| \frac{f((m+n)^p x)}{(m+n)^p} - f(x) \Big\|_X \le \frac{1}{|m+n|} \max\Big\{ |m+n|^{-k+1} \psi((m+n)^k x, (m+n)^k x) \ ; \ 0 \le k$$

The rest of the proof is similar to proof of the Theorem 6.1.

Theorem 8.2. Let $\psi: G^2 \to [0, +\infty)$ be a function such that

$$\lim_{n \to \infty} |m+n|^p \psi \left(\frac{x}{(m+n)^p}, \frac{y}{(m+n)^p} \right) = 0$$
(8.8)

for all $x, y \in G$. Suppose that, for all $x \in G$, the limit

$$\Psi(x) = \lim_{n \to \infty} \max\left\{ |m+n|^{k-1} \psi\left(\frac{x}{(m+n)^k}, \frac{y}{(m+n)^k}\right) = 0 : 0 \le k (8.9)$$

exists and $f: G \rightarrow X$ is a mapping satisfying

$$\left\| f(mx+ny) - \frac{m+n}{2} f(x+y) - \frac{m-n}{2} f(x-y) \right\|_{X} \le \psi(x,y)$$
(8.10)

for all $x, y \in G$. Then the limit

$$T(x) = \lim_{l \to \infty} (m+n)^l f\left(\frac{x}{(m+n)^l}\right)$$

exists for all $x \in G$ and $T : G \to X$ is a mapping satisfying

$$\|f(x) - T(x)\|_X \le \frac{1}{|m+n|}\Psi(x)$$
(8.11)

for all $x \in G$. Moreover, if

$$\lim_{j \to \infty} \lim_{p \to \infty} \max\left\{ |m+n|^{k-1} \psi\left(\frac{x}{(m+n)^k}, \frac{y}{(m+n)^k}\right) : j \le k < n+j \right\} = 0 \quad (8.12)$$

for all $x \in G$, then T is the unique mapping satisfying (8.11).

Proof. Letting y = x in (8.10), we get

$$\left\| f((m+n)x) - (m+n)f(x) \right\|_{X} \le \psi(x,x),$$
(8.13)

for all $x \in G$. If we replace x by $\frac{x}{(m+n)^p}$ in (8.13), then we have

$$\left\| (m+n)^{p-1} f\left(\frac{x}{(m+n)^{p-1}}\right) - (m+n)^p f\left(\frac{x}{(m+n)^p}\right) \right) \right\|_X \le |m+n|^{p-1} \psi\left(\frac{x}{(m+n)^p}, \frac{x}{(m+n)^{p-1}}\right), \quad (8.14)$$

for all $x \in G$ and all non-negative integer n. It follows from (8.14) and (8.8) that the sequence $\left\{(m+n)^p f\left(\frac{x}{(m+n)^p}\right)\right\}_{p=1}^{\infty}$ is a Cauchy sequence in X for all $x \in G$. Since X is complete, the sequence $\left\{(m+n)^p f\left(\frac{x}{(m+n)^p}\right)\right\}_{n=1}^{\infty}$ converges for all $x \in G$. On the other hand, it follows from (8.15) that

$$\left\| (m+n)^{p} f\left(\frac{x}{(m+n)^{p}}\right) - (m+n)^{q} f\left(\frac{x}{(m+n)^{q}}\right) \right\|_{X}$$

= $\left\| \sum_{k=p}^{q-1} (m+n)^{k+1} f\left(\frac{x}{(m+n)^{k+1}}\right) - (m+n)^{k} f\left(\frac{x}{(m+n)^{k}}\right) \right\|_{X}$ (8.15)

$$\leq \max\left\{ \left\| (m+n)^{k+1} f\left(\frac{x}{(m+n)^{k+1}}\right) - (m+n)^k f\left(\frac{x}{(m+n)^k}\right) \right\|_X \; ; \; p \leq k < q \right\} \\ \leq \frac{1}{|m+n|} \max\left\{ |m+n|^{k-1} \psi\left(\frac{x}{(m+n)^k}, \frac{x}{(m+n)^k}\right) ; p \leq k < q \right\},$$

for all $x \in G$ and all non-negative integers p, q with $q > p \ge 0$. Letting p = 0 and passing the limit $q \to \infty$ in the last inequality, we obtain (8.11). The rest of the proof is similar to the proof of Theorem (6.1).

Corollary 8.3. Let $\gamma : [0, \infty) \to [0, \infty)$ be a function satisfying

$$\gamma\left(\frac{t}{|m+n|}\right) \le \gamma\left(\frac{1}{|m+n|}\right)\gamma(t), \quad \gamma\left(\frac{1}{|m+n|}\right) < \frac{1}{|m+n|}$$
(8.16)

for all $t \geq 0$. Let $\delta > 0$ and $f : G \to X$ be a mapping satisfying

$$\left\| f(mx+ny) - \frac{m+n}{2} f(x+y) - \frac{m-n}{2} f(x-y) \right\|_{X} \le \delta(\gamma(|x|) + \gamma(|y|))$$
(8.17)

for all $x, y \in G$. Then there exists a unique mapping $T: G \to X$ such that

$$\|f(x) - T(x)\|_X \le \frac{2\delta\gamma(|x|)}{|m+n|}$$
(8.18)

for all $x \in G$.

Corollary 8.4. Let $\gamma : [0, \infty) \to [0, \infty)$ is a function satisfying

 $\gamma(|m+n|t) \le \gamma(|m+n|)\gamma(t), \quad \gamma(|m+n|) < |m+n|$ (8.19)

for all $t \ge 0$. Let $\delta > 0$ and $f : G \to X$ be a mapping satisfying

$$\left\| f(mx+ny) - \frac{m+n}{2} f(x+y) - \frac{m-n}{2} f(x-y) \right\|_{X} \le \delta \left(\gamma(|x|+\gamma(|y|)) \right)$$
(8.20)

for all $x, y \in G$. Then there exists a unique mapping $T : H \to X$ such that

$$\|f(x) - T(x)\|_X \le \frac{2\delta\gamma(|x|)}{|m+n|}$$
(8.21)

for all $x \in G$.

Proof. If $\psi : G^2 \to [0, \infty)$ is a mapping defined by $\psi(x, y) := \delta(\gamma(|x| + \gamma(|y|)))$ for all $x, y \in G$, then, from Theorem 8.1, the result follows.

Corollary 8.5. Let $\gamma : [0, \infty) \to [0, \infty)$ is a function satisfying

$$\gamma\left(\frac{t}{|m+n|}\right) \le \gamma\left(\frac{1}{|m+n|}\right)\gamma(t), \quad \gamma\left(\frac{1}{|m+n|}\right) < \frac{1}{|m+n|}$$
(8.22)

for all $t \ge 0$. Let $\delta > 0$ and $f : G \to X$ be a mapping satisfying

$$\left\| f(mx+ny) - \frac{m+n}{2} f(x+y) - \frac{m-n}{2} f(x-y) \right\|_{X} \le \delta(\gamma(|x|) \cdot \gamma(|y|))$$
(8.23)

for all $x, y \in G$. Then there exists a unique mapping $T : G \to X$ such that

$$\|f(x) - T(x)\|_X \le \frac{\delta \gamma^2(|x|)}{|m+n|}$$
(8.24)

for all $x \in G$.

Proof. Define a mapping $\psi: G^2 \to [0, \infty)$ by $\psi(x, y) = \delta(\gamma(|x|) \cdot \gamma(|y|))$ for all $x, y \in G$. Then, from Theorem 8.1, the conclusion follows.

Corollary 8.6. Let $\gamma : [0, \infty) \to [0, \infty)$ is a function satisfying

$$\gamma(|m+n|t) \le \gamma(|m+n|)\gamma(t), \gamma(|m+n|) < |m+n|$$

$$(8.25)$$

for all $t \ge 0$. Let $\delta > 0$ and $f : G \to X$ be a mapping satisfying

$$\left| f(mx+ny) - \frac{m+n}{2} f(x+y) - \frac{m-n}{2} f(x-y) \right| \le \delta(\gamma(|x|) \cdot \gamma(|y|))$$
(8.26)

for all $x, y \in G$. Then there exists a unique mapping $T: G \to X$ such that

$$\|f(x) - T(x)\|_X \le \frac{\delta\gamma^2(|x|)}{|m+n|}$$
(8.27)

for all $x \in G$.

Proof. Define a mapping $\psi: G^2 \to [0,\infty)$ by $\psi(x,y) = \delta(\gamma(|x|) \cdot \gamma(|y|))$ for all $x, y \in G$. Then, from Theorem 8.1, the conclusion follows.

References

- S.M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, No. 8, Interscience Publishers, New York-London, 1960.
- [2] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941) 222–224.
- [3] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297–300.
- [4] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994) 431–436.
- [5] F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983) 113–129.
- [6] P.W. Cholewa, Remarks on the stability of functional equations, Aequat. Math. 27 (1984) 76–86.
- [7] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992) 59–64.
- [8] H. Behrouzizadeh, H.A. Kenary, Stability of special functional equations on Banach lattices, J. Math. Extension 14 (2) (2020) 69-80.
- [9] D.-H. Boo, H.A. Kenary, C. Park, Functional equations in Banach modules and approximate algebra homomorphisms in Banach algebras, The Korean Journal of Mathematics 19 (1) (2011) 33–52.
- [10] M. Eshaghi Gordj, H. Khodaei, On the generalized Hyers-Ulam-Rassias stability of quadratic functional equations, Abst. Appl. Anal. 2009 (2009) Article ID 923476.
- [11] D.H. Hyers, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126 (1998) 425–430.
- [12] K.W. Jun, H.M. Kim, On the stability of Euler-Lagrange type cubic mappings in quasi-Banach spaces, J. Math. Anal. Appl. 332 (2007) 1335–1350.
- [13] H.A. Kenary, On the stability of a cubic functional equation in random normed spaces, J. Math. Extension 4 (2009) 1–11.

- [14] H.J. Koh, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Chungcheong Math. Soc. 21 (2008).
- [15] Y.S. Lee, S.Y. Chung, Stability of an Euler-Lagrange-Rassias equation in the spaces of generalized functions, Appl. Math. Lett. 21 (2008) 694–700.
- [16] Y.W. Lee, A generalized stability of the general Euler-Lagrange functional equation, Comm. Korean Math. Soc. 16 (2001) 607–619.
- [17] D. Mihet, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008) 567–572.
- [18] A. Najati, A. Rahimi, Homomorphisms between C*-algebras and their stabilities, Acta Univ. Apulensis 19 (2009) 35–46.
- [19] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000) 264–284.
- [20] J.M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glasnik Math. 36 (56) (2001) 63–72.
- [21] R. Saadati, M. Vaezpour, Y.J. Cho, A note to paper On the stability of cubic mappings and quartic mappings in random normed spaces, J. Inequal. Appl. 2009 (2009) Article ID 214530.