On the Generalized HUR-Stability of Some Functional Equations

Hassan Azadi Kenary ${ }^{1, *}$, Hamid Reza Goudarzi ${ }^{1}$ and Yeol Je Cho ${ }^{2}$
${ }^{1}$ Department of Mathematics, College of Science, Yasouj University, Yasouj 75914-353, Iran e-mail : azadi@yu.ac.ir (H. A. Kenary); goudarzi@yu.ac.ir (H. R. Goudarzi)
${ }^{2}$ Department of Mathematics Education and RINS, Gyeongsang National University, Chinju 660-701, Korea
e-mail : yjcho@gnu.ac.kr (Y. J. Cho)

Abstract

In this paper, we prove the stability of some quadratic and cubic functional equations in random and non-Archimedean normed spaces.

MSC: 39B22; 39B52; 39B22; 39B82; 46S10
Keywords: fixed point theory; stability; random normed space; non-Archimedean normed spaces

Submission date: 12.01.2017 / Acceptance date: 17.01.2019

1. Introduction

In 1940, the stability problem of functional equations originated from a question of Ulam [1] concerning the stability of group homomorphisms. In 1941, Hyers [2] gave first an affirmative partial answer for the question of Ulam for Banach spaces. Since then, In 1978, Hyers's theorem was generalized by Th. M. Rassias [3] for linear mappings by considering the unbounded Cauchy difference as follows:

Theorem 1.1. Let f be an approximately additive mapping from a normed vector space E into a Banach space E^{\prime}, i.e., f satisfies the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{r}+\|y\|^{r}\right)
$$

for all $x, y \in E$, where ϵ and r are constants with $\epsilon>0$ and $0 \leq r<1$. Then the mapping $L: E \rightarrow E^{\prime}$ defined by $L(x)=\lim _{n \rightarrow \infty} 2^{-n} f\left(2^{n} x\right)$ is the unique additive mapping which satisfies

$$
\|f(x+y)-L(x)\| \leq \frac{2 \epsilon}{2-2^{r}}\|x\|^{r}
$$

for all $x \in E$.

The paper of Th. M. Rassias [3] has provided a lot of influence in the development of what we call generalized Hyers-Ulam stability or Hyers-Ulam-Rassias stability of functional equations. In 1994, a generalization of the Th. M. Rassias theorem was obtained by Găvruta [4] by replacing the unbounded Cauchy difference by a general control function in the spirit of Th. M. Rassias's approach.

The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. In 1983, the generalized HyersUlam stability problem for the quadratic functional equation was proved by Skof [5] for mappings $f: X \rightarrow Y$, where X is a normed space and Y is a Banach space. In 1984, Cholewa [6] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. In 1992, Czerwik [7] proved the generalized Hyers-Ulam stability of the quadratic functional equation. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [8], [9], [10]-[21]).

Recently, in 2009, Gordji and Khodaei [10] introduced the quadratic functional equation

$$
\begin{align*}
f(m x+n y)+f(m x-n y)= & \frac{n(m+n)}{2}(f(x+y)+f(x-y)) \tag{1.2}\\
& +2\left(m^{2}-m n-n^{2}\right) f(x)+\left(n^{2}-m n\right) f(y)
\end{align*}
$$

and they established the general solution of the generalized Hyers-Ulam-Rassias stability problem for the functional equation (1.2) in Banach spaces as follows:

Theorem 1.2. Let X and Y be real vector spaces. A function $f: X \rightarrow Y$ satisfies the functional equation (1.2) if and only if $f: X \rightarrow Y$ satisfies the functional equation (1.1).

The cubic function $f(x)=c x^{3}$ satisfies the functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) . \tag{1.3}
\end{equation*}
$$

The equation (1.3) was solved by Jun and Kim [12]. By the similar method for a quadratic functional equation, they also proved that a function $f: X \rightarrow Y$ is a solution of the equation (1.3) if and only if there exists a function $F: X^{3} \rightarrow Y$ such that $f(x)=$ $F(x, x, x)$ for all $x \in X$ and F is symmetric for each fixed one variable and is additive for fixed two variables. Every solution of the equation (1.3) is called a cubic function. Also, the equation (1.3) is equivalent to the following equation:

$$
\begin{equation*}
f(x+2 y)+f(x-2 y)+f(2 x)=4 f(x+y)+4 f(x-y)+2 f(x) . \tag{1.4}
\end{equation*}
$$

Koh [14] introduced the following functional equation:

$$
\begin{equation*}
4 f(x+m y)+4 f(x-m y)+m^{2} f(2 x)=4 m^{2}(f(x+y)+f(x-y))+8 f(x) \tag{1.5}
\end{equation*}
$$

and established the general solution for the generalized Hyers-Ulam-Rassias stability problem for the functional equation (1.5) in Banach spaces as follows:

Theorem 1.3. Let X and Y be real vector spaces. A function $f: X \rightarrow Y$ satisfies the functional equation (1.5) if and only if f is cubic.

It is easy to see that the function $f(x)=c x^{3}$ is a solution of the functional equations (1.3), (1.4) and (1.5). Thus it is natural that the functional equations (1.3), (1.4) and (1.5) are called the cubic functional equation and every solution of these cubic functional equations is called a cubic function.

Najati and Rahimi [18] introduced

$$
\begin{equation*}
f(r x+s y)=\frac{r+s}{2} f(x+y)+\frac{r-s}{2} f(x-y) \tag{1.6}
\end{equation*}
$$

for any $r, s \in \mathbb{R}$ with $r \neq \pm s$ and investigate the Hyers-Ulam- Rassias stability of the functional equation (1.6) in Banach modules over a unital C^{*}-algebra.

In this paper, we prove stability of the functional equations (1.2), (1.5) and (1.6) in random and non-Archimedean normed spaces.

2. Preliminaries

In the sequel, we adopt the usual terminology, notions and conventions of the theory of random normed spaces as in [5].
Throughout this paper, let Δ^{+}denote the set of all probability distribution functions $F: \mathbb{R} \cup[-\infty,+\infty] \rightarrow[0,1]$ such that F is left-continuous and nondecreasing on \mathbb{R} and $F(0)=0, F(+\infty)=1$. It is clear that the set

$$
D^{+}=\left\{F \in \Delta^{+}: l^{-} F(-\infty)=1\right\}
$$

where $l^{-} f(x)=\lim _{t \rightarrow x^{-}} f(t)$, is a subset of Δ^{+}. The set Δ^{+}is partially ordered by the usual point-wise ordering of functions, that is, $F \leq G$ if and only if $F(t) \leq G(t)$ for all $t \in \mathbb{R}$. For any $a \geq 0$, the element $H_{a}(t)$ of D^{+}is defined by

$$
H_{a}(t)= \begin{cases}0, & \text { if } \quad t \leq a \\ 1, & \text { if } \quad t>a\end{cases}
$$

We can easily show that the maximal element in Δ^{+}is the distribution function $H_{0}(t)$.
Definition 2.1. A function $T:[0,1]^{2} \rightarrow[0,1]$ is a continuous triangular norm (briefly, a t-norm) if T satisfies the following conditions:
(a) T is commutative and associative;
(b) T is continuous;
(c) $T(x, 1)=x$ for all $x \in[0,1]$;
(d) $T(x, y) \leq T(z, w)$ whenever $x \leq z$ and $y \leq w$ for all $x, y, z, w \in[0,1]$.

Three typical examples of continuous t-norms are as follows:

$$
T(x, y)=x y, \quad T(x, y)=\max \{a+b-1,0\}, \quad T(x, y)=\min (a, b)
$$

Recall that, if T is a t-norm and $\left\{x_{n}\right\}$ is a sequence in $[0,1]$, then $T_{i=1}^{n} x_{i}$ is defined recursively by $T_{i=1}^{1} x_{1}=x_{1}$ and $T_{i=1}^{n} x_{i}=T\left(T_{i=1}^{n-1} x_{i}, x_{n}\right)$ for all $n \geq 2$. $T_{i=n}^{\infty} x_{i}$ is defined by $T_{i=1}^{\infty} x_{n+i}$.
Definition 2.2. A random normed space (briefly, $R N$-space) is a triple (X, Ψ, T), where X is a vector space, T is a continuous t-norm and $\Psi: X \rightarrow D^{+}$is a mapping such that the following conditions hold:
(a) $\Psi_{x}(t)=H_{0}(t)$ for all $t>0$ if and only if $x=0$;
(b) $\Psi_{\alpha x}(t)=\Psi_{x}\left(\frac{t}{|\alpha|}\right)$ for all $\alpha \in \mathbb{R}$ with $\alpha \neq 0, x \in X$ and $t \geq 0$;
(c) $\Psi_{x+y}(t+s) \geq T\left(\Psi_{x}(t), \Psi_{y}(s)\right)$ for all $x, y \in X$ and $t, s \geq 0$.

Every normed space $(X,\|\cdot\|)$ defines a random normed space $\left(X, \Psi, T_{M}\right)$, where

$$
\Psi_{u}(t)=\frac{t}{t+\|u\|}
$$

for all $t>0$ and T_{M} is the minimum t-norm. This space X is called the induced random normed space.

If the t-norm T is such that $\sup _{0<a<1} T(a, a)=1$, then every $R N$-space (X, Ψ, T) is a metrizable linear topological space with the topology τ (called the Ψ-topology or the (ϵ, δ)-topology, where $\epsilon>0$ and $\lambda \in(0,1))$ induced by the base $\{U(\epsilon, \lambda)\}$ of neighborhoods of θ, where

$$
U(\epsilon, \lambda)=\left\{x \in X: \Psi_{x}(\epsilon)>1-\lambda\right\} .
$$

Definition 2.3. Let (X, Ψ, T) be an RN-space.
(1) A sequence $\left\{x_{n}\right\}$ in X is said to be convergent to a point $x \in X$ (write $x_{n} \rightarrow x$ as $n \rightarrow \infty)$ if $\lim _{n \rightarrow \infty} \Psi_{x_{n}-x}(t)=1$ for all $t>0$.
(2) A sequence $\left\{x_{n}\right\}$ in X is called a Cauchy sequence in X if $\lim _{n \rightarrow \infty} \Psi_{x_{n}-x_{m}}(t)=1$ for all $t>0$.
(3) The $R N$-space (X, Ψ, T) is said to be complete if every Cauchy sequence in X is convergent.

Theorem 2.1. ([26]) If (X, Ψ, T) is $R N$-space and $\left\{x_{n}\right\}$ is a sequence such that $x_{n} \rightarrow x$, then $\lim _{n \rightarrow \infty} \Psi_{x_{n}}(t)=\Psi_{x}(t)$.
Definition 2.4. Let X be a set. A function $d: X \times X \rightarrow[0, \infty]$ is called a generalized metric on X if d satisfies the following conditions:
(1) $d(x, y)=0$ if and only if $x=y$ for all $x, y \in X$;
(2) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(3) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in X$.

Theorem 2.2. Let (X, d) be a complete generalized metric space and $J: X \rightarrow X$ be a strictly contractive mapping with Lipschitz constant $L<1$. Then, for all $x \in X$, either

$$
\begin{equation*}
d\left(J^{n} x, J^{n+1} x\right)=\infty \tag{2.1}
\end{equation*}
$$

for all nonnegative integers n or there exists a positive integer n_{0} such that
(1) $d\left(J^{n} x, J^{n+1} x\right)<\infty$ for all $n_{0} \geq n_{0}$;
(2) the sequence $\left\{J^{n} x\right\}$ converges to a fixed point y^{*} of J;
(3) y^{*} is the unique fixed point of J in the set $Y=\left\{y \in X: d\left(J^{n_{0}} x, y\right)<\infty\right\}$;
(4) $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.

Definition 2.5. By a non-Archimedean field we mean a field \mathbb{K} equipped with a function (valuation) $|\cdot|: \mathbb{K} \rightarrow[0, \infty)$ such that, for all $r, s \in \mathbb{K}$, the following conditions hold:
(a) $|r|=0$ if and only if $r=0$;
(b) $|r s|=|r||s|$;
(c) $|r+s| \leq \max \{|r|,|s|\}$.

Clearly, by (b), $|1|=|-1|=1$ and so, by induction, it follows from (c) that $|n| \leq 1$ for all $n \geq 1$.

Definition 2.6. Let X be a vector space over a scalar field \mathbb{K} with a non-Archimedean non-trivial valuation $|\cdot|$.
(1) A function $\|\cdot\|: X \rightarrow \mathbb{R}$ is a non-Archimedean norm (valuation) if it satisfies the following conditions:
(a) $\|x\|=0$ if and only if $x=0$ for all $x \in X$;
(b) $\|r x\|=|r|\|x\|$ for all $r \in \mathbb{K}$ and $x \in X$;
(c) the strong triangle inequality (ultra-metric) holds, that is,

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\}
$$

for all $x, y \in X$.
(2) The space $(X,\|\cdot\|)$ is called a non-Archimedean normed space.

Note that

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\|: m \leq j \leq n-1\right\}
$$

for all $m, n \in \mathbb{N}$ with $n>m$.
Definition 2.7. Let $(X,\|\cdot\|)$ be a non-Archimedean normed space.
(1) A sequence $\left\{x_{n}\right\}$ is a Cauchy sequence in X if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in X.
(2) The non-Archimedean normed space $(X,\|\cdot\|)$ is said to be complete if every Cauchy sequence in X is convergent.

The most important examples of non-Archimedean spaces are p-adic numbers. A key property of p-adic numbers is that they do not satisfy the Archimedean axiom: for all $x, y>0$, there exists a positive integer n such that $x<n y$.

Example 2.1. Fix a prime number p. For any nonzero rational number x, there exists a unique positive integer n_{x} such that $x=\frac{a}{b} p^{n_{x}}$, where a and b are positive integers not divisible by p. Then $|x|_{p}:=p^{-n_{x}}$ defines a non-Archimedean norm on \mathbb{Q}. The completion of \mathbb{Q} with respect to the metric $d(x, y)=|x-y|_{p}$ is denoted by \mathbb{Q}_{p}, which is called the p-adic number field. In fact, \mathbb{Q}_{p} is the set of all formal series $x=\sum_{k \geq n_{x}}^{\infty} a_{k} p^{k}$, where $\left|a_{k}\right| \leq p-1$. The addition and multiplication between any two elements of \mathbb{Q}_{p} are defined naturally. The norm $\left|\sum_{k \geq n_{x}}^{\infty} a_{k} p^{k}\right|_{p}=p^{-n_{x}}$ is a non-Archimedean norm on \mathbb{Q}_{p} and \mathbb{Q}_{p} is a locally compact filed.

3. Random Stability of the Functional Equation (1.2): Direct Method

Let

$$
\begin{aligned}
M_{f}(x, y)= & f(m x+n y)+f(m x-n y)-\frac{n(m+n)}{2} f(x+y) \\
& -\frac{n(m+n)}{2} f(x-y)-2\left(m^{2}-m n-n^{2}\right) f(x)-\left(n^{2}-m n\right) f(y) .
\end{aligned}
$$

where $m, n \in \mathbb{Z}$ with $n \neq \pm m,-3 m$.
Theorem 3.1. Let X be a real linear space, (Z, Ψ, \min) be an $R N$-space and $\psi: X^{2} \rightarrow Z$ be a function such that there exists $0<\alpha<m^{2}$ such that

$$
\begin{equation*}
\Psi_{\psi(m x, 0)}(t) \geq \Psi_{\alpha \psi(x, 0)}(t) \tag{3.1}
\end{equation*}
$$

for all $x \in X$ and $t>0, f(0)=0$ and $\lim _{n \rightarrow \infty} \Psi_{\psi\left(m^{n} x, m^{n} y\right)}\left(m^{2 n} t\right)=1$ for all $x, y \in X$ and $t>0$. Let (Y, μ, \min) be a complete $R N$-space. If $f: X \rightarrow Y$ is a mapping such that

$$
\begin{equation*}
\mu_{M_{f}(x, y)}(t) \geq \Psi_{\psi(x, y)}(t) \tag{3.2}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$, then there is a unique quadratic mapping $C: X \rightarrow Y$ such that $C(x)=\lim _{n \rightarrow \infty} m^{-2 n} f\left(m^{n} x\right)$ and

$$
\begin{equation*}
\mu_{f(x)-C(x)}(t) \geq \Psi_{\psi(x, 0)}\left(\left(m^{2}-\alpha\right) t\right) \tag{3.3}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Putting $y=0$ in (3.2), we see that

$$
\begin{equation*}
\mu_{\frac{f(m x)}{m^{2}}-f(x)}(t) \geq \Psi_{\psi(x, 0)}\left(m^{2} t\right) \tag{3.4}
\end{equation*}
$$

for all $x \in X$. Replacing x by $m^{n} x$ in (3.4) and using (3.1), we obtain

$$
\begin{equation*}
\mu_{\frac{f\left(m^{n+1} x\right)}{m^{2(n+1)}}-\frac{f\left(m^{n} x\right)}{m^{2 n}}}(t) \geq \Psi_{\psi\left(m^{n} x, 0\right)}\left(m^{2(n+1)} t\right) \geq \Psi_{\psi(x, 0)}\left(\frac{m^{2(n+1)} t}{\alpha^{n}}\right) \tag{3.5}
\end{equation*}
$$

and so

$$
\begin{align*}
\mu_{\frac{f\left(m^{n} x\right)}{m^{2 n}}-f(x)}\left(\sum_{k=0}^{n-1} \frac{t \alpha^{k}}{m^{2(k+1)}}\right) & =\mu_{\sum_{k=0}^{n-1} \frac{f\left(m^{k+1 x)}\right.}{m^{2(k+1)}}-\frac{f\left(m^{k} x\right)}{m^{2 k}}}\left(\sum_{k=0}^{n-1} \frac{t \alpha^{k}}{m^{2(k+1)}}\right) \\
& \geq T_{k=0}^{n-1} \mu_{\frac{f\left(m^{k+1} x\right)}{m^{2(k+1)}}-\frac{f\left(m^{k} x\right)}{2^{2 k}}}\left(\frac{t \alpha^{k}}{m^{2(k+1)}}\right) \tag{3.6}\\
& \geq T_{k=0}^{n-1}\left(\Psi_{\psi(x, 0)}(t)\right) \\
& =\Psi_{\psi(x, 0)}(t) .
\end{align*}
$$

This implies that

$$
\begin{equation*}
\mu_{\frac{f\left(m^{n} x\right)}{m^{2} n}-f(x)}(t) \geq \Psi_{\psi(x, 0)}\left(\frac{t}{\sum_{k=0}^{n-1} \frac{\alpha^{k}}{m^{2}(k+1)}}\right) . \tag{3.7}
\end{equation*}
$$

Replacing x by $m^{p} x$ in (3.7), we obtain

$$
\begin{align*}
\mu_{\frac{f\left(m^{n+p_{x}}\right.}{m^{2}(n+p)}-\frac{f\left(m^{p} p_{x}\right)}{m^{2} p}}(t) & \geq \Psi_{\psi\left(m^{p} x, 0\right)}\left(\frac{t}{\sum_{k=0}^{n-1} \frac{\alpha^{k}}{m^{2(k+p+1)}}}\right) \\
& \geq \Psi_{\psi(x, 0)}\left(\frac{t}{\sum_{k=0}^{n-1} \frac{\alpha^{k+p}}{m^{2(k+p+1)}}}\right) \tag{3.8}\\
& =\Psi_{\psi(x, 0)}\left(\frac{t}{\sum_{k=p}^{n+p-1} \frac{\alpha^{k}}{m^{2(k+1)}}}\right)
\end{align*}
$$

Since

$$
\lim _{p, n \rightarrow \infty} \Psi_{\psi(x, 0)}\left(\frac{t}{\sum_{k=p}^{n+p-1} \frac{\alpha^{k}}{m^{2(k+1)}}}\right)=1,
$$

it follows that $\left\{\frac{f\left(m^{n} x\right)}{m^{2 n}}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in a complete RN -space (Y, μ, \min) and so there exists a point $C(x) \in Y$ such that

$$
\lim _{n \rightarrow \infty} m^{-2 n} f\left(m^{n} x\right)=C(x)
$$

Fix $x \in X$ and put $p=0$ in (3.8). Then we obtain

$$
\begin{equation*}
\mu_{\frac{f\left(m^{n} x\right)}{m^{2 n}}-f(x)}(t) \geq \Psi_{\psi(x, 0)}\left(\frac{t}{\sum_{k=0}^{n-1} \frac{\alpha^{k}}{m^{2(k+1)}}}\right), \tag{3.9}
\end{equation*}
$$

and so, for any $\epsilon>0$,

$$
\begin{align*}
\mu_{C(x)-f(x)}(t+\epsilon) & \geq T\left(\mu_{C(x)-\frac{f\left(m^{n} x\right)}{m^{2 n}}}(\epsilon), \mu_{\frac{f\left(m^{n} x\right)}{m^{2 n}}-f(x)}(t)\right) \tag{3.10}\\
& \geq T\left(\mu_{C(x)-\frac{f\left(m^{n} x\right)}{m^{2 n}}}(\epsilon), \Psi_{\psi(x, 0)}\left(\frac{t}{\sum_{k=0}^{n-1} \frac{\alpha^{k}}{m^{2(k+1)}}}\right)\right) .
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$ in (3.10), we get

$$
\begin{equation*}
\mu_{C(x)-f(x)}(t+\epsilon) \geq \Psi_{\psi(x, 0)}\left(\left(m^{2}-\alpha\right) t\right) \tag{3.11}
\end{equation*}
$$

Since ϵ is arbitrary, by taking $\epsilon \rightarrow 0$ in (3.11), we get

$$
\begin{equation*}
\mu_{C(x)-f(x)}(t) \geq \Psi_{\psi(x, 0)}\left(\left(m^{2}-\alpha\right) t\right) \tag{3.12}
\end{equation*}
$$

Replacing x and y by $m^{n} x$ and $m^{n} y$ in (3.2), respectively, we get

$$
\begin{equation*}
\frac{\mu_{M_{f\left(m^{n} x, m^{n} y\right)}}^{m^{2 n}}}{}(t) \geq \Psi_{\psi\left(m^{n} x, m^{n} y\right)}\left(m^{2 n} t\right) \tag{3.13}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Since $\lim _{n \rightarrow \infty} \Psi_{\psi\left(m^{n} x, m^{n} y\right)}\left(m^{2 n} t\right)=1$, we conclude that

$$
\begin{aligned}
C(m x+n y)+C(m x-n y)= & \frac{n(m+n)}{2}\{C(x+y)+C(x-y)\} \\
& +2\left(m^{2}-m n-n^{2}\right) C(x)+\left(n^{2}-m n\right) C(y)
\end{aligned}
$$

To prove the uniqueness of the quadratic mapping C, assume that there exist another quadratic mapping $D: X \rightarrow Y$ which satisfies (3.3). By induction, one can easily show that

$$
C\left(m^{n} x\right)=m^{2 n} C(x), \quad D\left(m^{n} x\right)=m^{2 n} D(x)
$$

for all $n \in N$ and $x \in X$ and so

$$
\begin{align*}
\mu_{C(x)-D(x)}(t) & =\lim _{n \rightarrow \infty} \mu_{\frac{C\left(m^{n} x\right)}{m^{2 n}}-\frac{D\left(m^{n} x\right)}{m^{2 n}}}(t) \tag{3.14}\\
& \geq \lim _{n \rightarrow \infty} \min \left\{\mu_{\frac{C\left(m^{n} x\right)}{m^{2 n}}-\frac{f\left(m^{n} x\right)}{m^{2 n}}}\left(\frac{t}{2}\right), \mu_{\frac{D\left(m^{n} x\right)}{m^{2 n}}-\frac{f\left(m^{n} x\right)}{m^{2 n}}}\left(\frac{t}{2}\right)\right\} \\
& \geq \lim _{n \rightarrow \infty} \Psi_{\psi\left(m^{n} x, 0\right)}\left(\frac{m^{2 n}\left(m^{2}-\alpha\right)}{2}\right) \\
& \geq \lim _{n \rightarrow \infty} \Psi_{\psi(x, 0)}\left(\frac{m^{2 n}\left(m^{2}-\alpha\right) t}{2 \alpha^{n}}\right) .
\end{align*}
$$

Since $\lim _{n \rightarrow \infty} \frac{m^{2 n}\left(m^{2}-\alpha\right) t}{2 \alpha^{n}}=\infty$, we get

$$
\lim _{n \rightarrow \infty} \Psi_{\psi(x, 0)}\left(\frac{m^{2 n}\left(m^{2}-\alpha\right) t}{2 \alpha^{n}}\right)=1
$$

Therefore, it follows that $\mu_{C(x)-D(x)}(t)=1$ for all $t>0$ and so $C(x)=D(x)$. This complete the proof.

Corollary 3.2. Let X be a real linear space, (Z, Ψ, \min) be an $R N$-space and (Y, μ, \min) be a complete RN-space. Let $0<p<1$ and $z_{0} \in Z$. If $f: X \rightarrow Y$ is a mapping that

$$
\begin{equation*}
\mu_{M_{f}(x, y)}(t) \geq \Psi_{\|y\|^{p} y_{0}}(t) \tag{3.15}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$, then there exists a unique quadratic mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
C(x)=\lim _{n \rightarrow \infty} m^{-2 n} f\left(m^{n} x\right) \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{f(x)-C(x)}(t) \geq 1 \tag{3.17}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Let $\alpha=m^{2 p}$ and $\psi: X^{2} \rightarrow Z$ be a mapping defined by $\psi(x, y)=\|y\|^{p} z_{0}$. Then, from Theorem 3.1, the conclusion follows.

Corollary 3.3. Let X be a real linear space, (Z, Ψ, \min) be an $R N$-space and ($Y, \mu, \min)$ be a complete RN-space. Let $0<p<1$ and $z_{0} \in Z$. If $f: X \rightarrow Y$ is a mapping that

$$
\begin{equation*}
\mu_{M_{f}(x, y)}(t) \geq \Psi_{\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}}(t) \tag{3.18}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$, then there exists a unique quadratic mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
C(x)=\lim _{n \rightarrow \infty} m^{-2 n} f\left(m^{n} x\right) \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{f(x)-C(x)}(t) \geq \Psi_{\|x\|^{p} y_{0}}\left(\left(m^{2}-m^{2 p}\right) t\right) \tag{3.20}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Let $\alpha=m^{2 p}$ and $\psi: X^{2} \rightarrow Z$ be a mapping defined by $\psi(x, y)=\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}$. Then, from Theorem 3.1, the conclusion follows.

Corollary 3.4. Let X be a real linear space, (Z, Ψ, \min) be an $R N$-space and (Y, μ, \min) a complete RN-space. Let $p, q \in \mathbb{R}^{+}$with $0<p+q<1$ and $z_{0} \in Z$. If $f: X \rightarrow Y$ is a mapping that

$$
\begin{equation*}
\mu_{M_{f}(x, y)}(t) \geq \Psi_{\left(\|x\|^{p+q}+\|y\|^{p+q}+\|x\|^{p}\|y\|^{q}\right) z_{0}}(t) \tag{3.21}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$, then there exists a unique quadratic mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
C(x)=\lim _{n \rightarrow \infty} m^{-2 n} f\left(m^{n} x\right) \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{f(x)-C(x)}(t) \geq \Psi_{\|x\|^{p+q} z_{0}}\left(\left(m^{2}-m^{2(p+q)}\right) t\right) \tag{3.23}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Let $\alpha=m^{2(p+q)}$ and $\psi: X^{2} \rightarrow Z$ be a mapping defined by

$$
\psi(x, y)=\left(\|x\|^{p+q}+\|y\|^{p+q}+\|x\|^{p}\|y\|^{q}\right) z_{0} .
$$

Then, from Theorem 3.1, the conclusion follows.
Corollary 3.5. Let X be a real linear space, (Z, Ψ, \min) be an $R N$-space and (Y, μ, \min) be a complete $R N$-space. Let $z_{0} \in Z$. If $f: X \rightarrow Y$ is a mapping that

$$
\begin{equation*}
\mu_{M_{f}(x, y)}(t) \geq \Psi_{\delta z_{0}}(t) \tag{3.24}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$, then there exists a unique quadratic mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
C(x)=\lim _{n \rightarrow \infty} m^{-2 n} f\left(m^{n} x\right) \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{f(x)-C(x)}(t) \geq \Psi_{\delta z_{0}}\left(\left(m^{2}-1\right) t\right) \tag{3.26}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Let $\alpha=1$ and $\psi: X^{2} \rightarrow Z$ be a mapping defined by $\psi(x, y)=\delta z_{0}$. Then, from Theorem 3.1, the conclusion follows.

Example 3.1. Let $p=1, \alpha=m^{4}, \psi(x, y)=\left(\|x\|^{2}+\|y\|^{2}\right) z_{0}$ and $f: X \rightarrow Y$ be a mapping satisfying

$$
\begin{equation*}
\mu_{M_{f}(x, y)}(t) \geq \Psi_{\left(\|x\|^{2}+\|y\|^{2}\right) z_{0}}(t) \tag{3.27}
\end{equation*}
$$

As in Theorem (3.1), we obtain

$$
\mu_{\frac{f\left(m^{n+q_{x)}}\right.}{m^{2(n+q)}}-\frac{f\left(m^{q} x\right)}{m^{2 q}}}(t) \geq \Psi_{\|x\|^{2} z_{0}}\left(\frac{t}{\sum_{k=q}^{n+q-1} \frac{m^{4 k}}{m^{2 k+2}}}\right) .
$$

Since

$$
\sum_{k=q}^{n+q-1} \frac{m^{4 k}}{m^{2 k+2}}=\frac{1}{m^{2}} \sum_{k=q}^{n+q-1} m^{2 k}=\frac{m^{2(n+q-1)}-m^{2 q}}{1-m^{2}}
$$

and

$$
\lim _{n, q \rightarrow \infty} \frac{1-m^{2}}{m^{2(n+q-1)}-m^{2 q}} \neq \infty
$$

we have

$$
\lim _{n, q \rightarrow \infty} \mu_{\frac{f\left(m^{n+q_{x}}\right.}{m^{3(n+q)}}-\frac{f\left(m^{q_{x}}\right.}{m^{3 q}}}(t)=\lim _{n, q \rightarrow \infty} \Psi_{\|x\|^{2} z_{0}}\left(\frac{1-m^{2}}{m^{2(n+q-1)}-m^{2 q}}\right) \neq 1 .
$$

This means that the sequence $\left\{\frac{f\left(m^{n} x\right)}{m^{2 n}}\right\}_{n=1}^{\infty}$ is not a Cauchy sequence.

4. Random Stability of the Functional Equation (1.5) Fixed Point Approach

In this section, we use fixed point technique to prove the generalized Hyres-Ulam stability of the quadratic functional equations (1.5).

Let

$$
\begin{aligned}
\eta_{f}(x, y)= & 4 f(x+m y)+4 f(x-m y)+m^{2} f(2 x) \\
& -8 f(x)-4 m^{2}(f(x+y)+f(x-y)) .
\end{aligned}
$$

where $m \in \mathbb{N}$ with $m \geq 2$.
Theorem 4.1. Let X be a linear space, $\left(Y, \mu, T_{M}\right)$ be a complete $R N$-space and Λ be a mapping from X^{2} to $D^{+}\left(\Lambda(x, y)\right.$ is denoted by $\left.\Lambda_{x, y}\right)$ such that there exists $0<\alpha<8$ such that

$$
\begin{equation*}
\Lambda_{\frac{x}{2}, \frac{y}{2}}(t) \leq \Lambda_{x, y}(\alpha t) \tag{4.1}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Let $f: X \rightarrow Y$ be a cubic mapping satisfying

$$
\begin{equation*}
\mu_{\eta_{f}(x, y)} \geq \Lambda_{x, y}(t) \tag{4.2}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Then

$$
\begin{equation*}
A(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{8^{n}} \tag{4.3}
\end{equation*}
$$

exists for all $x \in X$ and there exists a unique cubic mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\mu_{f(x)-A(x)}(t) \geq \Lambda_{x, 0}((8-\alpha) t) \tag{4.4}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Putting $y=0$ in (4.2), we have

$$
\begin{equation*}
\mu_{\frac{f(2 x)}{8}-f(x)}(t) \geq \Lambda_{x, 0}(8 t) \tag{4.5}
\end{equation*}
$$

for all $x \in X$ and $t>0$. Consider the set

$$
\begin{equation*}
S:=\{g: X \rightarrow Y\} \tag{4.6}
\end{equation*}
$$

and the generalized metric d in S defined by

$$
\begin{equation*}
d(f, g)=\inf \left\{u \in \mathbb{R}^{+}: \mu_{g(x)-h(x)}(u t) \geq \Lambda_{x, 0}(t), \forall x \in X, t>0\right\}, \tag{4.7}
\end{equation*}
$$

where $\inf \emptyset=+\infty$. It is easy to show that (S, d) is complete.
Now, we consider a linear mapping $J: S \rightarrow S$ such that

$$
\begin{equation*}
J h(x):=\frac{1}{8} h(2 x) \tag{4.8}
\end{equation*}
$$

for all $x \in X$. First, we prove that J is a strictly contractive mapping with the Lipschitz constant $\frac{\alpha}{8}$. In fact, let $g, h \in S$ be such that $d(g, h)<\epsilon$. Then

$$
\begin{equation*}
\mu_{g(x)-h(x)}(\epsilon t) \geq \Lambda_{x, 0}(t) \tag{4.9}
\end{equation*}
$$

for all $x \in X$ and $t>0$ and so

$$
\begin{align*}
\mu_{J g(x)-J h(x)}\left(\frac{\alpha \epsilon t}{8}\right) & =\mu_{\frac{1}{8} g(2 x)-\frac{1}{8} h(2 x)}\left(\frac{\alpha \epsilon t}{8}\right) \\
& =\mu_{g(2 x)-h(2 x)}(\alpha \epsilon t) \tag{4.10}\\
& \geq \Lambda_{2 x, 0}(\alpha t) \\
& \geq \Lambda_{x, 0}(t)
\end{align*}
$$

for all $x \in X$ and $t>0$. Thus $d(g, h)<\epsilon$ implies that $d(J g, J h)<\frac{\alpha \epsilon}{8}$. This means that

$$
\begin{equation*}
d(J g, J h) \leq \frac{\alpha}{8} d(g, h) \tag{4.11}
\end{equation*}
$$

for all $g, h \in S$. It follows from (4.5) that

$$
\begin{equation*}
d(f, J f) \leq \frac{1}{8}<1 \tag{4.12}
\end{equation*}
$$

By Theorem 2.2, there exists a mapping $T: X \rightarrow Y$ satisfying the following:
(1) A is a fixed point of J, that is,

$$
\begin{equation*}
A(2 x)=8 A(x) \tag{4.13}
\end{equation*}
$$

for all $x \in X$. The mapping A is a unique fixed point of J in the set

$$
\begin{equation*}
\Omega=\{h \in S: d(g, h)<\infty\} . \tag{4.14}
\end{equation*}
$$

This implies that A is a unique mapping satisfying (4.13) such that there exists $u \in(0, \infty)$ satisfying

$$
\begin{equation*}
\mu_{f(x)-A(x)}(u t) \geq \Lambda_{x, 0}(t) \tag{4.15}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
(2) $d\left(J^{n} f, A\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{8^{n}} f\left(2^{n} x\right)=A(x) \tag{4.16}
\end{equation*}
$$

for all $x \in X$.
(3) $d(f, A) \leq \frac{d(f, J f)}{1-\frac{\alpha}{8}}$ with $f \in \Omega$, which implies the inequality

$$
\begin{equation*}
d(f, A) \leq \frac{1}{8-\alpha} \tag{4.17}
\end{equation*}
$$

and so

$$
\begin{equation*}
\mu_{f(x)-A(x)}\left(\frac{t}{8-\alpha}\right) \geq \Lambda_{x, 0}(t) \tag{4.18}
\end{equation*}
$$

for all $x \in X$ and $t>0$. This implies that the inequality (4.4) holds.
Now, we have

$$
\begin{equation*}
\mu_{\frac{1}{8^{n}} \eta_{f}\left(2^{n} x, 2^{n} y\right)}(t)=\mu_{\eta_{f}\left(2^{n} x, 2^{n} y\right)}\left(8^{n} t\right) \geq \Lambda_{2^{n} x, 2^{n} y}\left(8^{n} t\right) \geq \Lambda_{x, y}\left(\left(\frac{8}{\alpha}\right)^{n} t\right) \tag{4.19}
\end{equation*}
$$

for all $x, y \in X, t>0$ and $n \in \mathbb{N}$. Since $\lim _{n \rightarrow \infty} \Lambda_{x, y}\left(\left(\frac{8}{\alpha}\right)^{n} t\right)=1$ for all $x, y \in X$ and $t>0$, then, by Theorem 2.1, we deduce that $\mu_{\eta_{A}(x, y)}=1$ for all $x, y \in X$ and $t>0$. Thus the mapping $A: X \rightarrow Y$ is cubic. This complete the proof.

Corollary 4.2. Let $\theta \geq 0$ and p be a real number with $0<p<1$. Let X be a normed vector space with norm $\|\cdot\|$. Let $f: X \rightarrow Y$ be a mapping satisfying

$$
\begin{equation*}
\mu_{\eta_{f}(x, y)}(t) \geq \frac{t}{t+\theta\left(\|x\|^{p}+\|y\|^{p}\right)} \tag{4.20}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Then

$$
\begin{equation*}
A(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{8^{n}} \tag{4.21}
\end{equation*}
$$

exists for all $x \in X$ and there exists a cubic mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\mu_{f(x)-A(x)}(t) \geq \frac{\left(8-8^{p}\right) t}{\left(8-8^{p}\right) t+\theta\|x\|^{p}} \tag{4.22}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. The proof follows from Theorem 4.1 by taking

$$
\begin{equation*}
\Lambda_{x, y}(t)=\frac{t}{t+\theta\left(\|x\|^{p}+\|y\|^{p}\right)} \tag{4.23}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. In fact, if we choose $\alpha=8^{p}$, then we get the desired result.
Similarly, we can obtain the following and so we omit the proof.
Theorem 4.3. Let X be a linear space, $\left(Y, \mu, T_{M}\right)$ be a complete $R N$-space and Λ be a mapping from X^{2} to $D^{+}\left(\Lambda(x, y)\right.$ is denoted by $\left.\Lambda_{x, y}\right)$ such that there exists $0<\alpha<\frac{1}{8}$ such that

$$
\begin{equation*}
\Lambda_{2 x, 2 y}(t) \leq \Lambda_{x, y}(\alpha t) \tag{4.24}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Let $f: X \rightarrow Y$ be a cubic mapping satisfying

$$
\begin{equation*}
\mu_{\eta_{f}(x, y)} \geq \Lambda_{x, y}(t) \tag{4.25}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Then

$$
\begin{equation*}
A(x):=\lim _{n \rightarrow \infty} 8^{n} f\left(\frac{x}{2^{n}}\right) \tag{4.26}
\end{equation*}
$$

exists for all $x \in X$ and there exists a unique cubic mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\mu_{f(x)-A(x)}(t) \geq \Lambda_{x, 0}\left(\frac{(1-8 \alpha) t}{\alpha}\right) \tag{4.27}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$.
Corollary 4.4. Let $\theta \geq 0$ and p be a real number with $p>1$. Let X be a normed vector space with norm $\|\cdot\|$. Let $f: X \rightarrow Y$ be a cubic mapping satisfying

$$
\begin{equation*}
\mu_{\eta_{f}(x, y)}(t) \geq \frac{t}{t+\theta\left(\|x\|^{p}+\|y\|^{p}\right)} \tag{4.28}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. Then

$$
\begin{equation*}
A(x)=\lim _{n \rightarrow \infty} 8^{n} f\left(\frac{x}{2^{n}}\right) \tag{4.29}
\end{equation*}
$$

exists for all $x \in X$ and there exists a unique cubic mapping $A: X \rightarrow Y$ such that

$$
\begin{equation*}
\mu_{f(x)-A(x)}(t) \geq \frac{\left(8^{p}-8\right) t}{\left(8^{p}-8\right) t+8^{p+1} \theta\|x\|^{p}} \tag{4.30}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. The proof follows from Theorem 4.3 by taking

$$
\begin{equation*}
\Lambda_{x, y}(t)=\frac{t}{t+\theta\left(\|x\|^{p}+\|y\|^{p}\right)} \tag{4.31}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$. In fact, if we choose $\alpha=8^{-p}$, then we get the desired result.

5. Random Stability of the Functional Equation (1.6)

In this section, we use fixed point technique to prove the generalized Hyres-Ulam stability of the quadratic functional equations (1.6).

Theorem 5.1. Let $m, n \in \mathbb{N}$ with $m \neq n, X$ be a vector space, (Z, Ψ, \min) be an $R N$ space and $\psi: X^{2} \rightarrow Z$ be a function such that there exists $0<\alpha<m+n$ such that

$$
\begin{equation*}
\Psi_{\psi((m+n) x,(m+n) y)}(t) \geq \Psi_{\alpha \psi(x, y)}(t) \tag{5.1}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$ and

$$
\lim _{n \rightarrow \infty} \Psi_{\psi\left((m+n)^{p} x,(m+n)^{p} y\right)}\left((m+n)^{p} t\right)=1
$$

for all $x, y \in X$ and $t>0$. If $(Y, \mu$, min $)$ is a complete $R N$-space and $f: X \rightarrow Y$ is a mapping such that

$$
\begin{equation*}
\mu_{f(m x+n y)-\frac{m+n}{2} f(x+y)-\frac{m-n}{2} f(x-y)}(t) \geq \Psi_{\psi(x, y)}(t) \tag{5.2}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$, then there exists a unique additive mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
C(x)=\lim _{l \rightarrow \infty}(m+n)^{-l} f\left((m+n)^{l} x\right) \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{f(x)-C(x)}(t) \geq \Psi_{\psi(x, x)}((m+n-\alpha) t) \tag{5.4}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$.
Proof. Since the proof of Theorem 5.1 is similar to the proof of Theorem 3.1 and so we omit the proof of Theorem 5.1.

Corollary 5.2. Let X be a real linear space, (Z, Ψ, \min) be an $R N$-space and (Y, μ, \min) be a complete $R N$-space. Let $0<p<1$ and $z_{0} \in Z$. If $f: X \rightarrow Y$ is a mapping such that

$$
\begin{equation*}
\mu_{f(m x+n y)-\frac{m+n}{2} f(x+y)-\frac{m-n}{2} f(x-y)}(t) \geq \Psi_{\|x\|^{p} z_{0}}(t) \tag{5.5}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$, then there exists a unique additive mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
C(x)=\lim _{l \rightarrow \infty}(m+n)^{-l} f\left((m+n)^{l} x\right) \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{f(x)-C(x)}(t) \geq \Psi_{\|x\|^{p} z_{0}}\left(\left(m+n-(m+n)^{p}\right) t\right) \tag{5.7}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Let $\alpha=(m+n)^{p}$ and $\psi: X^{2} \rightarrow Z$ be a mapping defined by $\psi(x, y)=\|x\|^{p} z_{0}$. Then, from Theorem 5.1, the conclusion follows.

Corollary 5.3. Let X be a real linear space, (Z, Ψ, \min) be an $R N$-space and (Y, μ, \min) be a complete RN-space. Let $0<p<1$ and $z_{0} \in Z$. If $f: X \rightarrow Y$ is a mapping such that

$$
\begin{equation*}
\mu_{f(m x+n y)-\frac{m+n}{2} f(x+y)-\frac{m-n}{2} f(x-y)}(t) \geq \Psi_{\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}}(t) \tag{5.8}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$, then there exists a unique additive mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
C(x)=\lim _{l \rightarrow \infty}(m+n)^{-l} f\left((m+n)^{l} x\right) \tag{5.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{f(x)-C(x)}(t) \geq \Psi_{\|x\|^{p}}\left(\frac{\left(m+n-(m+n)^{p}\right) t}{2}\right) \tag{5.10}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Let $\alpha=(m+n)^{p}$ and $\psi: X^{2} \rightarrow Z$ be defined by $\psi(x, y)=\left(\|x\|^{p}+\|y\|^{p}\right) z_{0}$. Then, from Theorem 5.1, the conclusion follows.

Corollary 5.4. Let X be a real linear space, (Z, Ψ, \min) be an $R N$-space and (Y, μ, \min) be a complete $R N$-space. Let $p, q \in \mathbb{R}^{+}$with $0<p+q<1$ and $z_{0} \in Z$. If $f: X \rightarrow Y$ is a mapping such that

$$
\begin{equation*}
\mu_{f(m x+n y)-\frac{m+n}{2} f(x+y)-\frac{m-n}{2} f(x-y)}(t) \geq \Psi_{\left(\|x\|^{p+q}+\|y\|^{p+q}+\|x\|^{p} \cdot\|y\|^{q}\right) z_{0}}(t) \tag{5.11}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$, then there exists a unique additive mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
C(x)=\lim _{l \rightarrow \infty}(m+n)^{-l} f\left((m+n)^{l} x\right) \tag{5.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{f(x)-C(x)}(t) \geq \Psi_{\|x \mid\|^{p+q} z_{0}}\left(\frac{\left(m+n-(m+n)^{p+q}\right) t}{3}\right) \tag{5.13}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Let $\alpha=(m+n)^{p+q}$ and $\psi: X^{2} \rightarrow Z$ be a mapping defined by

$$
\psi(x, y)=\left(\|x\|^{p+q}+\|y\|^{p+q}+\|x\|^{p} \cdot\|y\|^{q}\right) z_{0}
$$

Then, from Theorem 5.1, the conclusion follows.
Corollary 5.5. Let X be a real linear space, (Z, Ψ, \min) be an $R N$-space and (Y, μ, \min) be a complete $R N$-space. Let $z_{0} \in Z$. If $f: X \rightarrow Y$ is a mapping such that

$$
\begin{equation*}
\mu_{f(m x+n y)-\frac{m+n}{2} f(x+y)-\frac{m-n}{2} f(x-y)}(t) \geq \Psi_{\delta z_{0}}(t) \tag{5.14}
\end{equation*}
$$

for all $x, y \in X$ and $t>0$, then there exists a unique additive mapping $C: X \rightarrow Y$ such that

$$
\begin{equation*}
C(x)=\lim _{l \rightarrow \infty}(m+n)^{-l} f\left((m+n)^{l} x\right) \tag{5.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{f(x)-C(x)}(t) \geq \Psi_{\delta z_{0}}((m+n-1) t) \tag{5.16}
\end{equation*}
$$

for all $x \in X$ and $t>0$.
Proof. Let $\alpha=1$ and $\psi: X^{2} \rightarrow Z$ be be a mapping defined by $\psi(x, y)=\delta z_{0}$. Then, from Theorem 5.1, the conclusion follows.

Example 5.1. Let $p=2, \alpha=(m+n)^{2}, \psi(x, y)=\left(\|x\|^{2}+\|y\|^{2}+\|x\| \cdot\|y\|\right) z_{0}$ and $f: X \rightarrow Y$ be a mapping satisfying

$$
\begin{equation*}
\mu_{f(m x+n y)-\left(\frac{m+n}{2}\right) f(x+y)-\left(\frac{m-n}{2}\right) f(x-y)}(t) \geq \Psi_{\left(\|x\|^{2}+\|y\|^{2}+\|x\| .\|y\|\right) z_{0}}(t) . \tag{5.17}
\end{equation*}
$$

As in Theorem 3.1, we obtain

$$
\mu_{\frac{f((m+n)}{l+q_{x)}}(m+n)^{l+q}}-\frac{f\left((m+n) q_{x)}\right.}{(m+n)^{q}}(t) \geq \Psi_{\|x\|^{2} z_{0}}\left(\frac{t}{3 \sum_{k=q}^{l+q-1}(m+n)^{k-1}}\right) .
$$

Since

$$
\sum_{k=q}^{l+q-1}(m+n)^{k-1}=\frac{(m+n)^{l+q-2}-(m+n)^{q-1}}{(m+n)(1-m-n)}
$$

and

$$
\lim _{l, q \rightarrow \infty} \frac{(m+n)(1-m-n)}{(m+n)^{l+q-2}-(m+n)^{q-1}} \neq \infty
$$

we have
$\lim _{l, q \rightarrow \infty} \mu_{\frac{f\left((m+n)^{l+q_{x}}\right.}{(m+n)^{l+q}}-\frac{f\left((m+n)^{q} x\right)}{(m+n)^{q}}}(t)=\lim _{n, q \rightarrow \infty} \Psi_{\|x\|^{2} z_{0}}\left(\frac{(m+n)(1-m-n)}{3\left((m+n)^{l+q-2}-(m+n)^{q-1}\right)}\right) \neq 1$.
This means the sequence $\left\{\frac{f\left((m+n)^{l} x\right)}{(m+n)^{l}}\right\}_{l=1}^{\infty}$ is not a Cauchy sequence.

6. Stability of the Functional Equation (1.2) in Non-Archimedean Normed Spaces

In this section, we solve the stability problem of the functional equation (1.2) in nonArchimedean normed spaces.

Throughout this section, let G be an additive semigroup and X be a complete nonArchimedean space.
Theorem 6.1. Let $\psi: G^{2} \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|m|^{-2 n} \psi\left(m^{n} x, m^{n} y\right)=0 \tag{6.1}
\end{equation*}
$$

for all $x, y \in G$. Suppose that, for all $x \in G$, the limit

$$
\Psi(x)=\lim _{n \rightarrow \infty} \max \left\{\frac{1}{|m|^{2 k}} \psi\left(m^{k} x, 0\right) ; 0 \leq k<n\right\}
$$

exists and $f: G \rightarrow X$ is a mapping satisfying the inequality

$$
\begin{equation*}
\left\|M_{f}(x, y)\right\| \leq \psi(x, y) \tag{6.2}
\end{equation*}
$$

for all $x, y \in G$. Then the limit

$$
T(x):=\lim _{n \rightarrow \infty} m^{-2 n} f\left(m^{n} x\right)
$$

exist for all $x \in G$ and $T: G \rightarrow X$ is a mapping satisfying

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{|m|^{2}} \Psi(x) \tag{6.3}
\end{equation*}
$$

for all $x \in G$. Moreover, if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac{1}{|m|^{2 j}} \psi\left(m^{j} x, 0\right): k \leq j<n+k\right\}=0 \tag{6.4}
\end{equation*}
$$

then T is the unique mapping satisfying (6.3).
Proof. Putting $y=0$ in (6.2), we have

$$
\begin{equation*}
\left\|\frac{f(m x)}{m^{2}}-f(x)\right\| \leq \frac{1}{|m|^{2}} \psi(x, 0) \tag{6.5}
\end{equation*}
$$

Replacing x by $m^{n} x$ in (6.5) and dividing both sides by $m^{2 n}$, we get

$$
\begin{equation*}
\left\|\frac{f\left(m^{n+1} x\right)}{m^{2(n+1)}}-\frac{f\left(m^{n} x\right)}{m^{2 n}}\right\| \leq \frac{1}{|m|^{2 n+2}} \psi\left(m^{n} x, 0\right) \tag{6.6}
\end{equation*}
$$

Thus it follows from (6.1) and (6.6) that the sequence $\left\{\frac{f\left(m^{n} x\right)}{m^{2 n}}\right\}_{n=1}^{\infty}$ is a Cauchy sequence. Since X is complete, $\left\{\frac{f\left(m^{n} x\right)}{m^{2 n}}\right\}_{n=1}^{\infty}$ is convergent and so set

$$
T(x):=\lim _{n \rightarrow \infty} \frac{f\left(m^{n} x\right)}{m^{2 n}}
$$

By induction, we can see that

$$
\begin{equation*}
\left\|\frac{f\left(m^{n} x\right)}{m^{2 n}}-f(x)\right\| \leq \frac{1}{|m|^{2}} \max \left\{\frac{1}{|m|^{2 k}} \psi\left(m^{k} x, 0\right): 0 \leq k<n\right\} . \tag{6.7}
\end{equation*}
$$

Indeed, (6.7) holds for $n=1$ by (6.5). Now, if (6.7) holds for all $0 \leq k<n$, then, by (6.6), we obtain

$$
\begin{align*}
& \left\|\frac{f\left(m^{n+1} x\right)}{m^{2(n+1)}}-f(x)\right\| \\
= & \left\|\frac{f\left(m^{n+1} x\right)}{m^{2(n+1)}} \pm \frac{f\left(m^{n} x\right)}{m^{2 n}}-f(x)\right\| \\
\leq & \max \left\{\left\|\frac{f\left(m^{n+1} x\right)}{m^{2(n+1)}}-\frac{f\left(m^{n} x\right)}{m^{2 n}}\right\|,\left\|\frac{f\left(m^{n} x\right)}{m^{2 n}}-f(x)\right\|\right\} \tag{6.8}\\
\leq & \frac{1}{|m|^{2}} \max \left\{\frac{1}{|m|^{2 n}} \psi\left(m^{n} x, 0\right), \max \left\{\frac{1}{|m|^{2 k}} \psi\left(m^{k} x, 0\right): 0 \leq k<n\right\}\right\} \\
= & \frac{1}{|m|^{2}} \max \left\{\frac{1}{|m|^{2 k}} \psi\left(m^{k} x, 0\right): 0 \leq k<n+1\right\} .
\end{align*}
$$

So, (6.7) holds for all $n \in \mathbb{N}$ and $x \in G$. By taking $n \rightarrow \infty$ in (6.8), we can obtain (6.3).
If S is another mapping satisfies (6.3), then we get

$$
\begin{aligned}
\|T(x)-S(x)\| & =\lim _{k \rightarrow \infty}|m|^{-2 k}\left\|T\left(m^{k} x\right)-S\left(m^{k} x\right)\right\| \\
& \leq \lim _{k \rightarrow \infty}|m|^{-2 k} \max \left\{\left\|T\left(2^{k} x\right)-f\left(2^{k} x\right)\right\|,\left\|f\left(2^{k} x\right)-S\left(2^{k} x\right)\right\|\right\} \\
& \leq \frac{1}{|m|^{2}} \lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac{1}{|m|^{2 j}} \psi\left(m^{j} x, 0\right): k \leq j<n+k\right\}=0
\end{aligned}
$$

for all $x \in G$. Therefore, we have $T=S$. This completes the proof.

Theorem 6.2. Let $\psi: G^{2} \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|m|^{2 n} \psi\left(\frac{x}{m^{2 n}}, \frac{y}{m^{2 n}}\right)=0 \tag{6.9}
\end{equation*}
$$

for all $x, y \in G$. Suppose that, for all $x \in G$, the limit

$$
\Psi(x)=\lim _{n \rightarrow \infty} \max \left\{|m|^{2 k} \psi\left(\frac{x}{2^{k}}, 0\right): 0 \leq k<n\right\}
$$

exists and $f: G \rightarrow X$ is a mapping satisfying the inequality

$$
\begin{equation*}
\left\|M_{f}(x, y)\right\| \leq \psi(x, y) \tag{6.10}
\end{equation*}
$$

for all $x, y \in G$. Then the limit

$$
T(x):=\lim _{n \rightarrow \infty} m^{2 n} f\left(\frac{x}{m^{n}}\right)
$$

exist for all $x \in G$ and $T: G \rightarrow X$ is a mapping satisfying

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{|m|^{2}} \Psi(x) \tag{6.11}
\end{equation*}
$$

for all $x \in G$. Moreover, if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{|m|^{2 j} \psi\left(\frac{x}{2^{j}}, 0\right): k \leq j<n+k\right\}=0 \tag{6.12}
\end{equation*}
$$

for all $x \in G$, then T is the unique mapping satisfying (6.11).
Proof. As in the proof of Theorem (6.1), we obtain

$$
\begin{equation*}
\left\|\frac{f(m x)}{m^{2}}-f(x)\right\| \leq \frac{1}{|m|^{2}} \psi(x, 0) \tag{6.13}
\end{equation*}
$$

Replacing x by $\frac{x}{m^{n}}$ in (6.13), we get

$$
\begin{equation*}
\left\|m^{2(n-1)} f\left(\frac{x}{m^{n-1}}\right)-m^{2 n} f\left(\frac{x}{m^{n}}\right)\right\| \leq \frac{|m|^{2 n}}{|m|^{2}} \psi\left(\frac{x}{m^{n}}, 0\right) \tag{6.14}
\end{equation*}
$$

and so it follows from (6.9) and (6.14) that the sequence $\left\{m^{2 n} f\left(\frac{x}{m^{n}}\right)\right\}_{n=1}^{\infty}$ is a Cauchy sequence. Since X is complete, $\left\{m^{2 n} f\left(\frac{x}{m^{n}}\right)\right\}_{n=1}^{\infty}$ is convergent and so it follows from (6.14) that

$$
\begin{align*}
& \left\|m^{2 n} f\left(\frac{x}{m^{n}}\right)-m^{2 p} f\left(\frac{x}{m^{p}}\right)\right\| \\
= & \left\|\sum_{k=p+1}^{n} m^{2(k-1)} f\left(\frac{x}{m^{k-1}}\right)-m^{2 k} f\left(\frac{x}{m^{k}}\right)\right\| \\
\leq & \max \left\{\left\|m^{2(k-1)} f\left(\frac{x}{m^{k-1}}\right)-m^{2 k} f\left(\frac{x}{m^{k}}\right)\right\|: p+1 \leq k<n\right\} \tag{6.15}\\
\leq & \frac{1}{|m|^{2}} \max \left\{|m|^{2 k} \psi\left(\frac{x}{m^{k}}, 0\right): p+1 \leq k<n\right\}
\end{align*}
$$

for all $x \in G$ and $m, n \in \mathbb{N}$ with $n-1>p \geq 0$. Letting $p=0$ and $n \rightarrow \infty$ in (6.15), we obtain (6.11).

The rest of the proof is similar to the proof of Theorem 6.1. This complete the proof.

Corollary 6.3. Let $\lambda:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying

$$
\lambda(|m| t) \leq \lambda(|m|) \lambda(t), \quad \lambda(|m|)<|m|^{2}
$$

for all $t \geq 0$. Let $\delta>0$ and $f: G \rightarrow X$ be a mapping satisfying the inequality

$$
\left\|M_{f}(x, y)\right\| \leq \delta(\lambda(\|x\|)+\lambda(\|y\|))
$$

for all $x, y \in G$. Then there exists a unique mapping $T: G \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{\delta \lambda(\|x\|)}{|m|^{2}} \tag{6.16}
\end{equation*}
$$

for all $x \in G$.

Proof. By induction, wee can show that

$$
\begin{equation*}
\lambda\left(|m|^{n} t\right) \leq\left(\lambda(|m|)^{n} \lambda(|t|)\right) \leq|m|^{2 n} \lambda(|t|) \tag{6.17}
\end{equation*}
$$

for all $n \in \mathbb{N}$. If we Define a mapping $\psi: G^{2} \rightarrow[0, \infty)$ by

$$
\psi(x, y):=\delta(\lambda(\|x\|)+\lambda(\|y\|))
$$

for all $x, y \in G$, then, from $\frac{\lambda(|m|)}{|m|^{2}}<1$, it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\psi\left(m^{n} x, m^{n} y\right)}{|m|^{2 n}} \leq \lim _{n \rightarrow \infty}\left(\frac{\lambda(|m|)}{|m|^{2}}\right)^{n} \psi(x, y)=0 \tag{6.18}
\end{equation*}
$$

for all $x, y \in G$. Also, for all $x \in G$, the limit

$$
\Psi(x)=\lim _{n \rightarrow \infty} \max \left\{\frac{1}{|m|^{2 k}} \psi\left(m^{k} x, 0\right): 0 \leq k<n\right\}=\psi(x, 0)=\delta \lambda(\|x\|)
$$

exists and

$$
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac{1}{|m|^{2 j}} \psi\left(m^{j} x, 0\right): k \leq j<n+k\right\}=0
$$

for all $x \in G$. Therefore, the result follows by Theorem 6.1. This completes the proof.
Corollary 6.4. Let $\lambda:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying

$$
\lambda\left(|m|^{-1} t\right) \leq \lambda\left(|m|^{-1}\right) \lambda(t), \quad \lambda\left(|m|^{-1}\right)<|m|^{-2}
$$

for all $t \geq 0$. Let $\delta>0$ and $f: G \rightarrow X$ be a mapping satisfying the inequality

$$
\left\|M_{f}(x, y)\right\| \leq \delta(\lambda(\|x\|)+\lambda(\|y\|))
$$

for all $x, y \in G$. Then there exists a unique quadratic mapping $T: G \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{\delta \lambda(\|x\|)}{|m|^{2}} \tag{6.19}
\end{equation*}
$$

for all $x \in G$.
However, the following example shows that Theorem 1.1 is not true in non-Archimedean normed spaces.

Example 6.1. Let $p>2$ and $f: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ be a mpping defined by $f(x)=2$ for all $x \in \mathbb{Q}_{p}$. Then, for $\epsilon=1$,

$$
|f(x+y)-f(x)-f(y)|=1 \leq \epsilon
$$

for all $x, y \in \mathbb{Q}_{p}$. However, neither $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}_{n=1}^{\infty}$ nor $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}_{n=1}^{\infty}$ is a Cauchy sequence.
In fact, by using the fact that $|2|=1$, we have

$$
\left|\frac{f\left(2^{n} x\right)}{2^{n}}-\frac{f\left(2^{n+1} x\right)}{2^{n+1}}\right|=\left|2^{-n} \cdot 2-2^{-(n+1)} \cdot 2\right|=\left|2^{-n}\right|=1
$$

and

$$
\left|2^{n} f\left(\frac{x}{2^{n}}\right)-2^{n+1} f\left(\frac{x}{2^{n+1}}\right)\right|=\left|2^{n} \cdot 2-2^{(n+1)} \cdot 2\right|=\left|2^{n+1}\right|=1
$$

for all $x, y \in \mathbb{Q}_{p}$ and $n \in \mathbb{N}$. Hence these sequences are not convergent in \mathbb{Q}_{p}.

7. Stability of the Functional Equation (1.5) in Non-Archimedean Normed Spaces

In this section, we solve the stability problems of the functional equation (1.5) in non-Archimedean normed spaces.

Throughout this section, let G be an additive semigroup and X be a complete nonArchimedean space.
Theorem 7.1. Let $\psi: G^{2} \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|8|^{-n} \psi\left(2^{n} x, 2^{n} y\right)=0 \tag{7.1}
\end{equation*}
$$

for all $x, y \in G$. Suppose that, for all $x \in G$, the limit

$$
\Psi(x)=\lim _{n \rightarrow \infty} \max \left\{\frac{1}{|8|^{k}} \psi\left(2^{k} x, 0\right): 0 \leq k<n\right\}
$$

exists and $f: G \rightarrow X$ is a mapping satisfying the inequality

$$
\begin{equation*}
\left\|M_{f}^{*}(x, y)\right\| \leq \psi(x, y) \tag{7.2}
\end{equation*}
$$

for all $x, y \in G$. Then the limit

$$
T(x):=\lim _{n \rightarrow \infty} 8^{-n} f\left(2^{n} x\right)
$$

exist for all $x \in G$ and $T: G \rightarrow X$ is a cubic mapping satisfying

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{|8|} \Psi(x) \tag{7.3}
\end{equation*}
$$

for all $x \in G$. Moreover, if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac{1}{|8|^{j}} \psi\left(2^{j} x, 0\right): k \leq j<n+k\right\}=0 \tag{7.4}
\end{equation*}
$$

for all $x \in G$, then T is the unique mapping satisfying (7.3).
Proof. Putting $y=0$ in (7.2), we have

$$
\begin{equation*}
\left\|\frac{f(2 x)}{8}-f(x)\right\| \leq \frac{1}{|8|} \psi(x, 0) . \tag{7.5}
\end{equation*}
$$

Replacing x by $2^{n} x$ in (7.5) and dividing both sides by 8^{n}, we get

$$
\begin{equation*}
\left\|\frac{f\left(2^{n+1} x\right)}{8^{n+1}}-\frac{f\left(2^{n} x\right)}{8^{n}}\right\| \leq \frac{1}{|8|^{n+1}} \psi\left(2^{n} x, 0\right) \tag{7.6}
\end{equation*}
$$

Thus it follows from (7.1) and (7.6) that the sequence $\left\{\frac{f\left(2^{n} x\right)}{8^{n}}\right\}_{n=1}^{\infty}$ is convergent and so set

$$
T(x):=\lim _{n \rightarrow \infty} \frac{f\left(m^{n} x\right)}{m^{2 n}} .
$$

The rest of the proof is similar to proof of the Theorem 6.1.
Theorem 7.2. Let $\psi: G^{2} \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|8|^{n} \psi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)=0 \tag{7.7}
\end{equation*}
$$

for all $x, y \in G$. Suppose that, for all $x \in G$, the limit

$$
\Psi(x)=\lim _{n \rightarrow \infty} \max \left\{|8|^{k} \psi\left(\frac{x}{2^{k}}, 0\right): 0 \leq k<n\right\}
$$

exists and $f: G \rightarrow X$ is a mapping satisfying the inequality

$$
\begin{equation*}
\left\|M_{f}^{*}(x, y)\right\| \leq \psi(x, y) \tag{7.8}
\end{equation*}
$$

for all $x, y \in G$. Then the limit

$$
T(x):=\lim _{n \rightarrow \infty} 8^{n} f\left(\frac{x}{2^{n}}\right)
$$

exist for all $x \in G$ and $T: G \rightarrow X$ is a cubic mapping satisfying

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{|8|} \Psi(x) \tag{7.9}
\end{equation*}
$$

for all $x \in G$. Moreover, if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{|8|^{j} \psi\left(\frac{x}{2^{j}}, 0\right): k \leq j<n+k\right\}=0 \tag{7.10}
\end{equation*}
$$

for all $x \in G$, then T is the unique mapping satisfying (7.9).
Corollary 7.3. Let $\lambda:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying

$$
\lambda(|2| t) \leq \lambda(|2|) \lambda(t), \quad \lambda(|2|)<|8|
$$

for all $t \geq 0$. Let $\delta>0$ and $f: G \rightarrow X$ be a mapping satisfying the inequality

$$
\left\|M_{f}(x, y)\right\| \leq \delta(\lambda(\|x\|)+\lambda(\|y\|))
$$

for all $x, y \in G$. Then there exists a unique cubic mapping $T: G \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{\delta \lambda(\|x\|)}{|8|} \tag{7.11}
\end{equation*}
$$

for all $x \in G$.
Corollary 7.4. Let $\lambda:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying

$$
\lambda\left(|2|^{-1} t\right) \leq \lambda\left(|2|^{-1}\right) \lambda(t), \quad \lambda\left(|2|^{-1}\right)<|8|^{-1}
$$

for all $t \geq 0$. Let $\delta>0$ and $f: G \rightarrow X$ be a mapping satisfying the inequality

$$
\left\|M_{f}(x, y)\right\| \leq \delta(\lambda(\|x\|)+\lambda(\|y\|))
$$

for all $x, y \in G$. Then there exists a unique cubic mapping $T: G \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{\delta \lambda(\|x\|)}{|8|} \tag{7.12}
\end{equation*}
$$

for all $x \in G$.

8. Stability of the Functional Equation (1.6) in Non-Archimedean Normed Spaces

In this section, we solve the stability problems of the functional equation (1.6) in non-Archimedean normed spaces.

Throughout this section, let G be an additive semigroup and X be a complete nonArchimedean space.

Theorem 8.1. Let $\psi: G^{2} \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{p \rightarrow \infty}|m+n|^{-p} \psi\left((m+n)^{p} x,(m+n)^{p} y\right)=0 \tag{8.1}
\end{equation*}
$$

for all $x, y \in G$. Suppose that, for all $x \in G$, the limit

$$
\begin{equation*}
\Psi(x)=\lim _{p \rightarrow \infty} \max \left\{|m+n|^{-k+1} \psi\left((m+n)^{k} x,(m+n)^{k} y\right): 0 \leq k<p\right\} \tag{8.2}
\end{equation*}
$$

exists and $f: G \rightarrow X$ is a mapping satisfying

$$
\begin{equation*}
\left\|f(m x+n y)-\frac{m+n}{2} f(x+y)-\frac{m-n}{2} f(x-y)\right\|_{X} \leq \psi(x, y) \tag{8.3}
\end{equation*}
$$

for all $x, y \in G$. Then the limit

$$
T(x)=\lim _{l \rightarrow \infty}(m+n)^{-l} f\left((m+n)^{l} x\right)
$$

exists for all $x \in G$ and $T: G \rightarrow X$ is a mapping satisfying

$$
\begin{equation*}
\|f(x)-T(x)\|_{X} \leq \frac{1}{|m+n|} \Psi(x) \tag{8.4}
\end{equation*}
$$

for all $x \in G$. Moreover, if

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \lim _{p \rightarrow \infty} \max \left\{|m+n|^{-k+1} \psi\left((m+n)^{k} x,(m+n)^{k} y\right): j \leq k<p+j\right\}=0 \tag{8.5}
\end{equation*}
$$

for all $x \in G$, then T is the unique mapping satisfying (8.4).

Proof. Putting $y=x$ in (8.3), we get

$$
\begin{equation*}
\left\|\frac{f((m+n) x)}{m+n}-f(x)\right\|_{X} \leq \frac{1}{|m+n|} \psi(x, x) . \tag{8.6}
\end{equation*}
$$

Replacing x by $(m+n)^{p-1} x$ in (8.6) and dividing both sides by $(m+n)^{p-1}$, we get

$$
\begin{equation*}
\left.\| \frac{f\left((m+n)^{p} x\right)}{(m+n)^{p}}-\frac{f\left((m+n)^{p-1} x\right)}{(m+n)^{p-1}}\right) \|_{X} \leq|m+n|^{-p} \psi\left((m+n)^{p-1} x,(m+n)^{p-1} x\right), \tag{8.7}
\end{equation*}
$$

for all $x \in H$. It follows from (8.1) and (8.7) that the sequence $\left\{\frac{f\left((m+n)^{p} x\right)}{(m+n)^{p}}\right\}_{p=1}^{+\infty}$ is a Cauchy sequence. Since X is complete, so the sequence $\left\{\frac{f\left((m+n)^{p} x\right)}{(m+n)^{p}}\right\}_{p=1}^{+\infty}$ is convergent. Set

$$
T(x):=\lim _{p \rightarrow \infty} \frac{f\left((m+n)^{p} x\right)}{(m+n)^{p}}
$$

Using induction we see that

$$
\left\|\frac{f\left((m+n)^{p} x\right)}{(m+n)^{p}}-f(x)\right\|_{X} \leq \frac{1}{|m+n|} \max \left\{|m+n|^{-k+1} \psi\left((m+n)^{k} x,(m+n)^{k} x\right) ; 0 \leq k<p\right\} .
$$

The rest of the proof is similar to proof of the Theorem 6.1.

Theorem 8.2. Let $\psi: G^{2} \rightarrow[0,+\infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|m+n|^{p} \psi\left(\frac{x}{(m+n)^{p}}, \frac{y}{(m+n)^{p}}\right)=0 \tag{8.8}
\end{equation*}
$$

for all $x, y \in G$. Suppose that, for all $x \in G$, the limit

$$
\begin{equation*}
\Psi(x)=\lim _{n \rightarrow \infty} \max \left\{|m+n|^{k-1} \psi\left(\frac{x}{(m+n)^{k}}, \frac{y}{(m+n)^{k}}\right)=0: 0 \leq k<p\right\} \tag{8.9}
\end{equation*}
$$

exists and $f: G \rightarrow X$ is a mapping satisfying

$$
\begin{equation*}
\left\|f(m x+n y)-\frac{m+n}{2} f(x+y)-\frac{m-n}{2} f(x-y)\right\|_{X} \leq \psi(x, y) \tag{8.10}
\end{equation*}
$$

for all $x, y \in G$. Then the limit

$$
T(x)=\lim _{l \rightarrow \infty}(m+n)^{l} f\left(\frac{x}{(m+n)^{l}}\right)
$$

exists for all $x \in G$ and $T: G \rightarrow X$ is a mapping satisfying

$$
\begin{equation*}
\|f(x)-T(x)\|_{X} \leq \frac{1}{|m+n|} \Psi(x) \tag{8.11}
\end{equation*}
$$

for all $x \in G$. Moreover, if

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \lim _{p \rightarrow \infty} \max \left\{|m+n|^{k-1} \psi\left(\frac{x}{(m+n)^{k}}, \frac{y}{(m+n)^{k}}\right): j \leq k<n+j\right\}=0 \tag{8.12}
\end{equation*}
$$

for all $x \in G$, then T is the unique mapping satisfying (8.11).
Proof. Letting $y=x$ in (8.10), we get

$$
\begin{equation*}
\|f((m+n) x)-(m+n) f(x)\|_{X} \leq \psi(x, x) \tag{8.13}
\end{equation*}
$$

for all $x \in G$. If we replace x by $\frac{x}{(m+n)^{p}}$ in (8.13), then we have

$$
\begin{align*}
\left.\|(m+n)^{p-1} f\left(\frac{x}{(m+n)^{p-1}}\right)-(m+n)^{p} f\left(\frac{x}{(m+n)^{p}}\right)\right) \|_{X} & \leq|m+n|^{p-1} \psi\left(\frac{x}{(m+n)^{p}}\right. \\
& \left., \quad \frac{x}{(m+n)^{p-1}}\right) \tag{8.14}
\end{align*}
$$

for all $x \in G$ and all non-negative integer n. It follows from (8.14) and (8.8) that the sequence $\left\{(m+n)^{p} f\left(\frac{x}{(m+n)^{p}}\right)\right\}_{p=1}^{\infty}$ is a Cauchy sequence in X for all $x \in G$. Since X is complete, the sequence $\left\{(m+n)^{p} f\left(\frac{x}{(m+n)^{p}}\right)\right\}_{n=1}^{\infty}$ converges for all $x \in G$. On the other hand, it follows from (8.15) that

$$
\begin{align*}
& \left\|(m+n)^{p} f\left(\frac{x}{(m+n)^{p}}\right)-(m+n)^{q} f\left(\frac{x}{(m+n)^{q}}\right)\right\|_{X} \\
& =\left\|\sum_{k=p}^{q-1}(m+n)^{k+1} f\left(\frac{x}{(m+n)^{k+1}}\right)-(m+n)^{k} f\left(\frac{x}{(m+n)^{k}}\right)\right\|_{X} \tag{8.15}\\
& \leq \max \left\{\left\|(m+n)^{k+1} f\left(\frac{x}{(m+n)^{k+1}}\right)-(m+n)^{k} f\left(\frac{x}{(m+n)^{k}}\right)\right\|_{X} ; p \leq k<q\right\} \\
& \leq \frac{1}{|m+n|} \max \left\{|m+n|^{k-1} \psi\left(\frac{x}{(m+n)^{k}}, \frac{x}{(m+n)^{k}}\right) ; p \leq k<q\right\},
\end{align*}
$$

for all $x \in G$ and all non-negative integers p, q with $q>p \geq 0$. Letting $p=0$ and passing the limit $q \rightarrow \infty$ in the last inequality, we obtain (8.11).
The rest of the proof is similar to the proof of Theorem (6.1).
Corollary 8.3. Let $\gamma:[0, \infty) \rightarrow[0, \infty)$ be a function satisfying

$$
\begin{equation*}
\gamma\left(\frac{t}{|m+n|}\right) \leq \gamma\left(\frac{1}{|m+n|}\right) \gamma(t), \quad \gamma\left(\frac{1}{|m+n|}\right)<\frac{1}{|m+n|} \tag{8.16}
\end{equation*}
$$

for all $t \geq 0$. Let $\delta>0$ and $f: G \rightarrow X$ be a mapping satisfying

$$
\begin{equation*}
\left\|f(m x+n y)-\frac{m+n}{2} f(x+y)-\frac{m-n}{2} f(x-y)\right\|_{X} \leq \delta(\gamma(|x|)+\gamma(|y|)) \tag{8.17}
\end{equation*}
$$

for all $x, y \in G$. Then there exists a unique mapping $T: G \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-T(x)\|_{X} \leq \frac{2 \delta \gamma(|x|)}{|m+n|} \tag{8.18}
\end{equation*}
$$

for all $x \in G$.
Corollary 8.4. Let $\gamma:[0, \infty) \rightarrow[0, \infty)$ is a function satisfying

$$
\begin{equation*}
\gamma(|m+n| t) \leq \gamma(|m+n|) \gamma(t), \quad \gamma(|m+n|)<|m+n| \tag{8.19}
\end{equation*}
$$

for all $t \geq 0$. Let $\delta>0$ and $f: G \rightarrow X$ be a mapping satisfying

$$
\begin{equation*}
\left\|f(m x+n y)-\frac{m+n}{2} f(x+y)-\frac{m-n}{2} f(x-y)\right\|_{X} \leq \delta(\gamma(|x|+\gamma(|y|)) \tag{8.20}
\end{equation*}
$$

for all $x, y \in G$. Then there exists a unique mapping $T: H \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-T(x)\|_{X} \leq \frac{2 \delta \gamma(|x|)}{|m+n|} \tag{8.21}
\end{equation*}
$$

for all $x \in G$.
Proof. If $\psi: G^{2} \rightarrow[0, \infty)$ is a mapping defined by $\psi(x, y):=\delta(\gamma(|x|+\gamma(|y|))$ for all $x, y \in G$, then, from Theorem 8.1, the result follows.

Corollary 8.5. Let $\gamma:[0, \infty) \rightarrow[0, \infty)$ is a function satisfying

$$
\begin{equation*}
\gamma\left(\frac{t}{|m+n|}\right) \leq \gamma\left(\frac{1}{|m+n|}\right) \gamma(t), \quad \gamma\left(\frac{1}{|m+n|}\right)<\frac{1}{|m+n|} \tag{8.22}
\end{equation*}
$$

for all $t \geq 0$. Let $\delta>0$ and $f: G \rightarrow X$ be a mapping satisfying

$$
\begin{equation*}
\left\|f(m x+n y)-\frac{m+n}{2} f(x+y)-\frac{m-n}{2} f(x-y)\right\|_{X} \leq \delta(\gamma(|x|) \cdot \gamma(|y|)) \tag{8.23}
\end{equation*}
$$

for all $x, y \in G$. Then there exists a unique mapping $T: G \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-T(x)\|_{X} \leq \frac{\delta \gamma^{2}(|x|)}{|m+n|} \tag{8.24}
\end{equation*}
$$

for all $x \in G$.
Proof. Define a mapping $\psi: G^{2} \rightarrow[0, \infty)$ by $\psi(x, y)=\delta(\gamma(|x|) \cdot \gamma(|y|))$ for all $x, y \in G$. Then, from Theorem 8.1, the conclusion follows.

Corollary 8.6. Let $\gamma:[0, \infty) \rightarrow[0, \infty)$ is a function satisfying

$$
\begin{equation*}
\gamma(|m+n| t) \leq \gamma(|m+n|) \gamma(t), \gamma(|m+n|)<|m+n| \tag{8.25}
\end{equation*}
$$

for all $t \geq 0$. Let $\delta>0$ and $f: G \rightarrow X$ be a mapping satisfying

$$
\begin{equation*}
\left\|f(m x+n y)-\frac{m+n}{2} f(x+y)-\frac{m-n}{2} f(x-y)\right\| \leq \delta(\gamma(|x|) \cdot \gamma(|y|)) \tag{8.26}
\end{equation*}
$$

for all $x, y \in G$. Then there exists a unique mapping $T: G \rightarrow X$ such that

$$
\begin{equation*}
\|f(x)-T(x)\|_{X} \leq \frac{\delta \gamma^{2}(|x|)}{|m+n|} \tag{8.27}
\end{equation*}
$$

for all $x \in G$.
Proof. Define a mapping $\psi: G^{2} \rightarrow[0, \infty)$ by $\psi(x, y)=\delta(\gamma(|x|) \cdot \gamma(|y|))$ for all $x, y \in G$. Then, from Theorem 8.1, the conclusion follows.

References

[1] S.M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, No. 8, Interscience Publishers, New York-London, 1960.
[2] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941) 222-224.
[3] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297-300.
[4] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994) 431-436.
[5] F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983) 113-129.
[6] P.W. Cholewa, Remarks on the stability of functional equations, Aequat. Math. 27 (1984) 76-86.
[7] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992) 59-64.
[8] H. Behrouzizadeh, H.A. Kenary, Stability of special functional equations on Banach lattices, J. Math. Extension 14 (2) (2020) 69-80.
[9] D.-H. Boo, H.A. Kenary, C. Park, Functional equations in Banach modules and approximate algebra homomorphisms in Banach algebras, The Korean Journal of Mathematics 19 (1) (2011) 33-52.
[10] M. Eshaghi Gordj, H. Khodaei, On the generalized Hyers-Ulam-Rassias stability of quadratic functional equations, Abst. Appl. Anal. 2009 (2009) Article ID 923476.
[11] D.H. Hyers, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126 (1998) 425-430.
[12] K.W. Jun, H.M. Kim, On the stability of Euler-Lagrange type cubic mappings in quasi-Banach spaces, J. Math. Anal. Appl. 332 (2007) 1335-1350.
[13] H.A. Kenary, On the stability of a cubic functional equation in random normed spaces, J. Math. Extension 4 (2009) 1-11.
[14] H.J. Koh, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Chungcheong Math. Soc. 21 (2008).
[15] Y.S. Lee, S.Y. Chung, Stability of an Euler-Lagrange-Rassias equation in the spaces of generalized functions, Appl. Math. Lett. 21 (2008) 694-700.
[16] Y.W. Lee, A generalized stability of the general Euler-Lagrange functional equation, Comm. Korean Math. Soc. 16 (2001) 607-619.
[17] D. Mihet, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008) 567-572.
[18] A. Najati, A. Rahimi, Homomorphisms between C^{*}-algebras and their stabilities, Acta Univ. Apulensis 19 (2009) 35-46.
[19] Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000) 264-284.
[20] J.M. Rassias,Solution of the Ulam stability problem for cubic mappings, Glasnik Math. 36 (56) (2001) 63-72.
[21] R. Saadati, M. Vaezpour, Y.J. Cho, A note to paper On the stability of cubic mappings and quartic mappings in random normed spaces, J. Inequal. Appl. 2009 (2009) Article ID 214530.

