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Abstract In this paper we have discussed the Riemannian manifolds admitting a semi-symmetric metric

connection ∇ by taking ρ as a unit parallel vector field with respect to Levi-Civita connection ∇. We

found that the manifold M be concircular semi-symmetric with respect to Levi-Civita connection ∇ if

and only if it is semi-symmetric with respect to ∇ and M be a quasi-Einstein manifold if it will be

concircularly-flat with respect to semi-symmetric metric connection ∇. Also, we have shown that a semi-

symmetric manifold M be a conformally-flat quasi-Einstein manifold under the condition R .C = 0 or

R .C − C .R = 0 for a concircular curvature tensor C.
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1. Introduction

Let (M, g) be an n-dimensional Riemannian manifold with Riemannian connection ∇.
The torsion tensor T of the connection ∇ in a Riemannian manifold is defined by

T (X,Y ) = ∇XY −∇YX − [X,Y ], (1.1)

where X and Y are vector fields.
In 1932, Hayden introduced the idea of metric connection with non-vanishing tor-

sion tensor on a Riemannian manifold. The basic concept of a semi-symmetric linear
connection in a differentiable manifold, is given by Friedmann and Shouten in 1924. A
linear connection ∇ is said to be a semi-symmetric connection if the torsion tensor of the
connection has the form

T (X,Y ) = ω(Y )X − ω(X)Y. (1.2)
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A connection is said to be a metric connection if the covariant derivative of a Riemannian
metric g vanishes, i. e., ∇g = 0.

In 1970, Yano [1] discussed the Riemannian manifold admitting a semi-symmetric
metric connection with vanishing curvature tensor and proved certain results. Recently,
the semi-symmetric metric connection is studied by U. C. De and S. C. Biswas [2] in a
Riemannian manifold, a semi-symmetric non-metric connection by B. B. Chaturvedi and
P. N. Pandey [3]. In 2008, C. Murathan and C. Özgür [4] considered the semi-symmetric
metric connection with a unit parallel vector field ρ and obtained some interesting results
on a Riemannian manifold. In 2014, Ahmet Yildiz and Azime cetinkaya [5] found some
conditions on a Riemannian manifold equipped with a semi-symmetric metric connection
to be Projectively semi-symmetric manifold, conformally flat and quasi-Einstein manifold.

If a Riemannian manifold satisfies R.R = 0 then it is said to be a semi-symmetric
manifold. For a concircular tensor C, the Riemannian manifold is called concircular
semi-symmetric manifold if R.C = 0.

2. Preliminaries

If the Ricci tensor S of the connection ∇ in a Riemannian manifold (M, g) satisfies

S =
r

n
g(X,Y ), (2.1)

then the manifold is called an Einstein manifold, where r is the scalar curvature tensor.
A manifold is called a quasi-Einstein manifold if the Ricci tensor have the form

S(X,Y ) = ag(X,Y ) + bω(X)ω(Y ), (2.2)

where a, b are scalars and ω is a non-zero 1-form.
Deszcz, R. [6] defined two tensor fields R.T and Q(E, T ) for a tensor field T of type (0, k)
and (0, k + 2), k≥1 on (M, g) respectively by

(R(X,Y )T )(X1, X2, ...., Xk) =− T (R(X,Y )X1, X2, ..., Xk)− ...........
− T (X1, X2, ......, R(X,Y )Xk),

(2.3)

and

Q(E, T )(X1, X2, ....Xk, X, Y ) =− T ((X ∧E Y )X1, X2, ...., Xk)− ......
− T (X1, X2, ..., (X ∧E Y )Xk).

(2.4)

Where X∧EY defined by

(X ∧E Y )Z = E(Y, Z)X − E(X,Z)Y, (2.5)

for a tensor field E of type (0, 2).
The Weyl tensor W and the concircular tensor C of a Riemannian manifold (M, g) are
defined by

W (X,Y, Z, T ) =R(X,Y, Z, T )− 1

n− 2
[S(Y,Z)g(X,T )− S(X,Z)g(Y, T )

+ g(Y,Z)S(X,T )− g(X,Z)S(Y, T )]

+
r

(n− 1)(n− 2)
[g(Y,Z)g(X,T )− g(X,Z)g(Y, T )]

(2.6)
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and

C(X,Y, Z, T ) = R(X,Y, Z, T )− r

n(n− 1)
[g(Y,Z)g(X,T )−g(X,Z)g(Y, T )], (2.7)

where r denotes the scalar curvature of M .
Deszcz, R. gave two lemmas as follows:

Lemma 2.1 ([7]). Let (M, g) be an n≥3 dimensional Riemannian manifold. Let at a
point x∈M , a non-zero symmetric tensor E of type (0, 2) and a generalized curvature
tensor B are given such that Q(E,B) = 0. Moreover, let V be a vector at x such that the
scalar ρ = a(V ) is non zero, where a is defined by a(X) = E(X,V ), X ∈ TXM .
i) If E = 1

ρa⊗ a, then at x we have X,Y,Za(X)B(Y,Z) where X,Y, Z ∈ TXM .

ii) If E − 1
ρ a⊗ a is non-zero, then at x we have B = γ

2E ∧ E, γ ∈ R. Moreover, in both

cases, at x we have B.B = Q(Ric(B), B).

Lemma 2.2 ([8]). Let (M, g) be an n≥4 dimensional semi-Riemannian manifold and E
be the symmetric tensor of type (0, 2) at x ∈M defined by E = αg + βω ⊗ ω, ω ∈ TXM ,
α, β ∈ R. If at x, the curvature tensor R is expressed by R = γ

2E ∧ E, γ ∈ R, then the
Weyl tensor vanishes at x.

3. Semi-Symmetric Metric Connection

If ∇ be the Levi-Civita connection of a Riemannian manifold M , then we define

∇XY = ∇XY + ω(Y )X − g(X,Y )ρ, (3.1)

where ω(X) = g(X, ρ) and X,Y, ρ are vector fields on M . If R and R be the Riemannian
curvature tensor with respect to ∇ and ∇ respectively, then Yano K. [9] derived a relation
between R and R given by

R(X,Y, Z, T ) =R(X,Y, Z, T )− θ(Y,Z)g(X,T ) + θ(X,Z)g(Y, T )

− g(Y,Z)θ(X,T ) + g(X,Z)θ(Y, T ),
(3.2)

where

θ(X,Y ) = (∇Xω)Y − ω(X)ω(Y ) +
1

2
g(X,Y ). (3.3)

Now, if ρ be a parallel unit vector field with respect to the connection ∇, then

∇ρ = 0 and ||U || = 1. (3.4)

From (3.4), we can easily determine

(∇Xω)Y = 0. (3.5)

Now from equation (3.3), we have θ is a symmetric tensor field of type (0, 2).
We know that the Kulkarni-Nomizu product ∧ of two tensors of type (0, 2) is defined by

(g∧θ)(X,Y, Z, T ) =θ(Y,Z)g(X,T )− θ(X,Z)g(Y, T )+

g(Y, Z)θ(X,T )− g(X,Z)θ(Y, T ).
(3.6)

Then equation (3.2) can be written as

R(X,Y, Z, T ) = R(X,Y, Z, T )− (g∧θ)(X,Y, Z, T ). (3.7)

By straight forward calculation, we can easily write

R(X,Y )ρ = 0. (3.8)
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Contracting above equation, we get

S(Y, ρ) = ω(LY ) = 0, (3.9)

where S denotes the Ricci tensor of the connection ∇ and L is the Ricci operator defined
by g(LX, Y ) = S(X,Y ).
Contracting (3.2), we have

S(Y,Z) = S(Y,Z)− (n− 2)[g(Y, Z)− ω(Y )ω(Z)], (3.10)

and

r = r − (n− 1)(n− 2). (3.11)

Using (3.7), (3.10) and (3.11), we obtained

W (X,Y, Z, T ) = W (X,Y, Z, T ), (3.12)

and

C(X,Y, Z, T ) = C(X,Y, Z, T )− (g∧θ)(X,Y, Z, T ) +G(X,Y, Z, T ), (3.13)

where

G(X,Y, Z, T ) =
(n− 2)

n
[g(Y,Z)g(X,T )− g(X,Z)g(Y, T )]. (3.14)

From equation (3.13), we can write

C(X,Y )Z = C(X,Y )Z + g(Y, Z)ω(X)ρ− g(X,Z)ω(Y )ρ

+ ω(Y )ω(Z)X − ω(X)ω(Z)Y − 2

n
[g(Y,Z)X − g(X,Z)Y ].

(3.15)

Using (2.3) and (2.4) in (3.14), two important conditions also can be obtained easily

(R(X,Y ) G)(Z, T, U, V ) = 0, (3.16)

and

(G(X,Y )R)(Z, T, U, V ) =
(n− 2)

n
Q(g,R)(Z, T, U, V,X, Y ). (3.17)

And from (2.3), (2.4) and (2.7), we have

(C(X,Y )R)(Z, T, U, V ) =(R(X,Y )R)(Z, T, U, V )

− r

n(n− 1)
Q(g,R)(Z, T, U, V,X, Y ).

(3.18)

4. Concircular Semi-Symmetric Manifold and Quasi-Einstein

Manifold

From equation (2.3), we can write

(R(X,Y )C)(Z, T, U, V ) = −C(R(X,Y )Z, T, U, V )− C(Z,R(X,Y )T,U, V )

− C(Z, T,R(X,Y )U, T )− C(Z, T, U,R(X,Y )V ).
(4.1)

Using (2.7) in above equation, we have

(R(X,Y )C)(Z, T, U, V ) = −R(R(X,Y )Z, T, U, V )−R(Z,R(X,Y )T,U, V )

−R(Z, T,R(X,Y )U, T )−R(Z, T, U,R(X,Y )V ).
(4.2)
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Using (2.3) in (4.2), we get

(R(X,Y )C)(Z, T, U, V ) = (R(X,Y )R)(Z, T, U, V ). (4.3)

The above equation shows that R.C vanishes if and only if R.R vanishes.
Hence we can state:

Theorem 4.1. If M be an n-dimensional Riemannian manifold, then M be a concircular
semi-symmetric manifold with respect to the the connection ∇ if and only if it is a semi-
symmetric manifold with respect to ∇.

Now we can compose:

Theorem 4.2. Let (M, g) be a Riemannian manifold equipped with a semi-symmetric
metric connection ∇. If the manifold M be a concircularly flat manifold with respect to
∇, then M is a quasi-Einstein manifold with respect to ∇.

Proof. Let (M, g) be a Riemannian manifold equipped with a semi-symmetric metric
connection ∇.
Then from equation (2.7), we have

C(X,Y, Z, T ) = R(X,Y, Z, T )− r

n(n− 1)
[g(Y,Z)g(X,T )−g(X,Z)g(Y, T )]. (4.4)

Using (3.2) and (3.11) in (4.4), we get

C(X,Y, Z, T ) =R(X,Y, Z, T ) + ω(X)ω(T )g(Y, Z)− ω(Y )ω(T )g(X,Z)

+ ω(Y )ω(Z)g(X,T )− ω(X)ω(Z)g(Y, T )

− (r + 2n− 2)

n(n− 1)
[g(Y,Z)g(X,T )− g(X,Z)g(Y, T )].

(4.5)

If the manifold M be concircularly flat with respect to semi-symmetric metric connection
∇, then from (4.5) we can write

R(X,Y, Z, T ) =ω(Y )ω(T )g(X,Z)− ω(X)ω(T )g(Y,Z)

+ ω(X)ω(Z)g(Y, T )− ω(Y )ω(Z)g(X,T )

+
(r + 2n− 2)

n(n− 1)
[g(Y,Z)g(X,T )− g(X,Z)g(Y, T )].

(4.6)

Putting X = T = ei and taking summation over i from 1 to n in (4.6), we get

S(Y,Z) = − (r − n2 + 2n− 2)

n
g(Y, Z)− (n− 2)ω(Y )ω(Z). (4.7)

Hence the manifold M is a quasi-Einstein manifold.

5. Conformally-Flat Quasi-Einstein Manifold

Theorem 5.1. Let (M, g) be a Riemannian manifold equipped with a semi-symmetric
metric connection ∇. If ρ is a parallel unit vector field with respect to the connection ∇,
then the following two relations hold:

(i) (R(X,Y )C)(Z, T, U, V ) = (R(X,Y )C)(Z, T, U, V ), (5.1)
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and

(ii) (C(X,Y )R)(Z, T, U, V ) = (C(X,Y )R)(Z, T, U, V )

−Q(
2

n
g − ω ⊗ ω,R)(Z, T, U, V,X, Y ).

(5.2)

Proof. Since ρ is a parallel unit vector field, we have

(R(X,Y ) θ)(Z, T ) = 0 and (R(X,Y )G)(Z, T, U, V ) = 0. (5.3)

Now, from (2.3) and (3.13), we can write

(R(X,Y )C)(Z, T, U, V ) = (R(X,Y )C)(Z, T, U, V )

− g(Z, T )∧(R(X,Y ) θ)(U, V )− (R(X,Y )G)(Z, T, U, V ).
(5.4)

Using (5.3) in (5.4), we get

(R(X,Y )C)(Z, T, U, V ) = (R(X,Y )C)(Z, T, U, V ). (5.5)

Hence the first part of the theorem is completed.
Again from (2.3) and (3.13), we can write

(C(X,Y ) R)(Z, T, U, V ) = −R(C(X,Y )Z, T, U, V )−R(Z,C(X,Y )T,U, V )

−R(Z, T,C(X,Y )U, V )−R(Z, T, U,C(X,Y )V ).

(5.6)

Using (3.15) in (5.6), we have

(C(X,Y ) R)(Z, T, U, V ) = (C(X,Y ) R)(Z, T, U, V )

+ ω(X)ω(Z)R(Y, T, U, V )− ω(Y )ω(Z)R(X,T, U, V )

+ ω(X)ω(T )R(Z, Y, U, V )− ω(Y )ω(T )R(Z,X,U, V )

+ ω(X)ω(U)R(Z, T, Y, V )− ω(Y )ω(U)R(Z, T,X, V )

+ ω(X)ω(V )R(Z, T, U, Y )− ω(Y )ω(V )R(Z, T, U,X)

− 2

n
[g(X,Z)R(Y, T, U, V )− g(Y, Z)R(X,T, U, V )

+ g(X,T )R(Z, Y, U, V )− g(Y, T )R(Z,X,U, V )

+ g(X,U)R(Z, T, Y, V )− g(Y, U)R(Z, T,X, V )

+ g(X,V )R(Z, T, U, Y )− g(Y, V )R(Z, T, U,X)].

(5.7)

Using (2.4) in (5.7), we get

(C(X,Y ) R)(Z, T, U, V ) = (C(X,Y ) R)(Z, T, U, V )

−Q(g − ω ⊗ ω,R)(Z, T, U, V,X, Y )

+ (G(X,Y ) R)(Z, T, U, V ).

(5.8)

Using (3.17) in (5.8), we have

(C(X,Y ) R)(Z, T, U, V ) = (C(X,Y ) R)(Z, T, U, V )

−Q(
2

n
g − ω ⊗ ω,R)(Z, T, U, V,X, Y ).

(5.9)

Hence the second part of the theorem is completed.
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Now, from above theorem, we can state:

Theorem 5.2. Let (M, g) be a Riemannian manifold equipped with a semi-symmetric
metric connection ∇. If ρ is a parallel unit vector field with respect to the connection ∇,
then M be a concircular semi-symmetric manifold if and only if

(R(X,Y ) C)(Z, T, U, V ) = 0. (5.10)

Theorem 5.3. Let (M, g) be an n > 3 dimensional semi-symmetric Riemannian manifold
equipped with a semi-symmetric metric connection ∇. If ρ is a parallel unit vector field
with respect to the connection ∇ and (C(X,Y ) R)(Z, T, U, V ) = 0 then M be a conformally
flat quasi-Einstein manifold.

Proof. Since (C(X,Y ) R)(Z, T, U, V ) = 0, from equation (5.2) we can write

(C(X,Y ) R)(Z, T, U, V ) = Q(
2

n
g − ω ⊗ ω,R)(Z, T, U, V,X, Y ). (5.11)

Using (3.18) in (5.11), we have

(R(X,Y ) R)(Z, T, U, V )− r

n(n− 1)
Q(g,R)(Z, T, U, V,X, Y )

= Q(
2

n
g − ω ⊗ ω,R)(Z, T, U, V,X, Y ).

(5.12)

Since the manifold M is semi-symmetric, from (5.12) we have

r

n(n− 1)
Q(g,R)(Z, T, U, V,X, Y )+Q(

2

n
g−ω⊗ω,R)(Z, T, U, V,X, Y ) = 0. (5.13)

From (5.13), we can write easily

Q(
(r + 2n− 2)

n(n− 1)
g − ω ⊗ ω,R)(Z, T, U, V,X, Y ) = 0. (5.14)

equation (5.14) implies that one of the following two conditions may hold,

either (i) rank ( (r+2n−2)
n(n−1) g − ω ⊗ ω)(Z, T ) = 1,

or (ii) rank ( (r+2n−2)
n(n−1) g − ω ⊗ ω)(Z, T ) ≥ 1.

But the first condition can never hold, because if (i) hold, then at a point x

(r + 2n− 2)

n(n− 1)
g − ω ⊗ ω = λz ⊗ z, (5.15)

for z ∈ TXM and λ ∈ R.
which gives contradiction due to non-zero coefficient of g.

Because if (r+2n−2)
n(n−1) = 0 then we have r = −2(n− 1) which gives negative values of r for

n > 3. Hence the condition (ii) must hold and then from Lemma (2.1) we can write

R(X,Y, Z, T ) =
µ

2
(g − ω ⊗ ω) ∧ (g − ω ⊗ ω)(X,Y, Z, T ), (5.16)

for µ( 6= 0) ∈ R.
Again using Lemma (2.2), we have

W (X,Y, Z, T ) = 0. (5.17)
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Hence the manifold M is a conformally-flat manifold.
Now putting Z = V = ei in (5.14) and taking summation over i from 1 to n, we get

(r + 2n− 2)

n(n− 1)
[g(X,T )S(Y, U)− g(Y, T )S(X,U)

+ g(X,U)S(Y, T )− g(Y,U)S(T,X)]

+ ω(Y )ω(T )S(X,U)− ω(X)ω(T )S(Y, U)

+ ω(Y )ω(U)S(T,X)− ω(X)ω(U)S(T, Y ) = 0

(5.18)

Again putting X = T = ei in equation (5.18) and summing over i from 1 to n, we have

S(Y,U) =
r

(r + n− 1)
[
(r + 2n− 2)

n
g(Y,U)− (n− 1)ω(Y )ω(U)]. (5.19)

Equations (5.17) and (5.19) imply, the manifold M is a conformally-flat quasi-Einstein
manifold.

Theorem 5.4. Let (M, g) be an n > 3 dimensional Riemannian manifold equipped with
a semi-symmetric metric connection ∇. If ρ is a parallel unit vector field with respect to
the connection ∇ and (R(X,Y ) C)(Z, T, U, V )− (C(X,Y ) R)(Z, T, U, V ) = 0, then M be
a conformally-flat quasi-Einstein manifold.

Proof. Since (R(X,Y ) C)(Z, T, U, V )− (C(X,Y ) R)(Z, T, U, V ) = 0,
from (5.1) and (5.2), we have

(R(X,Y ) C)(Z, T, U, V )− (C(X,Y ) R)(Z, T, U, V )

+Q(
2

n
g − ω ⊗ ω,R)(Z, T, U, V,X, Y ) = 0.

(5.20)

Using (3.18) and (4.3) in (5.20), we get

Q(
(r + 2n− 2)

n(n− 1)
g − ω ⊗ ω,R)(Z, T, U, V,X, Y ) = 0. (5.21)

Now using the method of proof of theorem (5.3), we can prove easily that the manifold
M is a conformally-flat quasi-Einstein manifold.
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