A Note on Semi-Symmetric Metric Connection in Riemannian Manifold

Braj Bhushan Chaturvedi ${ }^{1, *}$ and Pankaj Pandey ${ }^{2}$
${ }^{1}$ Department of Pure \& Applied Mathematics, Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.), India e-mail : brajbhushan25@gmail.com
${ }^{2}$ School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
e-mail : pankaj.anvarat@gmail.com

Abstract

In this paper we have discussed the Riemannian manifolds admitting a semi-symmetric metric connection $\bar{\nabla}$ by taking ρ as a unit parallel vector field with respect to Levi-Civita connection ∇. We found that the manifold M be concircular semi-symmetric with respect to Levi-Civita connection ∇ if and only if it is semi-symmetric with respect to ∇ and M be a quasi-Einstein manifold if it will be concircularly-flat with respect to semi-symmetric metric connection $\bar{\nabla}$. Also, we have shown that a semisymmetric manifold M be a conformally-flat quasi-Einstein manifold under the condition $R . \bar{C}=0$ or $R . \bar{C}-C \cdot \bar{R}=0$ for a concircular curvature tensor C.

MSC: 53C05; 53C07; 53C25
Keywords: semi-symmetric metric connection; quasi-Einstein manifold; conformally-flat manifold; concircular semi-symmetric manifold

Submission date: 30.09.2017 / Acceptance date: 15.03.2019

1. Introduction

Let (M, g) be an n-dimensional Riemannian manifold with Riemannian connection ∇. The torsion tensor T of the connection ∇ in a Riemannian manifold is defined by

$$
\begin{equation*}
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y] \tag{1.1}
\end{equation*}
$$

where X and Y are vector fields.
In 1932, Hayden introduced the idea of metric connection with non-vanishing torsion tensor on a Riemannian manifold. The basic concept of a semi-symmetric linear connection in a differentiable manifold, is given by Friedmann and Shouten in 1924. A linear connection ∇ is said to be a semi-symmetric connection if the torsion tensor of the connection has the form

$$
\begin{equation*}
T(X, Y)=\omega(Y) X-\omega(X) Y \tag{1.2}
\end{equation*}
$$

[^0]A connection is said to be a metric connection if the covariant derivative of a Riemannian metric g vanishes, i. e., $\nabla g=0$.

In 1970, Yano [1] discussed the Riemannian manifold admitting a semi-symmetric metric connection with vanishing curvature tensor and proved certain results. Recently, the semi-symmetric metric connection is studied by U. C. De and S. C. Biswas [2] in a Riemannian manifold, a semi-symmetric non-metric connection by B. B. Chaturvedi and P. N. Pandey [3]. In 2008, C. Murathan and C. Özgür [4] considered the semi-symmetric metric connection with a unit parallel vector field ρ and obtained some interesting results on a Riemannian manifold. In 2014, Ahmet Yildiz and Azime cetinkaya [5] found some conditions on a Riemannian manifold equipped with a semi-symmetric metric connection to be Projectively semi-symmetric manifold, conformally flat and quasi-Einstein manifold.

If a Riemannian manifold satisfies $R . R=0$ then it is said to be a semi-symmetric manifold. For a concircular tensor C, the Riemannian manifold is called concircular semi-symmetric manifold if $R . C=0$.

2. PRELIminaries

If the Ricci tensor S of the connection ∇ in a Riemannian manifold (M, g) satisfies

$$
\begin{equation*}
S=\frac{r}{n} g(X, Y), \tag{2.1}
\end{equation*}
$$

then the manifold is called an Einstein manifold, where r is the scalar curvature tensor. A manifold is called a quasi-Einstein manifold if the Ricci tensor have the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \omega(X) \omega(Y) \tag{2.2}
\end{equation*}
$$

where a, b are scalars and ω is a non-zero 1 -form.
Deszcz, R. [6] defined two tensor fields R.T and $Q(E, T)$ for a tensor field T of type $(0, k)$ and $(0, k+2), k \geq 1$ on (M, g) respectively by

$$
\begin{align*}
(R(X, Y) T)\left(X_{1}, X_{2}, \ldots ., X_{k}\right)= & -T\left(R(X, Y) X_{1}, X_{2}, \ldots, X_{k}\right)-. \\
& -T\left(X_{1}, X_{2}, \ldots \ldots, R(X, Y) X_{k}\right), \tag{2.3}
\end{align*}
$$

and

$$
\begin{align*}
Q(E, T)\left(X_{1}, X_{2}, \ldots . X_{k}, X, Y\right)= & -T\left(\left(X \wedge_{E} Y\right) X_{1}, X_{2}, \ldots ., X_{k}\right)-\ldots \ldots \\
& -T\left(X_{1}, X_{2}, \ldots,\left(X \wedge_{E} Y\right) X_{k}\right) \tag{2.4}
\end{align*}
$$

Where $X \wedge_{E} Y$ defined by

$$
\begin{equation*}
\left(X \wedge_{E} Y\right) Z=E(Y, Z) X-E(X, Z) Y \tag{2.5}
\end{equation*}
$$

for a tensor field E of type $(0,2)$.
The Weyl tensor W and the concircular tensor C of a Riemannian manifold (M, g) are defined by

$$
\begin{align*}
W(X, Y, Z, T)= & R(X, Y, Z, T)-\frac{1}{n-2}[S(Y, Z) g(X, T)-S(X, Z) g(Y, T) \\
& +g(Y, Z) S(X, T)-g(X, Z) S(Y, T)] \tag{2.6}\\
& +\frac{r}{(n-1)(n-2)}[g(Y, Z) g(X, T)-g(X, Z) g(Y, T)]
\end{align*}
$$

and

$$
\begin{equation*}
C(X, Y, Z, T)=R(X, Y, Z, T)-\frac{r}{n(n-1)}[g(Y, Z) g(X, T)-g(X, Z) g(Y, T)] \tag{2.7}
\end{equation*}
$$

where r denotes the scalar curvature of M.
Deszcz, R. gave two lemmas as follows:
Lemma 2.1 ([7]). Let (M, g) be an $n \geq 3$ dimensional Riemannian manifold. Let at a point $x \in M$, a non-zero symmetric tensor E of type $(0,2)$ and a generalized curvature tensor B are given such that $Q(E, B)=0$. Moreover, let V be a vector at x such that the scalar $\rho=a(V)$ is non zero, where a is defined by $a(X)=E(X, V), X \in T_{X} M$.
i) If $E=\frac{1}{\rho} a \otimes a$, then at x we have $X_{X, Y, Z} a(X) B(Y, Z)$ where $X, Y, Z \in T_{X} M$.
ii) If $E-\frac{1}{\rho} a \otimes a$ is non-zero, then at x we have $B=\frac{\gamma}{2} E \wedge E, \gamma \in R$. Moreover, in both cases, at x we have $B . B=Q(\operatorname{Ric}(B), B)$.
Lemma 2.2 ([8]). Let (M, g) be an $n \geq 4$ dimensional semi-Riemannian manifold and E be the symmetric tensor of type $(0,2)$ at $x \in M$ defined by $E=\alpha g+\beta \omega \otimes \omega, \omega \in T_{X} M$, $\alpha, \beta \in R$. If at x, the curvature tensor R is expressed by $R=\frac{\gamma}{2} E \wedge E, \gamma \in R$, then the Weyl tensor vanishes at x.

3. Semi-Symmetric Metric Connection

If ∇ be the Levi-Civita connection of a Riemannian manifold M, then we define

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\omega(Y) X-g(X, Y) \rho, \tag{3.1}
\end{equation*}
$$

where $\omega(X)=g(X, \rho)$ and X, Y, ρ are vector fields on M. If R and \bar{R} be the Riemannian curvature tensor with respect to ∇ and $\bar{\nabla}$ respectively, then Yano K. [9] derived a relation between R and \bar{R} given by

$$
\begin{align*}
\bar{R}(X, Y, Z, T)= & R(X, Y, Z, T)-\theta(Y, Z) g(X, T)+\theta(X, Z) g(Y, T) \tag{3.2}\\
& -g(Y, Z) \theta(X, T)+g(X, Z) \theta(Y, T)
\end{align*}
$$

where

$$
\begin{equation*}
\theta(X, Y)=\left(\nabla_{X} \omega\right) Y-\omega(X) \omega(Y)+\frac{1}{2} g(X, Y) \tag{3.3}
\end{equation*}
$$

Now, if ρ be a parallel unit vector field with respect to the connection ∇, then

$$
\begin{equation*}
\nabla \rho=0 \text { and }\|U\|=1 \tag{3.4}
\end{equation*}
$$

From (3.4), we can easily determine

$$
\begin{equation*}
\left(\nabla_{X} \omega\right) Y=0 \tag{3.5}
\end{equation*}
$$

Now from equation (3.3), we have θ is a symmetric tensor field of type $(0,2)$.
We know that the Kulkarni-Nomizu product $\bar{\pi}$ of two tensors of type $(0,2)$ is defined by

$$
\begin{align*}
(g \bar{\wedge})(X, Y, Z, T)= & \theta(Y, Z) g(X, T)-\theta(X, Z) g(Y, T)+ \tag{3.6}\\
& g(Y, Z) \theta(X, T)-g(X, Z) \theta(Y, T) .
\end{align*}
$$

Then equation (3.2) can be written as

$$
\begin{equation*}
\bar{R}(X, Y, Z, T)=R(X, Y, Z, T)-(g \bar{\wedge} \theta)(X, Y, Z, T) \tag{3.7}
\end{equation*}
$$

By straight forward calculation, we can easily write

$$
\begin{equation*}
R(X, Y) \rho=0 \tag{3.8}
\end{equation*}
$$

Contracting above equation, we get

$$
\begin{equation*}
S(Y, \rho)=\omega(L Y)=0 \tag{3.9}
\end{equation*}
$$

where S denotes the Ricci tensor of the connection ∇ and L is the Ricci operator defined by $g(L X, Y)=S(X, Y)$.
Contracting (3.2), we have

$$
\begin{equation*}
\bar{S}(Y, Z)=S(Y, Z)-(n-2)[g(Y, Z)-\omega(Y) \omega(Z)] \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{r}=r-(n-1)(n-2) . \tag{3.11}
\end{equation*}
$$

Using (3.7), (3.10) and (3.11), we obtained

$$
\begin{equation*}
\bar{W}(X, Y, Z, T)=W(X, Y, Z, T) \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{C}(X, Y, Z, T)=C(X, Y, Z, T)-(g \bar{\wedge} \theta)(X, Y, Z, T)+G(X, Y, Z, T), \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
G(X, Y, Z, T)=\frac{(n-2)}{n}[g(Y, Z) g(X, T)-g(X, Z) g(Y, T)] . \tag{3.14}
\end{equation*}
$$

From equation (3.13), we can write

$$
\begin{align*}
& \bar{C}(X, Y) Z=C(X, Y) Z+g(Y, Z) \omega(X) \rho-g(X, Z) \omega(Y) \rho \\
& +\omega(Y) \omega(Z) X-\omega(X) \omega(Z) Y-\frac{2}{n}[g(Y, Z) X-g(X, Z) Y] \tag{3.15}
\end{align*}
$$

Using (2.3) and (2.4) in (3.14), two important conditions also can be obtained easily

$$
\begin{equation*}
(R(X, Y) G)(Z, T, U, V)=0 \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
(G(X, Y) R)(Z, T, U, V)=\frac{(n-2)}{n} Q(g, R)(Z, T, U, V, X, Y) \tag{3.17}
\end{equation*}
$$

And from (2.3), (2.4) and (2.7), we have

$$
\begin{align*}
(C(X, Y) R)(Z, T, U, V)= & (R(X, Y) R)(Z, T, U, V) \\
& -\frac{r}{n(n-1)} Q(g, R)(Z, T, U, V, X, Y) . \tag{3.18}
\end{align*}
$$

4. Concircular Semi-Symmetric Manifold and Quasi-Einstein Manifold

From equation (2.3), we can write

$$
\begin{align*}
& (R(X, Y) C)(Z, T, U, V)=-C(R(X, Y) Z, T, U, V)-C(Z, R(X, Y) T, U, V) \\
& -C(Z, T, R(X, Y) U, T)-C(Z, T, U, R(X, Y) V) \tag{4.1}
\end{align*}
$$

Using (2.7) in above equation, we have

$$
\begin{align*}
& (R(X, Y) C)(Z, T, U, V)=-R(R(X, Y) Z, T, U, V)-R(Z, R(X, Y) T, U, V) \\
& -R(Z, T, R(X, Y) U, T)-R(Z, T, U, R(X, Y) V) \tag{4.2}
\end{align*}
$$

Using (2.3) in (4.2), we get

$$
\begin{equation*}
(R(X, Y) C)(Z, T, U, V)=(R(X, Y) R)(Z, T, U, V) \tag{4.3}
\end{equation*}
$$

The above equation shows that $R . C$ vanishes if and only if $R . R$ vanishes. Hence we can state:

Theorem 4.1. If M be an n-dimensional Riemannian manifold, then M be a concircular semi-symmetric manifold with respect to the the connection ∇ if and only if it is a semisymmetric manifold with respect to ∇.

Now we can compose:
Theorem 4.2. Let (M, g) be a Riemannian manifold equipped with a semi-symmetric metric connection $\bar{\nabla}$. If the manifold M be a concircularly flat manifold with respect to $\bar{\nabla}$, then M is a quasi-Einstein manifold with respect to ∇.
Proof. Let (M, g) be a Riemannian manifold equipped with a semi-symmetric metric connection $\bar{\nabla}$.
Then from equation (2.7), we have

$$
\begin{equation*}
\bar{C}(X, Y, Z, T)=\bar{R}(X, Y, Z, T)-\frac{\bar{r}}{n(n-1)}[g(Y, Z) g(X, T)-g(X, Z) g(Y, T)] . \tag{4.4}
\end{equation*}
$$

Using (3.2) and (3.11) in (4.4), we get

$$
\begin{align*}
\bar{C}(X, Y, Z, T)= & R(X, Y, Z, T)+\omega(X) \omega(T) g(Y, Z)-\omega(Y) \omega(T) g(X, Z) \\
& +\omega(Y) \omega(Z) g(X, T)-\omega(X) \omega(Z) g(Y, T) \tag{4.5}\\
& -\frac{(r+2 n-2)}{n(n-1)}[g(Y, Z) g(X, T)-g(X, Z) g(Y, T)]
\end{align*}
$$

If the manifold M be concircularly flat with respect to semi-symmetric metric connection $\bar{\nabla}$, then from (4.5) we can write

$$
\begin{align*}
R(X, Y, Z, T)= & \omega(Y) \omega(T) g(X, Z)-\omega(X) \omega(T) g(Y, Z) \\
& +\omega(X) \omega(Z) g(Y, T)-\omega(Y) \omega(Z) g(X, T) \tag{4.6}\\
& +\frac{(r+2 n-2)}{n(n-1)}[g(Y, Z) g(X, T)-g(X, Z) g(Y, T)]
\end{align*}
$$

Putting $X=T=e_{i}$ and taking summation over i from 1 to n in (4.6), we get

$$
\begin{equation*}
S(Y, Z)=-\frac{\left(r-n^{2}+2 n-2\right)}{n} g(Y, Z)-(n-2) \omega(Y) \omega(Z) \tag{4.7}
\end{equation*}
$$

Hence the manifold M is a quasi-Einstein manifold.

5. Conformally-Flat Quasi-Einstein Manifold

Theorem 5.1. Let (M, g) be a Riemannian manifold equipped with a semi-symmetric metric connection $\bar{\nabla}$. If ρ is a parallel unit vector field with respect to the connection ∇, then the following two relations hold:

$$
\begin{equation*}
\text { (i) }(R(X, Y) \bar{C})(Z, T, U, V)=(R(X, Y) C)(Z, T, U, V) \tag{5.1}
\end{equation*}
$$

and

$$
\text { (ii) } \begin{align*}
& (\bar{C}(X, Y) R)(Z, T, U, V)=(C(X, Y) R)(Z, T, U, V) \\
& -Q\left(\frac{2}{n} g-\omega \otimes \omega, R\right)(Z, T, U, V, X, Y) . \tag{5.2}
\end{align*}
$$

Proof. Since ρ is a parallel unit vector field, we have

$$
\begin{equation*}
(R(X, Y) \theta)(Z, T)=0 \text { and }(R(X, Y) G)(Z, T, U, V)=0 \tag{5.3}
\end{equation*}
$$

Now, from (2.3) and (3.13), we can write

$$
\begin{align*}
& (R(X, Y) \bar{C})(Z, T, U, V)=(R(X, Y) C)(Z, T, U, V) \\
& -g(Z, T) \bar{\wedge}(R(X, Y) \theta)(U, V)-(R(X, Y) G)(Z, T, U, V) \tag{5.4}
\end{align*}
$$

Using (5.3) in (5.4), we get

$$
\begin{equation*}
(R(X, Y) \bar{C})(Z, T, U, V)=(R(X, Y) C)(Z, T, U, V) \tag{5.5}
\end{equation*}
$$

Hence the first part of the theorem is completed.
Again from (2.3) and (3.13), we can write

$$
\begin{align*}
& (\bar{C}(X, Y) R)(Z, T, U, V)=-R(\bar{C}(X, Y) Z, T, U, V)-R(Z, \bar{C}(X, Y) T, U, V) \\
& -R(Z, T, \bar{C}(X, Y) U, V)-R(Z, T, U, \bar{C}(X, Y) V) \tag{5.6}
\end{align*}
$$

Using (3.15) in (5.6), we have

$$
\begin{align*}
& (\bar{C}(X, Y) R)(Z, T, U, V)=(C(X, Y) R)(Z, T, U, V) \\
& +\omega(X) \omega(Z) R(Y, T, U, V)-\omega(Y) \omega(Z) R(X, T, U, V) \\
& +\omega(X) \omega(T) R(Z, Y, U, V)-\omega(Y) \omega(T) R(Z, X, U, V) \\
& +\omega(X) \omega(U) R(Z, T, Y, V)-\omega(Y) \omega(U) R(Z, T, X, V) \\
& +\omega(X) \omega(V) R(Z, T, U, Y)-\omega(Y) \omega(V) R(Z, T, U, X) \tag{5.7}\\
& -\frac{2}{n}[g(X, Z) R(Y, T, U, V)-g(Y, Z) R(X, T, U, V) \\
& +g(X, T) R(Z, Y, U, V)-g(Y, T) R(Z, X, U, V) \\
& +g(X, U) R(Z, T, Y, V)-g(Y, U) R(Z, T, X, V) \\
& +g(X, V) R(Z, T, U, Y)-g(Y, V) R(Z, T, U, X)]
\end{align*}
$$

Using (2.4) in (5.7), we get

$$
\begin{align*}
& (\bar{C}(X, Y) R)(Z, T, U, V)=(C(X, Y) R)(Z, T, U, V) \\
& -Q(g-\omega \otimes \omega, R)(Z, T, U, V, X, Y) \tag{5.8}\\
& +(G(X, Y) R)(Z, T, U, V)
\end{align*}
$$

Using (3.17) in (5.8), we have

$$
\begin{align*}
& (\bar{C}(X, Y) R)(Z, T, U, V)=(C(X, Y) R)(Z, T, U, V) \\
& -Q\left(\frac{2}{n} g-\omega \otimes \omega, R\right)(Z, T, U, V, X, Y) \tag{5.9}
\end{align*}
$$

Hence the second part of the theorem is completed.

Now, from above theorem, we can state:
Theorem 5.2. Let (M, g) be a Riemannian manifold equipped with a semi-symmetric metric connection $\bar{\nabla}$. If ρ is a parallel unit vector field with respect to the connection ∇, then M be a concircular semi-symmetric manifold if and only if

$$
\begin{equation*}
(R(X, Y) \bar{C})(Z, T, U, V)=0 \tag{5.10}
\end{equation*}
$$

Theorem 5.3. Let (M, g) be an $n>3$ dimensional semi-symmetric Riemannian manifold equipped with a semi-symmetric metric connection $\bar{\nabla}$. If ρ is a parallel unit vector field with respect to the connection ∇ and $(\bar{C}(X, Y) R)(Z, T, U, V)=0$ then M be a conformally flat quasi-Einstein manifold.

Proof. Since $(\bar{C}(X, Y) R)(Z, T, U, V)=0$, from equation (5.2) we can write

$$
\begin{equation*}
(C(X, Y) R)(Z, T, U, V)=Q\left(\frac{2}{n} g-\omega \otimes \omega, R\right)(Z, T, U, V, X, Y) \tag{5.11}
\end{equation*}
$$

Using (3.18) in (5.11), we have

$$
\begin{align*}
(R(X, Y) R)(Z, T, U, V) & -\frac{r}{n(n-1)} Q(g, R)(Z, T, U, V, X, Y) \tag{5.12}\\
& =Q\left(\frac{2}{n} g-\omega \otimes \omega, R\right)(Z, T, U, V, X, Y)
\end{align*}
$$

Since the manifold M is semi-symmetric, from (5.12) we have

$$
\begin{equation*}
\frac{r}{n(n-1)} Q(g, R)(Z, T, U, V, X, Y)+Q\left(\frac{2}{n} g-\omega \otimes \omega, R\right)(Z, T, U, V, X, Y)=0 . \tag{5.13}
\end{equation*}
$$

From (5.13), we can write easily

$$
\begin{equation*}
Q\left(\frac{(r+2 n-2)}{n(n-1)} g-\omega \otimes \omega, R\right)(Z, T, U, V, X, Y)=0 \tag{5.14}
\end{equation*}
$$

equation (5.14) implies that one of the following two conditions may hold,
either (i) $\operatorname{rank}\left(\frac{(r+2 n-2)}{n(n-1)} g-\omega \otimes \omega\right)(Z, T)=1$,
or (ii) $\operatorname{rank}\left(\frac{(r+2 n-2)}{n(n-1)} g-\omega \otimes \omega\right)(Z, T) \geq 1$.
But the first condition can never hold, because if (i) hold, then at a point x

$$
\begin{equation*}
\frac{(r+2 n-2)}{n(n-1)} g-\omega \otimes \omega=\lambda z \otimes z, \tag{5.15}
\end{equation*}
$$

for $z \in T_{X} M$ and $\lambda \in R$.
which gives contradiction due to non-zero coefficient of g.
Because if $\frac{(r+2 n-2)}{n(n-1)}=0$ then we have $r=-2(n-1)$ which gives negative values of r for $n>3$. Hence the condition (ii) must hold and then from Lemma (2.1) we can write

$$
\begin{equation*}
R(X, Y, Z, T)=\frac{\mu}{2}(g-\omega \otimes \omega) \wedge(g-\omega \otimes \omega)(X, Y, Z, T) \tag{5.16}
\end{equation*}
$$

for $\mu(\neq 0) \in R$.
Again using Lemma (2.2), we have

$$
\begin{equation*}
W(X, Y, Z, T)=0 \tag{5.17}
\end{equation*}
$$

Hence the manifold M is a conformally-flat manifold.
Now putting $Z=V=e_{i}$ in (5.14) and taking summation over i from 1 to n, we get

$$
\begin{align*}
& \frac{(r+2 n-2)}{n(n-1)}[g(X, T) S(Y, U)-g(Y, T) S(X, U) \\
& +g(X, U) S(Y, T)-g(Y, U) S(T, X)] \tag{5.18}\\
& +\omega(Y) \omega(T) S(X, U)-\omega(X) \omega(T) S(Y, U) \\
& +\omega(Y) \omega(U) S(T, X)-\omega(X) \omega(U) S(T, Y)=0
\end{align*}
$$

Again putting $X=T=e_{i}$ in equation (5.18) and summing over i from 1 to n, we have

$$
\begin{equation*}
S(Y, U)=\frac{r}{(r+n-1)}\left[\frac{(r+2 n-2)}{n} g(Y, U)-(n-1) \omega(Y) \omega(U)\right] . \tag{5.19}
\end{equation*}
$$

Equations (5.17) and (5.19) imply, the manifold M is a conformally-flat quasi-Einstein manifold.

Theorem 5.4. Let (M, g) be an $n>3$ dimensional Riemannian manifold equipped with a semi-symmetric metric connection $\bar{\nabla}$. If ρ is a parallel unit vector field with respect to the connection ∇ and $(R(X, Y) \bar{C})(Z, T, U, V)-(\bar{C}(X, Y) R)(Z, T, U, V)=0$, then M be a conformally-flat quasi-Einstein manifold.
Proof. Since $(R(X, Y) \bar{C})(Z, T, U, V)-(\bar{C}(X, Y) R)(Z, T, U, V)=0$, from (5.1) and (5.2), we have

$$
\begin{align*}
& (R(X, Y) C)(Z, T, U, V)-(C(X, Y) R)(Z, T, U, V) \\
& +Q\left(\frac{2}{n} g-\omega \otimes \omega, R\right)(Z, T, U, V, X, Y)=0 \tag{5.20}
\end{align*}
$$

Using (3.18) and (4.3) in (5.20), we get

$$
\begin{equation*}
Q\left(\frac{(r+2 n-2)}{n(n-1)} g-\omega \otimes \omega, R\right)(Z, T, U, V, X, Y)=0 . \tag{5.21}
\end{equation*}
$$

Now using the method of proof of theorem (5.3), we can prove easily that the manifold M is a conformally-flat quasi-Einstein manifold.

Acknowledgements

We would like to express my sincere thanks to the referee(s) for their valuable comments and suggestions on the manuscript. The second author expresses his thanks to UGC-New Delhi, India for the financial support.

References

[1] K. Yano, On semi-symmetric metric connections, Rev. Roumaine Math. Pures Appl. 15 (1970) 1579-1586.
[2] U.C. De, S.C. Biswas, On a type of semi-symmetric metric connection on a Riemannian manifold, Pub. Ins. Math. 61 (1997) 90-96.
[3] B.B. Chaturvedi, P.N. Pandey, Semi-symmetric non-metric connection on a Kähler manifold, Differ. Geom. Dyn. Syst. 10 (2008) 86-90.
[4] C. Murathan, C. ÖzgüR, Riemannian manifolds with a semi-symmetric metric connection satisfying some semi-symmetry conditions, Proceedings of Estonian Academy of Sciences 57 (2008) 210-216.
[5] A. Yildiz, A. Cetinkaya, Some semi-symmetry conditions on Riemannian manifolds, Facta Universitatis, Ser. Math. Inform. 29 (1) (2014) 1-11.
[6] R. Deszcz, On pseudo-symmetric spaces, Bull. Soc. Math. Belg. Ser. A 44 (1992) 1-34.
[7] R. Deszcz, M. Hotlos, On certain subclass of pseudo-symmetric manifolds, Pub. Math. Debrecen 53 (1998) 29-48.
[8] R. Deszcz, M. Hotlos, On some pseudo-symmetry type curvature condition, Tsukuba J. Math. 27 (2003) 13-30.

[^0]: *Corresponding author.

