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Abstract In this paper, we consider a positive linear operators P
[β]
n introduced by Jain [G.C. Jain,

Approximation of functions by a new class of linear positive operators, Jour. Austral. Math. Soc. 13

(3) (1972) 271–276] with the help of Poisson type distribution and study the Voronovskaya type result

of the operator then obtain an error estimate in terms of the higher order modulus of continuity of the

function being approximated and its A-statistical convergence. We also compute the corresponding rate

of A-statistical convergence for these operators.

MSC: 41A10; 41A25; 41A30; 41A63; 26A15

Keywords: Poisson distribution; Voronovskaya; A-statistical convergence

Submission date: 18.02.2017 / Acceptance date: 25.10.2021

1. Introduction and Definitions

Several extension and generalization of Bernstein polynomials have been given by var-
ious mathematician like Szâsz [1], Meyer-König and Zeller [2], Meir and Sharma [3],
Stancu [4] and Balázs [5]. In [6], Kajla and Acar have studied the blending type approx-
imation properties by generalized Bernstein-Durrmeyer type operators. Deo and Bhard-
waj [7] considered the multidimensional Bernstein operators and its Durrmeyer variants
on simplex. Mirakyan [8] has also given another modification with the help of the Poisson
distribution.

Later on in the same way with the help of a Poisson type distribution,

wβ (k, α) =
α

k!
(α+ kβ)

k−1
e−(α+kβ), k ∈ N0 = {0} ∪ N,
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for 0 < α <∞ and |β| < 1, Jain [9] defined the following class of positive linear operators,

P [β]
n (f ;x) =

∞∑
k=0

wβ (k;nx) f

(
k

n

)
, x ≥ 0, (1.1)

where β ∈ [0, 1) and f ∈ C(R+), the space of all real valued continuous functions defined
on R+ = [0,∞). Notice that the parameter β may depend on the natural number n.
Original Szâsz-Mirakyan operator can easily be obtained for β = 0. Deo et al. [10,
11] studied another modification of Bernstein operators and Gupta [12] introduced q
analogue of Bernstein operator. For better approximation of well-known Szâsz-Mirakyan
operators [1], Jain and Pethe [13] generalized the operators as:

S[γ]
n (f ;x) = (1 + nγ)

−x/γ
∞∑
k=0

(
γ +

1

n

)−k
x(k,−γ)

k!
f

(
k

n

)
,

where x(k,−γ) = x (x+ γ) ... (x+ (k − 1) γ) , x(0,−γ) = 1 and f is any function of expo-
nential type such that |f (t)| ≤ KeMt (t ≥ 0) for some finite constants K,M > 0 and
γ = (γn)n∈N.

Very recently, Bodur [14] introduced a new modification of modified Lupas-Jain oper-
ators based on function φ having some properties. Various researchers worked on Jain’s
operators, one can refer ([15], [16], [17]).

Now the following lemmas follow from [9], for the operators P
[β]
n mentioned by (1.1).

Lemma 1.1 ([9]). Let ei(x) = xi, i = 0, 1, 2, then for fixed x ∈ [0,∞), n ∈ N and
β ∈ [0, 1), we have

(i) P
[β]
n (e0;x) = 1,

(ii) P
[β]
n (e1;x) = 1

1−βx,

(iii) P
[β]
n (e2;x) = 1

(1−β)2x
2 + 1

n(1−β)3x.

Lemma 1.2. For x ∈ [0,∞) , n ∈ N, β ∈ [0, 1) and ϕx(t) = t− x, we have

(i) P
[β]
n (ϕx;x) = β

1−βx,

(ii) P
[β]
n (ϕ2

x;x) = β2

(1−β)2x
2 + 1

n(1−β)3x.

This paper is organised in four sections. The first section is devoted to definitions and

auxiliary properties of operators P
[β]
n given by (1.1). In the second section, we obtain

the Voronovskaya type result of the operator and an error estimate of the function being
approximated. In the third section, we give some definitions and properties of statistical
and A-statistical convergence followed by statistical approximation theorems. In the last
section, we compute the corresponding A-statistical rates of approximation and its order.

2. Voronovskaya Type Results & Error Estimation

In this section we compute the Voronovskaya type results of these operators P
[β]
n given

by (1.1).
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Let f ∈ CB [0,∞) be the space of all real valued functions with bounded and uni-
formly continuous on [0,∞), equipped with the norm ‖f‖ = sup

x∈[0,∞)

|f(x)| . The Peetre’s

K2−functional is defined by

K2 = inf
{
‖f − g‖+ δ ‖g′′‖ : g ∈ C2

B [0,∞)
}
, δ > 0

where C2
B [0,∞) = {g ∈ CB [0,∞) : g′, g′′ ∈ CB [0,∞)} and the norm

‖f‖C2
B [0,∞) = ‖f‖CB + ‖f ′‖CB + ‖f ′′‖CB . (2.1)

From [18], there exists a positive constant C such that

K2(f, δ) ≤ Cω2

(
f,
√
δ
)

(2.2)

and

ω2(f,
√
δ) = sup

0<h≤δ
sup

x∈[0,∞)

|f(x+ 2h)− 2f(x+ h) + f(x)| .

Theorem 2.1. Let f ∈ CB [0,∞), and β → 0 as n→∞, then for every x ∈ [0,∞), β ∈
[0, 1) and for C > 0, we have∣∣∣P [β]

n (f ;x)− f(x)
∣∣∣ ≤ Cω2

(
f,

√
β

1− β
x

)
.

Proof. Let g ∈ C2
B . Using Taylor’s expansion

g(t) = g(x) + g′(x)(t− x) +

∫ t

x

(t− u)g′′(u)du.

From Lemma 1.2, we have

P [β]
n (g;x)− g(x) = P [β]

n (g′ (x) (t− x) ;x) + P [β]
n

(∫ t

x

(t− u)g′′(u)du;x

)
.

We know that∣∣∣∣∫ t

x

(t− u)g′′(u)du

∣∣∣∣ ≤ (t− u)2 ‖g′′‖ .

Therefore∣∣∣P [β]
n (g;x)−g(x)

∣∣∣ ≤ P [β] ((t− x) ;x) ‖g′‖+ P [β]
n

(
(t− u)

2
;x
)
‖g′′‖

=
β

1− β
x ‖g′‖+

(
β2x2

(1− β)
2 +

x

n(1− β)
3

)
‖g′′‖

≤ β

1− β
x {‖g′‖+ ‖g′′‖}

≤ β

1− β
x ‖g′′‖ .

By Lemma 1.1, we have∣∣∣P [β]
n (g;x)

∣∣∣ ≤ ∞∑
k=0

α

k!
(α+ kβ)

k−1
e−(α+kβ)g

(
k

n

)
≤ ‖g‖ .
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Hence∣∣∣P [β]
n (g;x)−g(x)

∣∣∣ ≤ ∣∣∣P [β]
n ((g − f);x)− (g − f)(x)

∣∣∣+
∣∣∣P [β]
n (g;x)−g(x)

∣∣∣
≤ 2 ‖g − f‖+

(
β

1− β
x

)
‖g′′‖ .

Taking the infimum on the right side over all g ∈ C2
B and using (2.2), we get the required

result.

3. A-Statistical Convergence

In this section of the paper, we use concept of statistical convergence and study the

Korovkin type approximation theorem for the operators P
[β]
n . Before we present the main

results, we shall recall some definitions and results on the statistical and A-statistical
convergence. In the year 1951, Fast [19] studied the definition of statistical convergence
for sequences of real numbers as:

Let K be a subset of natural numbers N and Kj = {n ≤ j : n ∈ N}. If limit exists,
then the natural density of K is defined by

δ(K) = lim
j

1

j
|Kj | ,

where vertical bars indicating the number of elements in the enclosed set. A sequence
(xn)n is said to be statistically convergent to a number L, if for every ε > 0, the natural
density of the set

Kε = {n ∈ N : |xn − L| ≥ ε}
is zero, i.e.,

lim
n

1

n
|{n ≤ j : |xn − L| ≥ ε}| = 0.

We denote this statistical limit by st− lim
n
xn = L (see [19–22]).

Let A = (ajn) , j, n = 1, 2, ..., be a non-negative regular summability matrix. A
sequence (xn)n is said to be A−statistically convergent to a number L, if for every ε > 0,

lim
j

∑
n:|xn−L|≥ε

ajn = 0,

holds. We denote this limit by stA − limnxn = L. We note that by taking A = C1,
the Cesàro matrix, A−statistical convergence reduce to ordinary convergence. Kolk [21]
studied A−statistical convergence is stronger than ordinary convergence.

A−statistical convergence may also be given in normed spaces. Suppose (X, ‖.‖) is a
normed space and v = (vk) is a sequence. This sequence is A−statistically convergent to
v0 ∈ X, if for every ε > 0, δA {k ∈ N : ‖vk − v0‖ ≥ ε} = 0 (see [23, 24]).

Now A = [ajn] (j, n ∈ N) is a non-negative regular summability matrix. Assume that
for each t ∈ [0,∞), (α∗n(t))n∈N is a sequence in [0,∞) satisfying

stA − lim
n
α∗n(t) = t
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then we have

stA − lim
n

(t− α∗n(t)) = 0.

Gadjiev and Orhan [25] have explored a new research area, the use of statistical conver-
gence in approximation theory and they investigated the Korovkin type approximation
theorems via statistical convergence. Later on Korovkin type approximation theorems
are introduced for A-statistical convergence by Duman et al. [26]. İspir and Gupta [27]
studied approximation properties and estimate the rates of A−statistical convergence of
Kantorovich variant of generalized Bernstein type operators. Using A-statistical and sta-
tistical convergence some approximating operators are studied by several mathematicians
[28, 29].

In this section A = [ajn] is a non-negative regular summability matrix and β, given
in definition of (1.1), will denote the sequence β := {βn} such that

stA − lim
n
βn = 0 (3.1)

with βn ∈ [0, 1). Notice that, the present condition (3.1) includes the given condition for
β of Theorem (2.1) in [9], its converse is not true. For example, if we define a sequence
(βn) such that

βn :=

{ √
n, if n is a square,
n otherwise

then observe that (3.1) holds true with the choice of

A = C1, the Cesaro matrix; but βn is a non-convergent sequence in the usual sense.

Theorem 3.1. Let A = [ajn] is a non-negative regular summability matrix and let β :=
{βn} be a sequence satisfying the condition (3.1) with βn ∈ [0, 1) for all n ∈ N . Then,
for every f ∈ C[0,∞) and for each compact interval [0, b] ⊂ [0,∞) uniformly

stA − lim
n

∣∣∣P [β]
n (ei;x)− ei (x)

∣∣∣ = 0; ei(t) = ti, i = 0, 1, 2.

Proof. From Lemma 1.1, obviously stA − lim
n

∣∣∣P [β]
n (e0;x)− 1

∣∣∣ = 0.

∣∣∣P [β]
n (e1;x)− x

∣∣∣ =

∣∣∣∣ βnx

1− βn

∣∣∣∣ ≤ b βn
1− βn

, x ∈ [0, b] ⊂ [0,∞), (3.2)

and from hypothesis we get stA − lim
n

βn
1−βn = 0.

Now, for a given ε > 0, we define

V =

{
n :

βn
1− βn

≥ ε

b

}
,

Therefore, by (3.2), we obtain∑
n:

∣∣∣P [β]
n (e1,x)−x

∣∣∣≥ε
ajn ≤

∑
n∈V

ajn.
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Taking limit as j →∞ and from the above inequality we get the result.
Similarly, for each x ∈ [0, b] ⊂ [0,∞)∣∣∣P [β]

n (e2;x)− x2
∣∣∣ =

∣∣∣∣∣ x2

(1− βn)
2 +

x

n(1− βn)
3 − x

2

∣∣∣∣∣
=

∣∣∣∣∣x2βn(2− βn)

(1− βn)
2 +

x

n(1− βn)
3

∣∣∣∣∣
≤ b2 βn(2− βn)

(1− βn)
2 + b

1

n(1− βn)
3

≤ A

{
βn(2− βn)

(1− βn)
2 +

1

n(1− βn)
3

}
, (3.3)

where A = max
{
b2, b

}
. Now, for a given ε > 0, define

T =

{
n :

βn(2− βn)

(1− βn)
2 +

1

n(1− βn)
3 ≥

ε

A

}
,

T1 =

{
n :

βn(2− βn)

(1− βn)
2 ≥

ε

2b2

}

T2 =

{
n :

1

n(1− βn)
3 ≥

ε

2b

}
.

It is easy to see that T ⊆ T1 ∪ T2. Since stA − lim
n
βn = 0 we get stA − lim

n

βn(2−βn)
(1−βn)2

,

stA − lim
n

1
n(1−βn)3

. Therefore by (3.3), we obtain∑
n:

∣∣∣P [β]
n (e2,x)−x2

∣∣∣≥ε
ajn ≤

∑
n∈T

ajn ≤
∑
n∈T1

ajn +
∑
n∈T2

ajn.

Taking limit as j →∞, we reach the result.

Similarly, from Lemma 1.1 and by stA − lim
n
βn = 0 we have for each compact interval

[0, b] ⊂ [0,∞)

stA − lim
n

∥∥∥P [β]
n (e1 − xe0)

j
∥∥∥
C[0,b]

= 0, j = 1, 2.

Now we give a Korovkin type theorem for the operators P
[β]
n (f ;x) via A-statistical

convergence.

Theorem 3.2. Let A = [ajn] (j, n ∈ N) is a non-negative regular summability matrix and
let us suppose that β := {βn} is a sequence satisfying the condition (3.1) with βn ∈ [0, 1)
for all n ∈ N . Then, for each x ∈ [0, b] ⊂ [0,∞) and for every f ∈ C[0,∞), we have

stA − lim
n

∥∥∥P [β]
n (f ;x)− f(x)

∥∥∥
C[0,b]

= 0.

Proof. The result follows by Theorem 3.1 and from Theorem 1 in [25] (see also [26]). We
recall that Theorem 1 in [25] is given for statistical convergence but the proof also works
for A-statistical convergence.
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If we take A = I, identity matrix, then we have Theorem 2.1 in [9].

Remark. We now present an example of a sequence of positive linear operators sat-
isfying the conditions of Theorem 3.2 but that does not satisfy the conditions of Theorem
2.1 of [9].

Assume now that {un} is an A-statistically null sequence but not convergent. Notice
that, if A = (ajn) is a non-negative regular matrix such that lim

j
max
n
{ajn} = 0, then

A-statistical convergence is stronger than convergence [21]. Without loss of generality we
may assume that {un} is a non-negative; otherwise we would replace {un} by {|un|} .
Now define {Ln} on C [0,∞) by

Ln(f ;x) = (1 + un)P [β]
n (f ;x),

where
{
P

[β]
n

}
is the sequence of the operators given with (1.1). Now observe that

{
P

[β]
n

}
being convergent and {un} being A-statistical null, their product will also be A-statistical
null. Hence {Ln} will not be convergent to f but will be A-statistically convergent to f .

4. Rate of A-Statistical Convergence

Now we give the rate of A-statistical convergence for the operators P
[β]
n (f ;x) by using

the Peetre’s K-functional in the space C2
B [0,∞).

Theorem 4.1. Let A = [ajn] (j, n ∈ N) is a non-negative regular summability matrix
and let β := {βn} is a sequence satisfying the condition (3.1) with βn ∈ [0, 1) for all
n ∈ N . For each f ∈ CB [0,∞)∥∥∥P [β]

n (f ;x)− f(x)
∥∥∥
CB
≤ κ (f ; γn,x) ,

where κ (f ; γn,x) is the sequence of Peetre’s K-functional and

γn,x =
∥∥∥P [β]

n ((e1 − x);x)
∥∥∥
CB

+
∥∥∥P [β]

n ((e1 − x)
2
;x)
∥∥∥
CB

and stA − lim
n
γn,x = 0 for each fixed x ∈ [0,∞).

Proof. Applying Taylor expansion to the function f ∈ C2
B [0,∞), we get

P [β]
n (f, x)− f(x) = f ′(x)P [β]

n ((e1 − x);x) +
1

2
f ′′(ξ)P [β]

n ((e1 − x)2;x), ξ ∈ (t, x).

Hence ∥∥∥P [β]
n (f ;x)− f(x)

∥∥∥
CB

≤ ‖f ′‖CB
∥∥∥P [β]

n ((e1 − x);x)
∥∥∥
C[0,∞)

+ ‖f ′′‖CB
∥∥∥P [β]

n ((e1 − x)
2
;x)
∥∥∥
C[0,∞)

. (4.1)

Using (2.1) and (4.1), for each g ∈ C2
B [0,∞),∥∥∥P [β]

n (g;x)−g(x)
∥∥∥
C2
B

=
(∥∥∥P [β]

n ((e1−x);x)
∥∥∥
C[0,∞)

+
∥∥∥P [β]

n ((e1−x)
2
;x)
∥∥∥
C[0,∞)

)
‖g‖C2

B

= γn,x‖g‖C2
B
.
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For each f ∈ CB [0,∞) and g ∈ C2
B [0,∞),∥∥∥P [β]

n (f ;x)−f(x)
∥∥∥
C2
B

≤
∥∥∥P [β]

n (f ;x)−P [β]
n (g;x)

∥∥∥
CB

+
∥∥∥P [β]

n (g;x)−g(x)
∥∥∥
C2
B

+‖g−f‖CB

≤2‖g − f‖CB +
∥∥∥P [β]

n (g;x)− g(x)
∥∥∥
C2
B

≤2‖g − f‖CB + γn,x‖g‖C2
B
≤ 2

(
‖g − f‖CB + γn,x‖g‖C2

B

)
.

Taking infimum over g ∈ C2
B [0,∞), we get∥∥∥P [β]

n (f, x)− f(x)
∥∥∥
C2
B

≤ κ (f ; γn,x) .

Since stA − lim
n
βn = 0, with βn ∈ [0, 1) ,

we get stA − lim
n
γn,x = 0, therefore stA − lim

n
κ (f ; γn,x) = 0.

Now following [26], we would like to find the order of A-statistical approximation for

the sequence of operators
{
P

[β]
n

}
given by (1.1).

We recall some definitions and notations. Let A = (ank) is a non-negative regu-
lar summability matrix and let (bj) be positive non-increasing sequence. A sequence
x = (xn) is called A−statistical convergent to the number L with the rate of o(bj) if for
every ε > 0, lim

j

1
bj

∑
n: |xn−L|≥ε

ajn = 0. In this case we write xn − L = stA − o(bn), (as

n→∞). If for every ε > 0, sup
j

1
bj

∑
n:|xn|≥ε ajn <∞, then x is A−statistically bounded

with the rate of O(bn) and it is denoted by xn = stA −O(bn), as n→∞, [26].

In the above two definitions the “rate” is controlled more by the entries of the summa-
bility method than by the terms of the sequence x = (xn) . For example if A = (ajn) = I
the identity matrix and if ann = o(bn) then xn − L = stA − o(bn) for any convergent
sequence (xn − L) regardless of how slowly it goes to zero. To avoid such an unfortunate
situation, considering the concept of convergence in measure from measure theory, the
following two extra definitions are introduced in [26].

The sequence x = (xn) is A−statistically convergent to L with the rate of oµ(bn),
denote by xn − L = stA − oµ(bn), (as n → ∞), if for every ε > 0, lim

j

∑
n: |xn−L|≥εbn

ajn =

0. Finally, the sequence x = (xn) is A−statistically bounded with the rate of Oµ(bn)
provided that there is a positive number M such that lim

j

∑
n: |xn|≥M bn

ajn = 0. In this case

we write xn = stA −Oµ(bn), as n→∞. In this case we write

xk − L = stA − o(an), (as k →∞).

Theorem 4.2. Let A = (ajn) be a non-negative regular summability matrix and (bn(x))

non-increasing sequence. If the sequence of positive linear operators
{
P

[β]
n

}
defined

by (1.1) and

ω(f ; δn,x) = stA − o(bn(x)) with δn,x =

√
P

[β]
n ((e1−x)2;x) (4.2)
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then

P [β]
n (f ;x)− f(x) = stA − o(bn(x)),

where ω(f, δn(x)) is the usual modulus of continuity of the function f for fixed x ≥ 0.
Similar results hold with little “o” replaced by big “O”.

Proof. Since P
[β]
n (e0;x) = 1 = e0(x) using Cauchy-Schwarz inequality we can write∣∣∣P [β]

n (f ;x)− f(x)
∣∣∣ ≤ [P [β]

n (e0;x) +
1

δn,x

(
P [β]
n ((e1−x)2;x)

)1/2]
ω(f, δn,x).

Hence with choosing δn,x =
√
Ln((e1−x)2;x) we obtain∣∣∣P [β]

n (f ;x)− f(x)
∣∣∣ ≤ 2ω(f, δn,x).

This implies that

1

bn(x)

∑
n:

∣∣∣P [β]
n (f,x)−f(x)

∣∣∣≥ε
ajn ≤

1

bn(x)

∑
n: 2ω(f ;δn,x)≥ε/2

ajn.

The equality (4.2) gives the proof.

Replacing “o” by “oµ” one can get the following result immediately.

Theorem 4.3. Let A = (ajn), (bn(x)), β := {βn} and
{
P

[β]
n

}
be the same as in Theorem

3.4. Then

P [β]
n (f ;x)− f(x) = stA − oµ(bn(x))

where ω(f ; δn,x) = stA − oµ(bn(x)) with δn,x =

√
P

[β]
n ((e1−x)2;x) for fixed x ∈ [0,∞) .

Similar conclusions hold when little “oµ” is replaced by big “Oµ”.

Remark. Notice that when A = (ajn) is replaced by the identity matrix in Theorem

3.4 or Theorem 3.5 by choosing β
′

:=
{
β

′

n

}
=
{

1
n

}
, we get Theorem 3.1 in [9]. It is clear

that stA − lim
n
β

′

n = 0.
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