Thai Journal of **Math**ematics Volume 19 Number 4 (2021) Pages 1177–1186

http://thaijmath.in.cmu.ac.th

4-Hyperclique Decompositions of 3-Hyperdistance Multihypergraphs of Multipartite Graphs

Chutima Saengchampa and Chariya Uiyyasathian*

Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Payathai Rd., Patumwan, Bangkok, 10130, Thailand e-mail : chutima.scp@gmail.com (C. Saengchampa); chariya.u@chula.ac.th (C. Uiyyasathian)

Abstract This paper investigates hyperclique decompositions of a hypergraph transformation, namely the hyperdistance multihypergraph defined as follows: Given an integer $k \geq 3$ and any hypergraph H, the *k*-hyperdistance multihypergraph of H, denoted by $D^{(k)}(H)$, is the *k*-uniform hypergraph which has the same vertex set as H and for any *k*-subset $\{v_1, v_2, \ldots, v_k\}$ of V(H), $D^{(k)}(H)$ has exactly $\sum_{i \neq j} d_H(v_i, v_j)$ copies of hyperedges $\{v_1, v_2, \ldots, v_k\}$ where $d_H(v_i, v_j)$ is the distance between vertices v_i and v_j in H.

We study 4-hyperclique decompositions of $D^{(3)}(H)$ where H is a complete multipartite graph. Our construction technique includes classic designs such as Latin cubes and factorizations of graphs.

MSC: 05C65

Keywords: hyperclique decomposition; 3-uniform hypergraph; hyperdistance multihypergraph

Submission date: 11.07.2019 / Acceptance date: 19.08.2021

1. INTRODUCTION

A hypergraph H is an ordered (V(H), E(H)) where V(H) is the vertex set and E(H)is the hyperedge set which is a multi-set of non-empty subsets of V(H). That is, any set of hyperedges can have repeated elements. A multihypergraph is a hypergraph with repeated hyperedges. A hypergraph H is k-uniform if each hyperedge of H contains exactly k vertices, denoted $H^{(k)}$. A complete k-uniform hypergraph with $n \geq k$ vertices on the vertex n-set V (or n-hyperclique), denoted $K_n^{(k)}(V)$ or $K_n^{(k)}$, is the k-uniform hypergraph on n vertices such that all k-subsets of V form the hyperedge set. Hence the vertex set determines the hyperclique, we then can simply refer to any hyperclique as its vertex set. A k-uniform complete m-partite hypergraph on m partite sets, V_1, V_2, \ldots, V_m , is the k-uniform hypergraph on the vertex set $V = V_1 \cup V_2 \cup \ldots \cup V_m$ whose hyperedge set consists of all k-subsets of V except those of the form $\{x_1, x_2, \ldots, x_k\} \subseteq V_i$ for some i, and it is denoted by $K_{n_1,n_2,\ldots,n_m}^{(k)}(V_1, V_2, \ldots, V_m)$ if $|V_i| = n_i$ for all i. If all m partite sets have the same size $n, K_{n,n,\ldots,n}^{(k)}$ is denoted by $K_{m(n)}^{(k)}$. Since 2-uniform hypergraphs are graphs, we will use the same notation without specified k = 2, for example, $K_n, K_{m(n)}$.

^{*}Corresponding author.

To define our hypergraph transformation, we recall the notion in terms of graphs. The *distance* between vertices u and v in graph G, denoted by $d_G(u, v)$, is the number of edges in a shortest path connecting u and v.

Definition 1.1. The distance multigraph of a graph G, denoted D(G), is a graph with the same vertex set as G such that 2-subset of V(D(G)), namely $\{u, v\}$, forms exactly $d_G(u, v)$ copies of edges $\{u, v\}$ in E(D(G)).

A distance multigraph is a graph model to solve some real world problems. There are wide range of its applications to the area of communication network, for example finding a shortest route to transmit messages in a computer network. See more details regarding the model of the problem in [1]. In particular, it is the problem of decomposition of the distance multigraph of graph into bicliques [2], [3], [4]. In 2008, Cavers *et al.* [5] studied the decomposition of the distance multigraphs of a graph G into cliques where G is a path, cycle or complete multipartite graph. Boonthong [1] obtained further results on clique decompositions of the distance multigraph of the Cartesian product of graphs.

Later on, Boonthong [6] extended the notion of the distance multigraph into hypergraphs which is called the k-hyperdistance multihypergraphs. In hypergraphs, a path connecting vertices v_1 and v_{n+1} is a vertex-hyperedge alternative sequence $v_1e_1v_2e_2...e_nv_{n+1}$ of distinct vertices $v_1, v_2, v_3, ..., v_{n+1}$ and distinct hyperedges $e_1, e_2, e_3, ..., e_n$ with possibility $v_1 = v_{n+1}$ such that v_i and v_{i+1} are elements in e_i for all $i \in \{1, 2, 3, ..., n\}$. The distance between vertices u and v in a hypergraph H, denoted by $d_H(u, v)$, is the number of hyperedges in a shortest path connecting u and v.

Definition 1.2. For any hypergraph H, the k-hyperdistance multihypergraph of H, denoted by $D^{(k)}(H)$, is the k-uniform hypergraph with the same vertex set as H such that any k-subset of $V(D^{(k)}(H))$, namely $\{v_1, v_2, \ldots, v_k\}$, forms exactly $\sum_{i \neq j} d_H(v_i, v_j)$ copies of hyperedge $\{v_1, v_2, \ldots, v_k\}$ in $E(D^{(k)}(H))$.

A hyperclique decomposition of a hypergraph H is a collection of hypercliques of H such that each hyperedge of H belongs to exactly one hyperclique in the collection. If each hyperclique in the collection is isomorphic to a hyperclique K, then the decomposition is called a K-decomposition.

In this paper we study a problem of hyperclique decompositions of $D^{(k)}(H)$ when k = 3 and $H = K_{m(n)}$. Since a $K_3^{(3)}$ - decomposition of $D^{(3)}(K_{m(n)})$ always exists (by its hyperedge set), ones investigate a decomposition of a given 3-uniform hypergraph into k-hypercliques when $k \ge 4$. A necessary condition for the existence of a $K_4^{(3)}$ -decomposition of a hypergraph is that the number of its hyperedges must be divisible by 4, for example, $D^{(3)}(K_{5,5,5})$ has no $K_4^{(3)}$ -decomposition. Thus finding a $K_4^{(3)}$ - decomposition of $D^{(3)}(K_{m(n)})$ is a nontrivial interesting problem.

A hyperedge e of $D^{(3)}(K_{m(n)})$ is called a hyperedge of Type i if e contains vertices from different i partite sets of $K_{m(n)}$. Any hyperedge of Type 1, Type 2 and Type 3 of $D^{(3)}(K_{m(n)})$ has six, four and three copies, respectively, in $E(D^{(3)}(K_{m(n)}))$.

We would like to emphasize here that any set of hyperedges or 4-hypercliques are multi-sets, and α copies of a set S is denoted by αS .

Example 1.3. There exists a $K_4^{(3)}$ -decomposition of $D^{(3)}(K_{3,3})$.

 $i < j \leq 3$ and $1 \leq k \leq 3$. Consider \mathscr{P} and \mathscr{P}' as follows:

$$\mathcal{P} = \{\{v_i, v_j, u_s, u_t\} : 1 \le i < j \le 3 \text{ and } 1 \le s < t \le 3\},\\ \mathcal{P}' = \{2\{v_1, v_2, v_3, u_i\}, 2\{u_1, u_2, u_3, v_i\} : 1 \le i \le 3\}.$$

It can be verified that each two copies of distinct hyperedges of Type 2 in $D^{(3)}(K_{3,3})$ form 4-hypercliques in \mathscr{P} and all hyperedges of Type 1 together with the remaining of hyperedges of Type 2 form 4-hypercliques in \mathscr{P}' . Hence $\mathscr{P} \cup \mathscr{P}'$ is a $K_4^{(3)}$ -decomposition of $D^{(3)}(K_{3,3})$.

FIGURE 1. 4-hyperclique $\{u_1, u_2, u_3, v_2\}$ in \mathscr{P}' containing 4 hyperedges.

Remark that $D^{(3)}(K_{m(n)})$ can be partitioned into three smaller subhypergraphs in two following ways:

(i) The layer decomposition. As a hyperedge of Type 1, Type 2 and Type 3 has six, four and three copies, respectively, each distinct hyperedge has at least three copies; use them to form a $3K_{mn}^{(3)}$. Now the remaining three copies of each distinct hyperedge of Type 1 in each partite set form a $3K_n^{(3)}$, and the remaining hyperedges of Type 2 form the union of complete bipartite hypergraphs on each pair of partite sets.

(ii) The type decomposition. The partition depends on the type of hyperedges. We partition $D^{(3)}(K_{m(n)})$ into $\bigcup_{1 \le i \le 3} H_i$, where H_i consists of all hyperedges of Type *i* for $i \in \{1, 2, 3\}$.

The above two decompositions are concluded in Remark 1.4 for future references. Note first that λH stands for λ copies of the hypergraph H on the same vertex set.

Remark 1.4. Let $m \ge 2$ and n be positive integers. $G = D^{(3)}(K_{m(n)}(V_1, V_2, \ldots, V_m))$ can be partitioned into three disjoint subhypergraphs in two ways as follows:

(i) The layer decomposition.

$$G = 3K_{mn}^{(3)}(\bigcup_{1 \le i \le m} V_i) \ \cup \ \bigcup_{1 \le i \le m} 3K_n^{(3)}(V_i) \ \cup \ \bigcup_{1 \le i < j \le m} K_{n,n}^{(3)}(V_i, V_j)$$

(*ii*) The type decomposition.

Let H_i be the Type *i*-subhypergraph of G defined by $V(H_i) = V(G)$ and $E(H_i)$ consists of all hyperedges of Type i. Then

$$G = H_1 \cup H_2 \cup H_3.$$

In particular, $H_1 = \bigcup_{1 \le i \le m} 6K_n^{(3)}(V_i)$ and $H_2 = \bigcup_{1 \le i \ne j \le m} 4K_{n,n}^{(3)}(V_i, V_j)$.

2. $K_4^{(3)}$ -DECOMPOSITIONS OF $D^{(3)}(K_{m(n)})$

To decompose our distance multihypergraphs of $K_{m(n)}$, we mainly rely on some well known decompositions of graphs, namely 1-factorizations and 2-factorizations of complete graphs.

A 1-factor (2-factor) of a graph is a spanning subgraph that is regular of degree one (two, respectively). A 1-factorization (2-factorization) is a decomposition of a graph into 1-factors (2-factors, respectively). The existence of a 1-factorization and a 2-factorization of complete graphs are provided in the following theorems. (See more details in [7], [8]). We can refer to a 1-factor(or 2-factor) as its edge set.

Theorem 2.1. [7] A complete graph of even vertices has a 1-factorization.

Theorem 2.2. [8] The complete graph of odd vertices has a 2-factorization.

Our construction is divided into two parts depending on the parity of the size of each partite set.

2.1. $D^{(3)}(K_{m(n)})$ when *n* is Even

By the layer decomposition in Remark 1.4 (*i*), our distance multihypergraphs can be partitioned into subhypergraphs of the form $3K_s^{(3)}$ and $K_{n,n}^{(3)}$. Thus it suffices to decompose $3K_s^{(3)}$ and $K_{n,n}^{(3)}$ into 4-hypercliques. Lemmas 2.3 and 2.5 use 1-factorizations in the construction.

Lemma 2.3. Let $s \ge 4$ be an even integer. There exists a $K_4^{(3)}$ -decomposition of the hypergraph $3K_s^{(3)}$.

Proof. Let V be a vertex set of a 3-uniform complete hypergraph $K_s^{(3)}$. Consider the complete graph K_s on the same vertex set V. Since s is even, by Theorem 2.1, there exists a 1-factorization of $K_s(V)$, say $\mathcal{M} = \{M_i : 1 \leq i \leq s - 1\}$. Let

$$\mathscr{P} = \{\{a, b, c, d\} : \{a, b\} \neq \{c, d\} \in M_i, 1 \le i \le s - 1\}.$$

Then \mathscr{P} contains $\binom{s/2}{2}(s-1)$ 4-hypercliques. Observe that any 3-subset e of V belongs to a hyperclique in \mathscr{P} if e contains two vertices of an edge in some 1-factor of \mathscr{M} . Since \mathscr{M} is a 1-factorization of $K_s(V)$ and e contains three distinct pairs of vertices, \mathscr{P} covers exactly three copies of each distinct hyperedge in $E(K_s^{(3)})$. Therefore \mathscr{P} is a $K_4^{(3)}$ -decomposition of $3K_s^{(3)}(V)$.

Example 2.4. An illustration of Lemma 2.3 when s = 6.

Let $V = \{1, 2, 3, 4, 5, 6\}$ be the vertex set of $3K_6^{(3)}$, and let $\mathcal{M} = \{M_i : 1 \le i \le 5\}$ be a 1-factorization of $K_6(V)$ where

$$\begin{split} M_1 &= \{\{1,2\},\{3,6\},\{4,5\}\}, & M_4 &= \{\{1,5\},\{2,6\},\{3,4\}\}, \\ M_2 &= \{\{1,3\},\{2,5\},\{4,6\}\}, & M_5 &= \{\{1,6\},\{2,4\},\{3,5\}\}, \\ M_3 &= \{\{1,4\},\{2,3\},\{5,6\}\}, \end{split}$$

as in Figure 2(*a*). Then we can construct 15 4-hypercliques in the collection \mathscr{P} of $3K_6^{(3)}(V)$ from \mathscr{M} as shown in Figure 2(*b*).

FIGURE 2. (a) 1-factorization \mathscr{M} of K_6 . (b) The collection \mathscr{P} of 4-hypercliques.

Lemma 2.5. Let n be an even integer. There exists a $K_4^{(3)}$ -decomposition of the hypergraph $K_{n,n}^{(3)}$.

Proof. Let X and Y be two partite sets of $K_{n,n}^{(3)}$. Since n is even, by Theorem 2.1, there exists a 1-factorization of $K_n(X)$ and $K_n(Y)$, say $\mathcal{E} = \{E_i : 1 \leq i \leq n-1\}$ and $\mathcal{F} = \{F_i : 1 \leq i \leq n-1\}$, respectively.

We will create each 4-hyperclique by choosing certain two vertices from each partite set. The four vertices are endpoint of an edge in 1-factor E_i and another edge from F_i for $1 \le i \le n-1$ as follows. Let \mathscr{P} be the collection of 4-hypercliques in $K_{n,n}^{(3)}$ associated with \mathscr{E} and \mathscr{F} defined by

$$\mathscr{P} = \{\{a, b, c, d\} : \{a, b\} \in E_i, \{c, d\} \in F_i, 1 \le i \le n - 1\}.$$

Hence \mathscr{P} contains a total of $\left(\frac{n}{2}\right)^2 (n-1)$ 4-hypercliques which together cover $4\left(\frac{n}{2}\right)^2(n-1)$ hyperedges. It remains to show that \mathscr{P} covers exactly one copy of each hyperedge of $K_{n,n}^{(3)}(X,Y)$.

Let $\{v, v', w\}$ be any hyperedge of $K_{n,n}^{(3)}(X, Y)$. Without loss of generality, say $v, v' \in X$ and $w \in Y$. Since $\{v, v'\}$ is an edge in E_i for some $1 \leq i \leq n-1$ and F_i is a spanning 1-regular subgraph, the hyperedge $\{v, v', w\}$ belongs to exactly one 4-hyperclique in \mathscr{P} .

Example 2.6. An illustration of Lemma 2.5 when n = 4.

Let $X = \{1,2,3,4\}$ and $Y = \{a,b,c,d\}$ be two partite sets of $K_{4,4}^{(3)}$, and let $\mathcal{E} = \{E_1, E_2, E_3\}$ and $\mathcal{F} = \{F_1, F_2, F_3\}$ be 1-factorizations of $K_4(X)$ and $K_4(Y)$ respectively, where

$$\begin{split} E_1 &= \{\{1,2\},\{3,4\}\}, \qquad E_2 &= \{\{1,3\},\{2,4\}\}, \qquad E_3 &= \{\{1,4\},\{2,3\}\}, \\ F_1 &= \{\{a,b\},\{c,d\}\}, \qquad F_2 &= \{\{a,c\},\{b,d\}\}, \qquad F_3 &= \{\{a,d\},\{b,c\}\}, \end{split}$$

as in Figure $\mathbf{3}(a)$. Then we can construct 12 4-hypercliques in the collection \mathscr{P} of $K_{n,n}^{(3)}(X,Y)$ from \mathcal{E} and \mathcal{F} as shown in Figure $\mathbf{3}(b)$.

When n is even, it follows from Lemmas 2.3 and 2.5 that each subhypergraph in the layer decomposition of $D^{(3)}(K_{m(n)})$ has a $K_4^{(3)}$ -decomposition. Hence the following first main theorem holds.

Theorem 2.7. Let $m, n \geq 2$ be integers such that n is even. Then, there exists a $K_4^{(3)}$ -decomposition of the hyperdistance multihypergraph $D^{(3)}(K_{m(n)})$.

FIGURE 3. (a) 1-factorizations \mathcal{E} and \mathcal{F} of $K_4(X)$ and $K_4(Y)$, respectively. (b) The collection \mathscr{P} of 4-hypercliques.

2.2. $D^{(3)}(K_{m(n)})$ when *n* is ODD

When $n \geq 3$ is odd, the construction is getting more complicated. We present a technique to resolve some small cases.

First start with m = 2. To decompose the Type 2-subhypergraph of $D^{(3)}(K_{5,5})$ and $D^{(3)}(K_{9,9})$, we modify the construction of the even case in the previous section by using 2-factorizations instead of 1-factorizations due to the number of vertices of each partite set is odd.

Theorem 2.8. There exist $K_4^{(3)}$ -decompositions of $D^{(3)}(K_{5,5})$ and $D^{(3)}(K_{9,9})$.

Proof. (i) Let X and Y be two partite sets of $K_{5,5}$. First, by the type decomposition in Remark 1.4 (ii), we have

$$D^{(3)}(K_{5,5}(X,Y)) = 6K_5^{(3)}(X) \cup 6K_5^{(3)}(Y) \cup 4K_{5,5}^{(3)}(X,Y)$$

Let \mathscr{P}_X be the collection of all 4-subsets of X each of which form a 4-hyperclique. Since |X| = 5, each 3-subset of X must belong to exactly two 4-hypercliques in \mathscr{P}_X . Then \mathscr{P}_X covers exactly two copies of each distinct hyperedge on partite set X. Hence, $3\mathscr{P}_X$ form a $K_4^{(3)}$ -decomposition of $6K_5^{(3)}(X)$. Similarly, there exists a $K_4^{(3)}$ -decomposition of $6K_5^{(3)}(Y)$.

Now, it remains to construct a $K_4^{(3)}$ -decomposition of the Type 2-subhypergraph of $D^{(3)}(K_{5,5}(X,Y))$, say $2\mathscr{P}$. In other words, \mathscr{P} will be a $K_4^{(3)}$ -decomposition of $2K_{5,5}^{(3)}(X,Y)$. We create hypercliques in \mathscr{P} using a 2-factorization of K_5 as follows. By Theorem 2.2, there exist 2-factorizations, say $\mathcal{E}_X = \{E_1, E_2\}$ and $\mathcal{F}_Y = \{F_1, F_2\}$ of $K_5(X)$ and $K_5(Y)$, respectively. Let

$$\mathscr{P} = \{\{a, b, c, d\} : \{a, b\} \in E_i, \{c, d\} \in F_i, 1 \le i \le 2\}.$$

Since both E_i and F_i have 5 edges, there are 25 4-hypercliques in the collection \mathscr{P} which are associated with E_i and F_i .

Hence, \mathscr{P} consists of 50 4-hypercliques. It follows that \mathscr{P} covers at most 200 hyperedges counted repeatedly. Moreover, since $2K_{5,5}^{(3)}(X,Y)$ has a total of 200 hyperedges, it suffices to show that \mathscr{P} covers at least two copies of each distinct hyperedge of Type 2 in $K_{5,5}^{(3)}(X,Y)$. Now let $\{v,v',w\}$ be a hyperedge where $v,v' \in X$ and $w \in Y$, then $\{v,v'\}$ is an edge in E_t for some $t \in \{1,2\}$. Together with the fact that F_t is a spanning 2-regular subgraph of Y, so the hyperedge $\{v,v',w\}$ belongs to at least two 4-hypercliques in \mathscr{P} . Hence, \mathscr{P} covers $2K_{5,5}^{(3)}(X,Y)$, and thus $2\mathscr{P}$ decomposes $4K_{5,5}^{(3)}(X,Y)$ into 4-hypercliques.

(*ii*) Let A and B be two partite sets in $K_{9,9}$. Then

$$D^{(3)}(K_{9,9}(A,B)) = 6K_9^{(3)}(A) \cup 6K_9^{(3)}(B) \cup 4K_{9,9}^{(3)}(A,B).$$

Let \mathscr{C}_A be the collection of all 4-subsets of A. Similar to (i) except now |A| = 9, each hyperedge in $K_9^{(3)}(A)$ belongs to exactly six 4-hypercliques in \mathscr{C}_A . Therefore, there exists a $K_4^{(3)}$ -decomposition of $6K_9^{(3)}(A)$, and so does one of $6K_9^{(3)}(B)$. To decompose $4K_{9,9}^{(3)}(A, B)$ into 4-hypercliques, we use the similar argument as in (i). Therefore, $D^{(3)}(K_{9,9}(A, B))$ has a $K_4^{(3)}$ -decomposition.

Corollary 2.9. For an integer $n \ge 2$, there exists the $K_4^{(3)}$ -decomposition of $2K_{n,n}^{(3)}$.

Proof. If n is even, then the decomposition exists by Lemma 2.5. If n is odd, then we create a collection of 4-hypercliques by using a 2-factorization of K_n as in the proof of Theorem 2.8 which form a $K_4^{(3)}$ -decomposition of $2K_{n,n}^{(3)}$.

It could be noted that each 4-hyperclique in the decomposition from the construction of Theorem 2.8 always contains hyperedges of the same type. However, when n = 4k + 3, the number of hyperedges of Type 1 in $D^{(3)}(K_{m(n)})$ is not divisible by 4. This implies that some hyperedges of Type 1 must form a 4-hyperclique with some hyperedges of another type, for instance, Example 1.3 shows a $K_4^{(3)}$ -decomposition of $D^{(3)}(K_{3,3})$ and a result in [9] reveals a $K_4^{(3)}$ -decomposition of $D^{(3)}(K_{7,7})$. The construction for $D^{(3)}(K_{7,7})$ in [9] is a bit subtle which uses a 2-factorization of K_7 and a length function of edges in K_7 . This result is concluded here for future reference in Theorem 2.10.

Theorem 2.10. [9] There exists a $K_4^{(3)}$ -decomposition of $D^{(3)}(K_{7,7})$.

Now we move on to the complete multipartite hypergraphs with more than two partite sets. If the number of partite sets is an even integer at least four, we utilize *Latin cube* to handle hyperedges of Type 3 in our construction.

A Latin cube $L = \{L_{i,j,k}\}$ of order n on the set $X = \{1, 2, ..., n\}$ is an $n \times n \times n$ cube (n rows, n columns and n layers) such that the entry $L_{i,j,k} \in X$, where $L_{i,j,k}$ denotes the entry in row i column j and layer k, and if two indices are fixed and the remaining index is allowed to vary from 1 to n, then these entries form a permutation of X.

1	2	3		2	3	1	3	1	2	
2	3	1		3	1	2	1	2	3	
3	1	2		1	2	3	2	3	1	
\overline{k}	; =	1	k	; =	2	k = 3				

FIGURE 4. A Latin cube $L = \{L_{i,j,k}\}$ of order 3.

The existence of Latin cubes is shown in the following theorem. (See more details in [3])

Theorem 2.11. [10],[3] Let $n \ge 2$ be an integer. There exists a Latin cube of order n.

The next lemma is to decompose the Type 3-subhypergraph of $D^{(3)}(K_{m(n)})$ for an even m.

Lemma 2.12. Let $m, n \ge 2$ be integers such that m is even. The Type 3-subhypergraph of $D^{(3)}(K_{m(n)})$ has a $K_4^{(3)}$ -decomposition.

Proof. Let H_3 be the Type 3-subhypergraph of $D^{(3)}(K_{m(n)})$. Let V_1, V_2, \ldots, V_m be the *m*-partite sets of H_3 . Then $|V_i| = n$ for all $i \in \{1, 2, \ldots, m\}$.

We will create 4-hypercliques in our decomposition using hyperedges of Type 3 from certain groups of four partite sets of H_3 .

To specify groups of four partite sets, we consider the set of indices $I = \{1, 2, ..., m\}$ as the vertex set of complete graph K_m . Since m is even, by Theorem 2.1, $K_m(I)$ has a 1-factorization, say $\mathcal{M} = \{M_i : 1 \le i \le m-1\}$.

Now, define the collection of sets, called *groups*, of four partite sets of H_3 according to \mathcal{M} as follows;

$$\mathcal{Q} = \{\{V_a, V_b, V_c, V_d\} : \{a, b\} \neq \{c, d\} \in M_i, 1 \le i \le m - 1\}.$$

Then \mathscr{Q} contains $\binom{m/2}{2}(m-1)$ groups of four partite sets.

Next, for each group in \mathcal{Q} , we will create the collection of 4-hypercliques of H_3 as follows. By Theorem 2.11, let L be a Latin cube of order n.

We define a collection of 4-hypercliques of H_3 by

$$\mathscr{P} = \{\{a_i, b_j, c_k, d_{L_{i,j,k}}\} : 1 \le i, j, k \le n, \{V_a, V_b, V_c, V_d\} \in \mathscr{Q}\}$$

where $V_a = \{a_1, a_2, \dots, a_n\}$, $V_b = \{b_1, b_2, \dots, b_n\}$, $V_c = \{c_1, c_2, \dots, c_n\}$, and $V_d = \{d_1, d_2, \dots, d_n\}$.

Then \mathscr{P} contains $\binom{m/2}{2}(m-1)n^3$ 4-hypercliques. Observe that any hyperedge of Type 3 contains three vertices from different three partite sets.

Let e be a hyperedge of Type 3. Since \mathscr{M} is a 1-factorization of $K_m(I)$, any three partite sets are together in the same group in \mathscr{Q} exactly three different groups. Moreover, e belongs to a hyperclique in \mathscr{P} once by the property of a Latin cube. It means that \mathscr{P} covers exactly three copies of each distinct hyperedge in H_3 . Consequently, \mathscr{P} is a $K_4^{(3)}$ -decomposition of H_3 .

Example 2.13. An illustration of Lemma 2.12 when m = 4 and n = 3.

Let $V_a = \{a_1, a_2, a_3\}$, $V_b = \{b_1, b_2, b_3\}$, $V_c = \{c_1, c_2, c_3\}$, and $V_d = \{d_1, d_2, d_3\}$ be four partite sets of $D^{(3)}(K_{4(3)})$, and let $\mathcal{F} = \{F_1, F_2, F_3\}$ be a 1-factorization of $K_4(\{a, b, c, d\})$ where

$$F_1 = \{\{a, b\}, \{c, d\}\}, \qquad F_2 = \{\{a, c\}, \{b, d\}\}, \qquad F_3 = \{\{a, d\}, \{b, c\}\}.$$

Let $L = \{L_{i,j,k}\}$ be the Latin cube of order 3 in Figure 4. Figure 5 lists all 4-hypercliques of $D^{(3)}(K_{4(3)}(V_a, V_b, V_c, V_d))$ constructed from $F_2 \in \mathcal{F}$ and $L = \{L_{i,j,k}\}$ for k = 1, 2.

4-	4-hypercliques in \mathscr{P} which are associated with F_2 and $L = \{L_{i,j,k}\}$ for $k = 1, 2$.																
k = 1								k = 2									
a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1	a_1
c_1	c_1	c_1	c_2	c_2	c_2	c_3	c_3	c_3	c_1	c_1	c_1	c_2	c_2	c_2	c_3	c_3	c_3
b_1	b_1	b_1	b_1	b_1	b_1	b_1	b_1	b_1	b_1	b_1	b_1	b_1	b_1	b_1	b_1	b_1	b_1
d_1	d_2	d_3	d_2	d_3	d_1	d_3	d_1	d_2	d_2	d_3	d_1	d_3	d_1	d_2	d_1	d_2	d_3

FIGURE 5. The 4-hypercliques in \mathscr{P} associated with $F_2 \in \mathcal{F}$ and Latin cube $L = \{L_{i,j,k}\}$ for k = 1, 2.

The next main theorem shows that if $D^{(3)}(K_{2(n)})$ has a $K_4^{(3)}$ -decomposition, so does $D^{(3)}(K_{m(n)})$ whenever m is even.

Theorem 2.14. Let $n, m \geq 2$ be integers such that m is even. If there exists a $K_4^{(3)}$ decomposition of $D^{(3)}(K_{n,n})$, then there exists a $K_4^{(3)}$ -decomposition of $D^{(3)}(K_{m(n)})$.

Proof. Let $G = D^{(3)}(K_{m(n)}(V_1, V_2, \dots, V_m))$. Then $|V_i| = n$ for all $i \in \{1, 2, \dots, m\}$. First, by the type decomposition, we have

 $G = H_1 \cup H_2 \cup H_3$, where H_i is a Type *i*-subhypergraph.

Next we will partition H_2 into two smaller subhypergraphs using a 1-factor as follows: Consider the set of indices $I = \{1, 2, ..., m\}$ as the vertex set of the complete graph K_m . Since *m* is even, $K_m(I)$ has a 1-factor, say $M = \{\{2i-1, 2i\} : 1 \le i \le \frac{m}{2}\}$. Let $E = E(K_m(I))$. We have that

$$H_2 = \bigcup_{\{i,j\} \in M} 4K_{n,n}^{(3)}(V_i, V_j) \cup \bigcup_{\{i,j\} \in E \setminus M} 4K_{n,n}^{(3)}(V_i, V_j).$$

Let $K = H_1 \cup \bigcup_{\{i,j\} \in M} 4K_{n,n}^{(3)}(V_i, V_j)$. Then K can be viewed as the (hyperedge) disjoint union of $\frac{m}{2}$ copies of $D^{(3)}(K_{n,n})$, and hence it has a $K_4^{(3)}$ -decomposition by the assumption. Furthermore, by Corollary 2.9 and Lemma 2.12, there exists a $K_4^{(3)}$ decomposition of $\bigcup_{\{i,j\}\in E\setminus M} 4K_{n,n}^{(3)}(V_i,V_j)$ and H_3 , respectively. Therefore our desired decomposition exists.

When n = 3, 5, 7, 9, the existence of $K_4^{(3)}$ -decomposition of $D^{(3)}(K_{2(n)})$ is provided in Example 1.3 and, Theorems 2.8 and 2.10. Corollary 2.15 concludes the current result, and hence the problem remains open when m and n are odd.

Corollary 2.15. Let m be an even integer and n = 3, 5, 7, 9. There exists a $K_4^{(3)}$ decomposition of $D^{(3)}(K_{m(n)})$.

For our final remark, we would like to illustrate more application of our technique using 2-factorizations and Latin cubes which presented in Corollary 2.9 and Lemma 2.12, respectively. The technique yields a decomposition not only of a distance multihypergraph but also one of a complete 3-uniform multipartite hypergraph.

Corollary 2.16. Let m, n and λ be positive integers such that m is even, n is odd and $\lambda \equiv 0 \pmod{6}$. Then there exists a $K_4^{(3)}$ -decomposition of $\lambda K_{m(n)}^{(3)}$.

Proof. Let $G = K_{m(n)}^{(3)}(V_1, V_2, \ldots, V_m)$ and $\lambda = 6t$ for some positive integer t. Then $|V_i| = n$ for all $i \in \{1, 2, \dots, m\}$. First note that

$$6tG = (6tH_3) \cup \bigcup_{1 \le i < j \le m} 6tK_{n,n}^{(3)}(V_i, V_j),$$

where H_3 is the Type 3-subhypergraph of $D^{(3)}(K_{m(n)})$.

Since $\bigcup_{1 \le i \le m} 2t K_{n,n}^{(3)}(V_i, V_j)$ and $3t H_3$ can be decomposed into a collection of 4hypercliques by Corollary 2.9 and Lemma 2.12, respectively, 6tG has a $K_4^{(3)}$ -decomposition as desired.

ACKNOWLEDGEMENT

The first author was financially supported by Science Achievement Scholarship of Thailand.

References

- V. Boonthong, C. Uiyyasathian, Clique decompositions of the distance multigraph of the Cartesian product of graphs, East-West J. Math 20 (2018) 9–18.
- [2] R.J. Elzinga, D.A. Gregory, K.N. Vander Meulen, Addressing the Petersen graph, Discrete Math. 286 (2004) 241–244.
- [3] R.L. Graham, H.O. Pollak, On the addressing problem for loop switching, Bell Syst. Tech. J. 50 (1971) 2495–2519.
- [4] P. Winkler, Proof of the squashed cube conjecture, Combinatorica 3 (1983) 135–139.
- [5] M.S. Cavers, R.J. Elzinga, D.A. Gregory, S.E. Vanderlinde, K.N. Vander Meulen, Clique partition of distance multigraph, Discrete Math. 308 (2008) 3230–3240.
- [6] V. Boonthong, Hyperclique Decompositions of Hyperdistance Multihypergraphs, PhD Thesis, Chulalongkorn University, Bangkok, Thailand, 2014.
- [7] W.D. Wallis, Introduction to Combinatorial Design, Chapman and Hall/CRC, New York, 2008.
- [8] L. Lovsz, M.D. Plummer, Matching Theory, American Mathematical Society, Rhode Island, 2009.
- [9] C. Saengchampa, Hyperclique Decompositions of 3-Hyperdistance Multihypergraphs of Complete Multipartite Graphs, Master Thesis, Chulalongkorn University, Bangkok, Thailand, 2016.
- [10] J.T. Ethier, G.L. Mullen, Strong forms of orthogonality for sets of hypercubes, Discrete Math. 312 (2012) 2050–2061.