4-Hyperclique Decompositions of 3-Hyperdistance Multihypergraphs of Multipartite Graphs

Chutima Saengchampa and Chariya Uiyyasathian*
Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Payathai Rd., Patumwan, Bangkok, 10130, Thailand
e-mail : chutima.scp@gmail.com (C. Saengchampa); chariya.u@chula.ac.th (C. Uiyyasathian)

Abstract

This paper investigates hyperclique decompositions of a hypergraph transformation, namely the hyperdistance multihypergraph defined as follows: Given an integer $k \geq 3$ and any hypergraph H, the k-hyperdistance multihypergraph of H, denoted by $D^{(k)}(H)$, is the k-uniform hypergraph which has the same vertex set as H and for any k-subset $\left\{v_{1}, v_{2}, \ldots v_{k}\right\}$ of $V(H), D^{(k)}(H)$ has exactly $\sum_{i \neq j} d_{H}\left(v_{i}, v_{j}\right)$ copies of hyperedges $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ where $d_{H}\left(v_{i}, v_{j}\right)$ is the distance between vertices v_{i} and v_{j} in H.

We study 4-hyperclique decompositions of $D^{(3)}(H)$ where H is a complete multipartite graph. Our construction technique includes classic designs such as Latin cubes and factorizations of graphs.

MSC: 05C65
Keywords: hyperclique decomposition; 3-uniform hypergraph; hyperdistance multihypergraph

Submission date: 11.07.2019 / Acceptance date: 19.08.2021

1. Introduction

A hypergraph H is an ordered $(V(H), E(H))$ where $V(H)$ is the vertex set and $E(H)$ is the hyperedge set which is a multi-set of non-empty subsets of $V(H)$. That is, any set of hyperedges can have repeated elements. A multihypergraph is a hypergraph with repeated hyperedges. A hypergraph H is k-uniform if each hyperedge of H contains exactly k vertices, denoted $H^{(k)}$. A complete k-uniform hypergraph with $n(\geq k)$ vertices on the vertex n-set V (or n-hyperclique), denoted $K_{n}^{(k)}(V)$ or $K_{n}^{(k)}$, is the k-uniform hypergraph on n vertices such that all k-subsets of V form the hyperedge set. Hence the vertex set determines the hyperclique, we then can simply refer to any hyperclique as its vertex set. A k-uniform complete m-partite hypergraph on m partite sets, $V_{1}, V_{2}, \ldots, V_{m}$, is the k-uniform hypergraph on the vertex set $V=V_{1} \cup V_{2} \cup \ldots \cup V_{m}$ whose hyperedge set consists of all k-subsets of V except those of the form $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subseteq V_{i}$ for some i, and it is denoted by $K_{n_{1}, n_{2}, \ldots, n_{m}}^{(k)}\left(V_{1}, V_{2}, \ldots, V_{m}\right)$ if $\left|V_{i}\right|=n_{i}$ for all i. If all m partite sets have the same size $n, K_{n, n, \ldots, n}^{(k)}$ is denoted by $K_{m(n)}^{(k)}$. Since 2-uniform hypergraphs are graphs, we will use the same notation without specified $k=2$, for example, $K_{n}, K_{m(n)}$.

[^0]To define our hypergraph transformation, we recall the notion in terms of graphs. The distance between vertices u and v in graph G, denoted by $d_{G}(u, v)$, is the number of edges in a shortest path connecting u and v.

Definition 1.1. The distance multigraph of a graph G, denoted $D(G)$, is a graph with the same vertex set as G such that 2-subset of $V(D(G))$, namely $\{u, v\}$, forms exactly $d_{G}(u, v)$ copies of edges $\{u, v\}$ in $E(D(G))$.

A distance multigraph is a graph model to solve some real world problems. There are wide range of its applications to the area of communication network, for example finding a shortest route to transmit messages in a computer network. See more details regarding the model of the problem in [1]. In particular, it is the problem of decomposition of the distance multigraph of graph into bicliques [2], [3], [4]. In 2008, Cavers et al. [5] studied the decomposition of the distance multigraphs of a graph G into cliques where G is a path, cycle or complete multipartite graph. Boonthong [1] obtained further results on clique decompositions of the distance multigraph of the Cartesian product of graphs.

Later on, Boonthong [6] extended the notion of the distance multigraph into hypergraphs which is called the k-hyperdistance multihypergraphs. In hypergraphs, a path connecting vertices v_{1} and v_{n+1} is a vertex-hyperedge alternative sequence $v_{1} e_{1} v_{2} e_{2} \ldots e_{n} v_{n+1}$ of distinct vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n+1}$ and distinct hyperedges $e_{1}, e_{2}, e_{3}, \ldots, e_{n}$ with possibility $v_{1}=v_{n+1}$ such that v_{i} and v_{i+1} are elements in e_{i} for all $i \in\{1,2,3, \ldots, n\}$. The distance between vertices u and v in a hypergraph H, denoted by $d_{H}(u, v)$, is the number of hyperedges in a shortest path connecting u and v.
Definition 1.2. For any hypergraph H, the k-hyperdistance multihypergraph of H, denoted by $D^{(k)}(H)$, is the k-uniform hypergraph with the same vertex set as H such that any k-subset of $V\left(D^{(k)}(H)\right)$, namely $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, forms exactly $\sum_{i \neq j} d_{H}\left(v_{i}, v_{j}\right)$ copies of hyperedge $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ in $E\left(D^{(k)}(H)\right)$.

A hyperclique decomposition of a hypergraph H is a collection of hypercliques of H such that each hyperedge of H belongs to exactly one hyperclique in the collection. If each hyperclique in the collection is isomorphic to a hyperclique K, then the decomposition is called a K-decomposition.

In this paper we study a problem of hyperclique decompositions of $D^{(k)}(H)$ when $k=3$ and $H=K_{m(n)}$. Since a $K_{3}^{(3)}$ - decomposition of $D^{(3)}\left(K_{m(n)}\right)$ always exists (by its hyperedge set), ones investigate a decomposition of a given 3-uniform hypergraph into k-hypercliques when $k \geq 4$. A necessary condition for the existence of a $K_{4}^{(3)}$ decomposition of a hypergraph is that the number of its hyperedges must be divisible by 4 , for example, $D^{(3)}\left(K_{5,5,5}\right)$ has no $K_{4}^{(3)}$-decomposition. Thus finding a $K_{4}^{(3)}$ - decomposition of $D^{(3)}\left(K_{m(n)}\right)$ is a nontrivial interesting problem.

A hyperedge e of $D^{(3)}\left(K_{m(n)}\right)$ is called a hyperedge of Type i if e contains vertices from different i partite sets of $K_{m(n)}$. Any hyperedge of Type 1, Type 2 and Type 3 of $D^{(3)}\left(K_{m(n)}\right)$ has six, four and three copies, respectively, in $E\left(D^{(3)}\left(K_{m(n)}\right)\right)$.

We would like to emphasize here that any set of hyperedges or 4-hypercliques are multi-sets, and α copies of a set S is denoted by αS.
Example 1.3. There exists a $K_{4}^{(3)}$-decomposition of $D^{(3)}\left(K_{3,3}\right)$.
Let $U=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $V=\left\{v_{1}, v_{2}, v_{3}\right\}$ be two partite sets of $K_{3,3}$. Then the set of hyperedges of $D^{(3)}\left(K_{3,3}\right)$ is $\left\{6\left\{u_{1}, u_{2}, u_{3}\right\}, 6\left\{v_{1}, v_{2}, v_{3}\right\}, 4\left\{u_{i}, u_{j}, v_{k}\right\}, 4\left\{v_{i}, v_{j}, u_{k}\right\}: 1 \leq\right.$
$i<j \leq 3$ and $1 \leq k \leq 3\}$. Consider \mathscr{P} and \mathscr{P}^{\prime} as follows:

$$
\begin{aligned}
& \mathscr{P}=\left\{\left\{v_{i}, v_{j}, u_{s}, u_{t}\right\}: 1 \leq i<j \leq 3 \text { and } 1 \leq s<t \leq 3\right\}, \\
& \mathscr{P}^{\prime}=\left\{2\left\{v_{1}, v_{2}, v_{3}, u_{i}\right\}, 2\left\{u_{1}, u_{2}, u_{3}, v_{i}\right\}: 1 \leq i \leq 3\right\} .
\end{aligned}
$$

It can be verified that each two copies of distinct hyperedges of Type 2 in $D^{(3)}\left(K_{3,3}\right)$ form 4-hypercliques in \mathscr{P} and all hyperedges of Type 1 together with the remaining of hyperedges of Type 2 form 4-hypercliques in \mathscr{P}^{\prime}. Hence $\mathscr{P} \cup \mathscr{P}^{\prime}$ is a $K_{4}^{(3)}$-decomposition of $D^{(3)}\left(K_{3,3}\right)$.

Figure 1. 4-hyperclique $\left\{u_{1}, u_{2}, u_{3}, v_{2}\right\}$ in \mathscr{P}^{\prime} containing 4 hyperedges.
Remark that $D^{(3)}\left(K_{m(n)}\right)$ can be partitioned into three smaller subhypergraphs in two following ways:
(i) The layer decomposition. As a hyperedge of Type 1, Type 2 and Type 3 has six, four and three copies, respectively, each distinct hyperedge has at least three copies; use them to form a $3 K_{m n}^{(3)}$. Now the remaining three copies of each distinct hyperedge of Type 1 in each partite set form a $3 K_{n}^{(3)}$, and the remaining hyperedges of Type 2 form the union of complete bipartite hypergraphs on each pair of partite sets.
(ii) The type decomposition. The partition depends on the type of hyperedges. We partition $D^{(3)}\left(K_{m(n)}\right)$ into $\bigcup_{1 \leq i \leq 3} H_{i}$, where H_{i} consists of all hyperedges of Type i for $i \in\{1,2,3\}$.
The above two decompositions are concluded in Remark 1.4 for future references. Note first that λH stands for λ copies of the hypergraph H on the same vertex set.

Remark 1.4. Let $m \geq 2$ and n be positive integers.
$G=D^{(3)}\left(K_{m(n)}\left(V_{1}, V_{2}, \ldots, V_{m}\right)\right)$ can be partitioned into three disjoint subhypergraphs in two ways as follows:
(i) The layer decomposition.

$$
G=3 K_{m n}^{(3)}\left(\bigcup_{1 \leq i \leq m} V_{i}\right) \cup \bigcup_{1 \leq i \leq m} 3 K_{n}^{(3)}\left(V_{i}\right) \cup \bigcup_{1 \leq i<j \leq m} K_{n, n}^{(3)}\left(V_{i}, V_{j}\right)
$$

(ii) The type decomposition.

Let H_{i} be the Type i-subhypergraph of G defined by $V\left(H_{i}\right)=V(G)$ and $E\left(H_{i}\right)$ consists of all hyperedges of Type i. Then

$$
G=H_{1} \cup H_{2} \cup H_{3} .
$$

In particular, $H_{1}=\bigcup_{1 \leq i \leq m} 6 K_{n}^{(3)}\left(V_{i}\right)$ and $H_{2}=\bigcup_{1 \leq i \neq j \leq m} 4 K_{n, n}^{(3)}\left(V_{i}, V_{j}\right)$.
2. $K_{4}^{(3)}$-DECOMPOSITIONS OF $D^{(3)}\left(K_{m(n)}\right)$

To decompose our distance multihypergraphs of $K_{m(n)}$, we mainly rely on some well known decompositions of graphs, namely 1 -factorizations and 2 -factorizations of complete graphs.

A 1-factor (2-factor) of a graph is a spanning subgraph that is regular of degree one (two, respectively). A 1-factorization (2-factorization) is a decomposition of a graph into 1 -factors (2-factors, respectively). The existence of a 1 -factorization and a 2 -factorization of complete graphs are provided in the following theorems. (See more details in [7], [8]). We can refer to a 1 -factor(or 2-factor) as its edge set.
Theorem 2.1. [7] A complete graph of even vertices has a 1-factorization.
Theorem 2.2. [8] The complete graph of odd vertices has a 2-factorization.
Our construction is divided into two parts depending on the parity of the size of each partite set.

2.1. $D^{(3)}\left(K_{m(n)}\right)$ WHEN n IS EvEN

By the layer decomposition in Remark 1.4 (i), our distance multihypergraphs can be partitioned into subhypergraphs of the form $3 K_{s}^{(3)}$ and $K_{n, n}^{(3)}$. Thus it suffices to decompose $3 K_{s}^{(3)}$ and $K_{n, n}^{(3)}$ into 4-hypercliques. Lemmas 2.3 and 2.5 use 1-factorizations in the construction.
Lemma 2.3. Let $s \geq 4$ be an even integer. There exists a $K_{4}^{(3)}$-decomposition of the hypergraph $3 K_{s}^{(3)}$.
Proof. Let V be a vertex set of a 3 -uniform complete hypergraph $K_{s}^{(3)}$. Consider the complete graph K_{s} on the same vertex set V. Since s is even, by Theorem 2.1, there exists a 1-factorization of $K_{s}(V)$, say $\mathscr{M}=\left\{M_{i}: 1 \leq i \leq s-1\right\}$. Let

$$
\mathscr{P}=\left\{\{a, b, c, d\}:\{a, b\} \neq\{c, d\} \in M_{i}, 1 \leq i \leq s-1\right\} .
$$

Then \mathscr{P} contains $\binom{s / 2}{2}(s-1) 4$-hypercliques. Observe that any 3 -subset e of V belongs to a hyperclique in \mathscr{P} if e contains two vertices of an edge in some 1 -factor of \mathscr{M}. Since \mathscr{M} is a 1 -factorization of $K_{s}(V)$ and e contains three distinct pairs of vertices, \mathscr{P} covers exactly three copies of each distinct hyperedge in $E\left(K_{s}^{(3)}\right)$. Therefore \mathscr{P} is a $K_{4}^{(3)}$ decomposition of $3 K_{s}^{(3)}(V)$.

Example 2.4. An illustration of Lemma 2.3 when $s=6$.
Let $V=\{1,2,3,4,5,6\}$ be the vertex set of $3 K_{6}^{(3)}$, and let $\mathscr{M}=\left\{M_{i}: 1 \leq i \leq 5\right\}$ be a 1-factorization of $K_{6}(V)$ where

$$
\begin{array}{ll}
M_{1}=\{\{1,2\},\{3,6\},\{4,5\}\}, & M_{4}=\{\{1,5\},\{2,6\},\{3,4\}\}, \\
M_{2}=\{\{1,3\},\{2,5\},\{4,6\}\}, & M_{5}=\{\{1,6\},\{2,4\},\{3,5\}\}, \\
M_{3}=\{\{1,4\},\{2,3\},\{5,6\}\}, &
\end{array}
$$

as in Figure $2(a)$. Then we can construct 154 -hypercliques in the collection \mathscr{P} of $3 K_{6}^{(3)}(V)$ from \mathscr{M} as shown in Figure 2(b).

(a)

4-hypercliques in \mathscr{P} which are associated with M_{i}														
M_{1}			M_{2}			M_{3}			M_{4}			M_{5}		
1	1	3	1	1	2	1	1	2	1	1	2	1	1	2
2	2	6	3	3	5	4	4	3	5	5	6	6	6	4
3	4	4	2	4	4	2	5	5	2	3	3	2	3	3
6	5	5	5	6	6	3	6	6	6	4	4	4	5	5

(b)

Figure 2. (a) 1-factorization \mathscr{M} of K_{6}. (b) The collection \mathscr{P} of 4-hypercliques.

Lemma 2.5. Let n be an even integer. There exists a $K_{4}^{(3)}$-decomposition of the hypergraph $K_{n, n}^{(3)}$.

Proof. Let X and Y be two partite sets of $K_{n, n}^{(3)}$. Since n is even, by Theorem 2.1, there exists a 1-factorization of $K_{n}(X)$ and $K_{n}(Y)$, say $\mathcal{E}=\left\{E_{i}: 1 \leq i \leq n-1\right\}$ and $\mathcal{F}=\left\{F_{i}: 1 \leq i \leq n-1\right\}$, respectively.

We will create each 4-hyperclique by choosing certain two vertices from each partite set. The four vertices are endpoint of an edge in 1-factor E_{i} and another edge from F_{i} for $1 \leq i \leq n-1$ as follows. Let \mathscr{P} be the collection of 4-hypercliques in $K_{n, n}^{(3)}$ associated with \mathcal{E} and \mathcal{F} defined by

$$
\mathscr{P}=\left\{\{a, b, c, d\}:\{a, b\} \in E_{i},\{c, d\} \in F_{i}, 1 \leq i \leq n-1\right\} .
$$

Hence \mathscr{P} contains a total of $\left(\frac{n}{2}\right)^{2}(n-1) 4$-hypercliques which together cover $4\left(\frac{n}{2}\right)^{2}(n-$ 1) hyperedges. It remains to show that \mathscr{P} covers exactly one copy of each hyperedge of $K_{n, n}^{(3)}(X, Y)$.

Let $\left\{v, v^{\prime}, w\right\}$ be any hyperedge of $K_{n, n}^{(3)}(X, Y)$. Without loss of generality, say $v, v^{\prime} \in X$ and $w \in Y$. Since $\left\{v, v^{\prime}\right\}$ is an edge in E_{i} for some $1 \leq i \leq n-1$ and F_{i} is a spanning 1 -regular subgraph, the hyperedge $\left\{v, v^{\prime}, w\right\}$ belongs to exactly one 4 -hyperclique in \mathscr{P}.

Example 2.6. An illustration of Lemma 2.5 when $n=4$.
Let $X=\{1,2,3,4\}$ and $Y=\{a, b, c, d\}$ be two partite sets of $K_{4,4}^{(3)}$, and let $\mathcal{E}=\left\{E_{1}, E_{2}, E_{3}\right\}$ and $\mathcal{F}=\left\{F_{1}, F_{2}, F_{3}\right\}$ be 1-factorizations of $K_{4}(X)$ and $K_{4}(Y)$ respectively, where

$$
\begin{aligned}
& E_{1}=\{\{1,2\},\{3,4\}\}, \quad E_{2}=\{\{1,3\},\{2,4\}\}, \quad E_{3}=\{\{1,4\},\{2,3\}\}, \\
& F_{1}=\{\{a, b\},\{c, d\}\}, \quad F_{2}=\{\{a, c\},\{b, d\}\}, \quad F_{3}=\{\{a, d\},\{b, c\}\},
\end{aligned}
$$

as in Figure $3(a)$. Then we can construct 124 -hypercliques in the collection \mathscr{P} of $K_{n, n}^{(3)}(X, Y)$ from \mathcal{E} and \mathcal{F} as shown in Figure 3(b).

When n is even, it follows from Lemmas 2.3 and 2.5 that each subhypergraph in the layer decomposition of $D^{(3)}\left(K_{m(n)}\right)$ has a $K_{4}^{(3)}$-decomposition. Hence the following first main theorem holds.

Theorem 2.7. Let $m, n \geq 2$ be integers such that n is even. Then, there exists a $K_{4}^{(3)}$ decomposition of the hyperdistance multihypergraph $D^{(3)}\left(K_{m(n)}\right)$.

(a)

4-hypercliques in \mathscr{P} which are associated with E_{i} and F_{i}											
E_{1}, F_{1}				E_{2}, F_{2}				E_{3}, F_{3}			
1	1	3	3	1	1	2	2	1	1	2	2
2	2	4	4	3	3	4	4	4	4	3	3
a	c	a	c	a	b	a	b	a	b	a	b
b	d	b	d	c	d	c	d	d	c	d	c

(b)

Figure 3. (a) 1-factorizations \mathcal{E} and \mathcal{F} of $K_{4}(X)$ and $K_{4}(Y)$, respectively. (b) The collection \mathscr{P} of 4 -hypercliques.

2.2. $D^{(3)}\left(K_{m(n)}\right)$ WHEN n IS ODD

When $n \geq 3$ is odd, the construction is getting more complicated. We present a technique to resolve some small cases.

First start with $m=2$. To decompose the Type 2-subhypergraph of $D^{(3)}\left(K_{5,5}\right)$ and $D^{(3)}\left(K_{9,9}\right)$, we modify the construction of the even case in the previous section by using 2 -factorizations instead of 1 -factorizations due to the number of vertices of each partite set is odd.
Theorem 2.8. There exist $K_{4}^{(3)}$-decompositions of $D^{(3)}\left(K_{5,5}\right)$ and $D^{(3)}\left(K_{9,9}\right)$.
Proof. (i) Let X and Y be two partite sets of $K_{5,5}$. First, by the type decomposition in Remark 1.4 (ii), we have

$$
D^{(3)}\left(K_{5,5}(X, Y)\right)=6 K_{5}^{(3)}(X) \cup 6 K_{5}^{(3)}(Y) \cup 4 K_{5,5}^{(3)}(X, Y)
$$

Let \mathscr{P}_{X} be the collection of all 4-subsets of X each of which form a 4-hyperclique. Since $|X|=5$, each 3 -subset of X must belong to exactly two 4 -hypercliques in \mathscr{P}_{X}. Then \mathscr{P}_{X} covers exactly two copies of each distinct hyperedge on partite set X. Hence, $3 \mathscr{P}_{X}$ form a $K_{4}^{(3)}$-decomposition of $6 K_{5}^{(3)}(X)$. Similarly, there exists a $K_{4}^{(3)}$-decomposition of $6 K_{5}^{(3)}(Y)$.

Now, it remains to construct a $K_{4}^{(3)}$-decomposition of the Type 2-subhypergraph of $D^{(3)}\left(K_{5,5}(X, Y)\right)$, say $2 \mathscr{P}$. In other words, \mathscr{P} will be a $K_{4}^{(3)}$-decomposition of $2 K_{5,5}^{(3)}(X, Y)$. We create hypercliques in \mathscr{P} using a 2-factorization of K_{5} as follows. By Theorem 2.2, there exist 2-factorizations, say $\mathcal{E}_{X}=\left\{E_{1}, E_{2}\right\}$ and $\mathcal{F}_{Y}=\left\{F_{1}, F_{2}\right\}$ of $K_{5}(X)$ and $K_{5}(Y)$, respectively. Let

$$
\mathscr{P}=\left\{\{a, b, c, d\}:\{a, b\} \in E_{i},\{c, d\} \in F_{i}, 1 \leq i \leq 2\right\} .
$$

Since both E_{i} and F_{i} have 5 edges, there are 254 -hypercliques in the collection \mathscr{P} which are associated with E_{i} and F_{i}.

Hence, \mathscr{P} consists of 504 -hypercliques. It follows that \mathscr{P} covers at most 200 hyperedges counted repeatedly. Moreover, since $2 K_{5,5}^{(3)}(X, Y)$ has a total of 200 hyperedges, it suffices to show that \mathscr{P} covers at least two copies of each distinct hyperedge of Type 2 in $K_{5,5}^{(3)}(X, Y)$. Now let $\left\{v, v^{\prime}, w\right\}$ be a hyperedge where $v, v^{\prime} \in X$ and $w \in Y$, then $\left\{v, v^{\prime}\right\}$ is an edge in E_{t} for some $t \in\{1,2\}$. Together with the fact that F_{t} is a spanning 2-regular subgraph of Y, so the hyperedge $\left\{v, v^{\prime}, w\right\}$ belongs to at least two 4 -hypercliques in \mathscr{P}.

Hence, \mathscr{P} covers $2 K_{5,5}^{(3)}(X, Y)$, and thus $2 \mathscr{P}$ decomposes $4 K_{5,5}^{(3)}(X, Y)$ into 4-hypercliques.
(ii) Let A and B be two partite sets in $K_{9,9}$. Then

$$
D^{(3)}\left(K_{9,9}(A, B)\right)=6 K_{9}^{(3)}(A) \cup 6 K_{9}^{(3)}(B) \cup 4 K_{9,9}^{(3)}(A, B) .
$$

Let \mathscr{C}_{A} be the collection of all 4 -subsets of A. Similar to (i) except now $|A|=9$, each hyperedge in $K_{9}^{(3)}(A)$ belongs to exactly six 4 -hypercliques in \mathscr{C}_{A}. Therefore, there exists a $K_{4}^{(3)}$-decomposition of $6 K_{9}^{(3)}(A)$, and so does one of $6 K_{9}^{(3)}(B)$. To decompose $4 K_{9,9}^{(3)}(A, B)$ into 4-hypercliques, we use the similar argument as in (i). Therefore, $D^{(3)}\left(K_{9,9}(A, B)\right)$ has a $K_{4}^{(3)}$-decomposition.
Corollary 2.9. For an integer $n \geq 2$, there exists the $K_{4}^{(3)}$-decomposition of $2 K_{n, n}^{(3)}$.
Proof. If n is even, then the decomposition exists by Lemma 2.5. If n is odd, then we create a collection of 4-hypercliques by using a 2 -factorization of K_{n} as in the proof of Theorem 2.8 which form a $K_{4}^{(3)}$-decomposition of $2 K_{n, n}^{(3)}$.

It could be noted that each 4-hyperclique in the decomposition from the construction of Theorem 2.8 always contains hyperedges of the same type. However, when $n=4 k+3$, the number of hyperedges of Type 1 in $D^{(3)}\left(K_{m(n)}\right)$ is not divisible by 4 . This implies that some hyperedges of Type 1 must form a 4-hyperclique with some hyperedges of another type, for instance, Example 1.3 shows a $K_{4}^{(3)}$-decomposition of $D^{(3)}\left(K_{3,3}\right)$ and a result in [9] reveals a $K_{4}^{(3)}$-decomposition of $D^{(3)}\left(K_{7,7}\right)$. The construction for $D^{(3)}\left(K_{7,7}\right)$ in [9] is a bit subtle which uses a 2 -factorization of K_{7} and a length function of edges in K_{7}. This result is concluded here for future reference in Theorem 2.10.
Theorem 2.10. [9] There exists a $K_{4}^{(3)}$-decomposition of $D^{(3)}\left(K_{7,7}\right)$.
Now we move on to the complete multipartite hypergraphs with more than two partite sets. If the number of partite sets is an even integer at least four, we utilize Latin cube to handle hyperedges of Type 3 in our construction.

A Latin cube $L=\left\{L_{i, j, k}\right\}$ of order n on the set $X=\{1,2, \ldots, n\}$ is an $n \times n \times n$ cube (n rows, n columns and n layers) such that the entry $L_{i, j, k} \in X$, where $L_{i, j, k}$ denotes the entry in row i column j and layer k, and if two indices are fixed and the remaining index is allowed to vary from 1 to n, then these entries form a permutation of X.

1	2	3
2	3	1
3	1	2
$k=1$		

2	3	1
3	1	2
1	2	3
$k=2$		

3	1	2
1	2	3
2	3	1
$k=3$		

Figure 4. A Latin cube $L=\left\{L_{i, j, k}\right\}$ of order 3.
The existence of Latin cubes is shown in the following theorem. (See more details in [3])
Theorem 2.11. [10],[3] Let $n \geq 2$ be an integer. There exists a Latin cube of order n.
The next lemma is to decompose the Type 3-subhypergraph of $D^{(3)}\left(K_{m(n)}\right)$ for an even m.

Lemma 2.12. Let $m, n \geq 2$ be integers such that m is even. The Type 3 -subhypergraph of $D^{(3)}\left(K_{m(n)}\right)$ has a $K_{4}^{(3)}$-decomposition.

Proof. Let H_{3} be the Type 3-subhypergraph of $D^{(3)}\left(K_{m(n)}\right)$. Let $V_{1}, V_{2}, \ldots, V_{m}$ be the m-partite sets of H_{3}. Then $\left|V_{i}\right|=n$ for all $i \in\{1,2, \ldots, m\}$.

We will create 4-hypercliques in our decomposition using hyperedges of Type 3 from certain groups of four partite sets of H_{3}.

To specify groups of four partite sets, we consider the set of indices $I=\{1,2, \ldots, m\}$ as the vertex set of complete graph K_{m}. Since m is even, by Theorem $2.1, K_{m}(I)$ has a 1-factorization, say $\mathscr{M}=\left\{M_{i}: 1 \leq i \leq m-1\right\}$.

Now, define the collection of sets, called groups, of four partite sets of H_{3} according to \mathscr{M} as follows;

$$
\mathscr{Q}=\left\{\left\{V_{a}, V_{b}, V_{c}, V_{d}\right\}:\{a, b\} \neq\{c, d\} \in M_{i}, 1 \leq i \leq m-1\right\} .
$$

Then \mathscr{Q} contains $\binom{m / 2}{2}(m-1)$ groups of four partite sets.
Next, for each group in \mathscr{Q}, we will create the collection of 4-hypercliques of H_{3} as follows. By Theorem 2.11, let L be a Latin cube of order n.

We define a collection of 4-hypercliques of H_{3} by

$$
\mathscr{P}=\left\{\left\{a_{i}, b_{j}, c_{k}, d_{L_{i, j, k}}\right\}: 1 \leq i, j, k \leq n,\left\{V_{a}, V_{b}, V_{c}, V_{d}\right\} \in \mathscr{Q}\right\}
$$

where $V_{a}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}, V_{b}=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}, V_{c}=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$, and $V_{d}=$ $\left\{d_{1}, d_{2}, \ldots, d_{n}\right\}$.

Then \mathscr{P} contains $\binom{m / 2}{2}(m-1) n^{3} 4$-hypercliques. Observe that any hyperedge of Type 3 contains three vertices from different three partite sets.

Let e be a hyperedge of Type 3 . Since \mathscr{M} is a 1 -factorization of $K_{m}(I)$, any three partite sets are together in the same group in \mathscr{Q} exactly three different groups. Moreover, e belongs to a hyperclique in \mathscr{P} once by the property of a Latin cube. It means that \mathscr{P} covers exactly three copies of each distinct hyperedge in H_{3}. Consequently, \mathscr{P} is a $K_{4}^{(3)}$-decomposition of H_{3}.

Example 2.13. An illustration of Lemma 2.12 when $m=4$ and $n=3$.
Let $V_{a}=\left\{a_{1}, a_{2}, a_{3}\right\}, V_{b}=\left\{b_{1}, b_{2}, b_{3}\right\}, V_{c}=\left\{c_{1}, c_{2}, c_{3}\right\}$, and $V_{d}=\left\{d_{1}, d_{2}, d_{3}\right\}$ be four partite sets of $D^{(3)}\left(K_{4(3)}\right)$, and let $\mathcal{F}=\left\{F_{1}, F_{2}, F_{3}\right\}$ be a 1-factorization of $K_{4}(\{a, b, c, d\})$ where

$$
F_{1}=\{\{a, b\},\{c, d\}\}, \quad F_{2}=\{\{a, c\},\{b, d\}\}, \quad F_{3}=\{\{a, d\},\{b, c\}\} .
$$

Let $L=\left\{L_{i, j, k}\right\}$ be the Latin cube of order 3 in Figure 4. Figure 5 lists all 4-hypercliques of $D^{(3)}\left(K_{4(3)}\left(V_{a}, V_{b}, V_{c}, V_{d}\right)\right)$ constructed from $F_{2} \in \mathcal{F}$ and $L=\left\{L_{i, j, k}\right\}$ for $k=1,2$.

4-hypercliques in \mathscr{P} which are associated with F_{2} and $L=\left\{L_{i, j, k}\right\}$ for $k=1,2$.																	
$k=1$									$k=2$								
a_{1}																	
c_{1}	c_{1}	c_{1}	c_{2}	c_{2}	c_{2}	c_{3}	c_{3}	c_{3}	c_{1}	c_{1}	c_{1}	c_{2}	c_{2}	c_{2}	c_{3}	c_{3}	c_{3}
b_{1}																	
d_{1}	d_{2}	d_{3}	d_{2}	d_{3}	d_{1}	d_{3}	d_{1}	d_{2}	d_{2}	d_{3}	d_{1}	d_{3}	d_{1}	d_{2}	d_{1}	d_{2}	d_{3}

Figure 5. The 4-hypercliques in \mathscr{P} associated with $F_{2} \in \mathcal{F}$ and Latin cube $L=\left\{L_{i, j, k}\right\}$ for $k=1,2$.

The next main theorem shows that if $D^{(3)}\left(K_{2(n)}\right)$ has a $K_{4}^{(3)}$-decomposition, so does $D^{(3)}\left(K_{m(n)}\right)$ whenever m is even.

Theorem 2.14. Let $n, m \geq 2$ be integers such that m is even. If there exists a $K_{4}^{(3)}$ decomposition of $D^{(3)}\left(K_{n, n}\right)$, then there exists a $K_{4}^{(3)}$-decomposition of $D^{(3)}\left(K_{m(n)}\right)$.

Proof. Let $G=D^{(3)}\left(K_{m(n)}\left(V_{1}, V_{2}, \ldots, V_{m}\right)\right)$. Then $\left|V_{i}\right|=n$ for all $i \in\{1,2, \ldots, m\}$.
First, by the type decomposition, we have

$$
G=H_{1} \cup H_{2} \cup H_{3}, \text { where } H_{i} \text { is a Type } i \text {-subhypergraph. }
$$

Next we will partition H_{2} into two smaller subhypergraphs using a 1-factor as follows: Consider the set of indices $I=\{1,2, \ldots, m\}$ as the vertex set of the complete graph K_{m}. Since m is even, $K_{m}(I)$ has a 1-factor, say $M=\left\{\{2 i-1,2 i\}: 1 \leq i \leq \frac{m}{2}\right\}$. Let $E=E\left(K_{m}(I)\right)$. We have that

$$
H_{2}=\bigcup_{\{i, j\} \in M} 4 K_{n, n}^{(3)}\left(V_{i}, V_{j}\right) \cup \bigcup_{\{i, j\} \in E \backslash M} 4 K_{n, n}^{(3)}\left(V_{i}, V_{j}\right) .
$$

Let $K=H_{1} \cup \bigcup_{\{i, j\} \in M} 4 K_{n, n}^{(3)}\left(V_{i}, V_{j}\right)$. Then K can be viewed as the (hyperedge) disjoint union of $\frac{m}{2}$ copies of $D^{(3)}\left(K_{n, n}\right)$, and hence it has a $K_{4}^{(3)}$-decomposition by the assumption. Furthermore, by Corollary 2.9 and Lemma 2.12, there exists a $K_{4}^{(3)}$ decomposition of $\bigcup_{\{i, j\} \in E \backslash M} 4 K_{n, n}^{(3)}\left(V_{i}, V_{j}\right)$ and H_{3}, respectively. Therefore our desired decomposition exists.

When $n=3,5,7,9$, the existence of $K_{4}^{(3)}$-decomposition of $D^{(3)}\left(K_{2(n)}\right)$ is provided in Example 1.3 and, Theorems 2.8 and 2.10. Corollary 2.15 concludes the current result, and hence the problem remains open when m and n are odd.

Corollary 2.15. Let m be an even integer and $n=3,5,7,9$. There exists a $K_{4}^{(3)}$ decomposition of $D^{(3)}\left(K_{m(n)}\right)$.

For our final remark, we would like to illustrate more application of our technique using 2 -factorizations and Latin cubes which presented in Corollary 2.9 and Lemma 2.12, respectively. The technique yields a decomposition not only of a distance multihypergraph but also one of a complete 3-uniform multipartite hypergraph.

Corollary 2.16. Let m, n and λ be positive integers such that m is even, n is odd and $\lambda \equiv 0(\bmod 6)$. Then there exists a $K_{4}^{(3)}$-decomposition of $\lambda K_{m(n)}^{(3)}$.

Proof. Let $G=K_{m(n)}^{(3)}\left(V_{1}, V_{2}, \ldots, V_{m}\right)$ and $\lambda=6 t$ for some positive integer t. Then $\left|V_{i}\right|=n$ for all $i \in\{1,2, \ldots, m\}$. First note that

$$
6 t G=\left(6 t H_{3}\right) \cup \bigcup_{1 \leq i<j \leq m} 6 t K_{n, n}^{(3)}\left(V_{i}, V_{j}\right)
$$

where H_{3} is the Type 3-subhypergraph of $D^{(3)}\left(K_{m(n)}\right)$.
Since $\bigcup_{1 \leq i<j \leq m} 2 t K_{n, n}^{(3)}\left(V_{i}, V_{j}\right)$ and $3 t H_{3}$ can be decomposed into a collection of 4hypercliques by Corollary 2.9 and Lemma 2.12, respectively, $6 t G$ has a $K_{4}^{(3)}$-decomposition as desired.

Acknowledgement

The first author was financially supported by Science Achievement Scholarship of Thailand.

References

[1] V. Boonthong, C. Uiyyasathian, Clique decompositions of the distance multigraph of the Cartesian product of graphs, East-West J. Math 20 (2018) 9-18.
[2] R.J. Elzinga, D.A. Gregory, K.N. Vander Meulen, Addressing the Petersen graph, Discrete Math. 286 (2004) 241-244.
[3] R.L. Graham, H.O. Pollak, On the addressing problem for loop switching, Bell Syst. Tech. J. 50 (1971) 2495-2519.
[4] P. Winkler, Proof of the squashed cube conjecture, Combinatorica 3 (1983) 135-139.
[5] M.S. Cavers, R.J. Elzinga, D.A. Gregory, S.E. Vanderlinde, K.N. Vander Meulen, Clique partition of distance multigraph, Discrete Math. 308 (2008) 3230-3240.
[6] V. Boonthong, Hyperclique Decompositions of Hyperdistance Multihypergraphs, PhD Thesis, Chulalongkorn University, Bangkok, Thailand, 2014.
[7] W.D. Wallis, Introduction to Combinatorial Design, Chapman and Hall/CRC, New York, 2008.
[8] L. Lovsz, M.D. Plummer, Matching Theory, American Mathematical Society, Rhode Island, 2009.
[9] C. Saengchampa, Hyperclique Decompositions of 3-Hyperdistance Multihypergraphs of Complete Multipartite Graphs, Master Thesis, Chulalongkorn University, Bangkok, Thailand, 2016.
[10] J.T. Ethier, G.L. Mullen, Strong forms of orthogonality for sets of hypercubes, Discrete Math. 312 (2012) 2050-2061.

[^0]: *Corresponding author.

