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Abstract This paper investigates hyperclique decompositions of a hypergraph transformation, namely
the hyperdistance multihypergraph defined as follows: Given an integer k ≥ 3 and any hypergraph H, the

k-hyperdistance multihypergraph of H, denoted by D(k)(H), is the k-uniform hypergraph which has the

same vertex set as H and for any k-subset {v1,v2,. . . vk} of V (H), D(k)(H) has exactly
∑

i 6=j dH(vi, vj)

copies of hyperedges {v1, v2, . . . , vk} where dH(vi, vj) is the distance between vertices vi and vj in H.

We study 4-hyperclique decompositions of D(3)(H) where H is a complete multipartite graph. Our

construction technique includes classic designs such as Latin cubes and factorizations of graphs.
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1. Introduction

A hypergraph H is an ordered (V (H), E(H)) where V (H) is the vertex set and E(H)
is the hyperedge set which is a multi-set of non-empty subsets of V (H). That is, any
set of hyperedges can have repeated elements. A multihypergraph is a hypergraph with
repeated hyperedges. A hypergraph H is k-uniform if each hyperedge of H contains
exactly k vertices, denoted H(k). A complete k-uniform hypergraph with n (≥ k) vertices

on the vertex n-set V (or n-hyperclique), denoted K
(k)
n (V ) or K

(k)
n , is the k-uniform

hypergraph on n vertices such that all k-subsets of V form the hyperedge set. Hence the
vertex set determines the hyperclique, we then can simply refer to any hyperclique as its
vertex set. A k-uniform complete m-partite hypergraph on m partite sets, V1, V2, . . .,Vm,
is the k-uniform hypergraph on the vertex set V = V1 ∪ V2 ∪ . . . ∪ Vm whose hyperedge
set consists of all k-subsets of V except those of the form {x1, x2, . . . , xk} ⊆ Vi for some i,

and it is denoted by K
(k)
n1,n2,...,nm(V1, V2, . . . , Vm) if |Vi| = ni for all i. If all m partite sets

have the same size n, K
(k)
n,n,...,n is denoted by K

(k)
m(n). Since 2-uniform hypergraphs are

graphs, we will use the same notation without specified k = 2, for example, Kn, Km(n).
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To define our hypergraph transformation, we recall the notion in terms of graphs. The
distance between vertices u and v in graph G, denoted by dG(u, v), is the number of edges
in a shortest path connecting u and v.

Definition 1.1. The distance multigraph of a graph G, denoted D(G), is a graph with
the same vertex set as G such that 2-subset of V (D(G)), namely {u, v}, forms exactly
dG(u, v) copies of edges {u, v} in E(D(G)).

A distance multigraph is a graph model to solve some real world problems. There are
wide range of its applications to the area of communication network, for example finding
a shortest route to transmit messages in a computer network. See more details regarding
the model of the problem in [1]. In particular, it is the problem of decomposition of the
distance multigraph of graph into bicliques [2], [3], [4]. In 2008, Cavers et al. [5] studied
the decomposition of the distance multigraphs of a graph G into cliques where G is a
path, cycle or complete multipartite graph. Boonthong [1] obtained further results on
clique decompositions of the distance multigraph of the Cartesian product of graphs.

Later on, Boonthong [6] extended the notion of the distance multigraph into hyper-
graphs which is called the k-hyperdistance multihypergraphs. In hypergraphs, a path con-
necting vertices v1 and vn+1 is a vertex-hyperedge alternative sequence v1e1v2e2 . . . envn+1

of distinct vertices v1, v2, v3, . . . , vn+1 and distinct hyperedges e1, e2, e3, . . . , en with pos-
sibility v1 = vn+1 such that vi and vi+1 are elements in ei for all i ∈ {1, 2, 3, . . . , n}. The
distance between vertices u and v in a hypergraph H, denoted by dH(u, v), is the number
of hyperedges in a shortest path connecting u and v.

Definition 1.2. For any hypergraph H, the k-hyperdistance multihypergraph of H, de-
noted by D(k)(H), is the k-uniform hypergraph with the same vertex set as H such that
any k-subset of V (D(k)(H)), namely {v1, v2, . . . , vk}, forms exactly

∑
i 6=j dH(vi, vj) copies

of hyperedge {v1, v2, . . . , vk} in E(D(k)(H)).

A hyperclique decomposition of a hypergraph H is a collection of hypercliques of H such
that each hyperedge of H belongs to exactly one hyperclique in the collection. If each
hyperclique in the collection is isomorphic to a hyperclique K, then the decomposition is
called a K-decomposition.

In this paper we study a problem of hyperclique decompositions of D(k)(H) when

k = 3 and H = Km(n). Since a K
(3)
3 - decomposition of D(3)(Km(n)) always exists (by

its hyperedge set), ones investigate a decomposition of a given 3-uniform hypergraph

into k-hypercliques when k ≥ 4. A necessary condition for the existence of a K
(3)
4 -

decomposition of a hypergraph is that the number of its hyperedges must be divisible by 4,

for example, D(3)(K5,5,5) has no K
(3)
4 -decomposition. Thus finding a K

(3)
4 - decomposition

of D(3)(Km(n)) is a nontrivial interesting problem.

A hyperedge e of D(3)(Km(n)) is called a hyperedge of Type i if e contains vertices
from different i partite sets of Km(n). Any hyperedge of Type 1, Type 2 and Type 3 of

D(3)(Km(n)) has six, four and three copies, respectively, in E(D(3)(Km(n))).
We would like to emphasize here that any set of hyperedges or 4-hypercliques are

multi-sets, and α copies of a set S is denoted by αS.

Example 1.3. There exists a K
(3)
4 -decomposition of D(3)(K3,3).

Let U = {u1, u2, u3} and V = {v1, v2, v3} be two partite sets of K3,3. Then the set of

hyperedges of D(3)(K3,3) is {6{u1, u2, u3}, 6{v1, v2, v3}, 4{ui, uj , vk}, 4{vi, vj , uk} : 1 ≤
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i < j ≤ 3 and 1 ≤ k ≤ 3}. Consider P and P ′ as follows:

P = {{vi, vj , us, ut} : 1 ≤ i < j ≤ 3 and 1 ≤ s < t ≤ 3},

P ′ = {2{v1, v2, v3, ui}, 2{u1, u2, u3, vi} : 1 ≤ i ≤ 3}.
It can be verified that each two copies of distinct hyperedges of Type 2 in D(3)(K3,3)
form 4-hypercliques in P and all hyperedges of Type 1 together with the remaining of

hyperedges of Type 2 form 4-hypercliques in P ′. Hence P ∪P ′ is a K
(3)
4 -decomposition

of D(3)(K3,3). 2

Figure 1. 4-hyperclique {u1, u2, u3, v2} in P ′ containing 4 hyperedges.

Remark that D(3)(Km(n)) can be partitioned into three smaller subhypergraphs in two
following ways:

(i) The layer decomposition. As a hyperedge of Type 1, Type 2 and Type 3
has six, four and three copies, respectively, each distinct hyperedge has at least

three copies; use them to form a 3K
(3)
mn. Now the remaining three copies of each

distinct hyperedge of Type 1 in each partite set form a 3K
(3)
n , and the remaining

hyperedges of Type 2 form the union of complete bipartite hypergraphs on each
pair of partite sets.

(ii) The type decomposition. The partition depends on the type of hyperedges. We
partition D(3)(Km(n)) into

⋃
1≤i≤3Hi , where Hi consists of all hyperedges of

Type i for i ∈ {1, 2, 3}.
The above two decompositions are concluded in Remark 1.4 for future references. Note

first that λH stands for λ copies of the hypergraph H on the same vertex set.

Remark 1.4. Let m ≥ 2 and n be positive integers.
G = D(3)(Km(n)(V1, V2, . . . , Vm)) can be partitioned into three disjoint subhypergraphs
in two ways as follows:

(i) The layer decomposition.

G = 3K(3)
mn(

⋃
1≤i≤m

Vi) ∪
⋃

1≤i≤m

3K(3)
n (Vi) ∪

⋃
1≤i<j≤m

K(3)
n,n(Vi, Vj)

(ii) The type decomposition.
Let Hi be the Type i-subhypergraph of G defined by V (Hi) = V (G) and E(Hi)

consists of all hyperedges of Type i. Then

G = H1 ∪ H2 ∪ H3.

In particular, H1=
⋃

1≤i≤m 6K
(3)
n (Vi) and H2=

⋃
1≤i6=j≤m 4K

(3)
n,n(Vi, Vj).
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2.K
(3)
4 -Decompositions of D(3)(Km(n))

To decompose our distance multihypergraphs of Km(n), we mainly rely on some well
known decompositions of graphs, namely 1-factorizations and 2-factorizations of complete
graphs.

A 1-factor (2-factor) of a graph is a spanning subgraph that is regular of degree one
(two, respectively). A 1-factorization (2-factorization) is a decomposition of a graph into
1-factors (2-factors, respectively). The existence of a 1-factorization and a 2-factorization
of complete graphs are provided in the following theorems. (See more details in [7], [8]).
We can refer to a 1-factor(or 2-factor) as its edge set.

Theorem 2.1. [7] A complete graph of even vertices has a 1-factorization.

Theorem 2.2. [8] The complete graph of odd vertices has a 2-factorization.

Our construction is divided into two parts depending on the parity of the size of each
partite set.

2.1.D(3)(Km(n)) when n is Even

By the layer decomposition in Remark 1.4 (i), our distance multihypergraphs can

be partitioned into subhypergraphs of the form 3K
(3)
s and K

(3)
n,n. Thus it suffices to

decompose 3K
(3)
s and K

(3)
n,n into 4-hypercliques. Lemmas 2.3 and 2.5 use 1-factorizations

in the construction.

Lemma 2.3. Let s ≥ 4 be an even integer. There exists a K
(3)
4 -decomposition of the

hypergraph 3K
(3)
s .

Proof. Let V be a vertex set of a 3-uniform complete hypergraph K
(3)
s . Consider the

complete graph Ks on the same vertex set V . Since s is even, by Theorem 2.1, there
exists a 1-factorization of Ks(V ), say M = {Mi : 1 ≤ i ≤ s− 1}. Let

P = {{a, b, c, d} : {a, b} 6= {c, d} ∈Mi, 1 ≤ i ≤ s− 1}.

Then P contains
(
s/2
2

)
(s−1) 4-hypercliques. Observe that any 3-subset e of V belongs

to a hyperclique in P if e contains two vertices of an edge in some 1-factor of M . Since
M is a 1-factorization of Ks(V ) and e contains three distinct pairs of vertices, P covers

exactly three copies of each distinct hyperedge in E(K
(3)
s ). Therefore P is a K

(3)
4 -

decomposition of 3K
(3)
s (V ).

Example 2.4. An illustration of Lemma 2.3 when s = 6.

Let V = {1, 2, 3, 4, 5, 6} be the vertex set of 3K
(3)
6 , and let M = {Mi : 1 ≤ i ≤ 5} be a

1-factorization of K6(V ) where

M1 = {{1, 2}, {3, 6}, {4, 5}}, M4 = {{1, 5}, {2, 6}, {3, 4}},
M2 = {{1, 3}, {2, 5}, {4, 6}}, M5 = {{1, 6}, {2, 4}, {3, 5}},
M3 = {{1, 4}, {2, 3}, {5, 6}},

as in Figure 2(a). Then we can construct 15 4-hypercliques in the collection P of 3K
(3)
6 (V )

from M as shown in Figure 2(b).
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(a) (b)

Figure 2. (a) 1-factorization M of K6. (b) The collection P of 4-hypercliques.

Lemma 2.5. Let n be an even integer. There exists a K
(3)
4 -decomposition of the hyper-

graph K
(3)
n,n.

Proof. Let X and Y be two partite sets of K
(3)
n,n. Since n is even, by Theorem 2.1,

there exists a 1-factorization of Kn(X) and Kn(Y ), say E = {Ei : 1 ≤ i ≤ n − 1} and
F = {Fi : 1 ≤ i ≤ n− 1}, respectively.

We will create each 4-hyperclique by choosing certain two vertices from each partite
set. The four vertices are endpoint of an edge in 1-factor Ei and another edge from Fi

for 1 ≤ i ≤ n− 1 as follows. Let P be the collection of 4-hypercliques in K
(3)
n,n associated

with E and F defined by

P = {{a, b, c, d} : {a, b} ∈ Ei, {c, d} ∈ Fi, 1 ≤ i ≤ n− 1}.

Hence P contains a total of
(
n
2

)2
(n−1) 4-hypercliques which together cover 4(n

2 )2(n−
1) hyperedges. It remains to show that P covers exactly one copy of each hyperedge of

K
(3)
n,n(X,Y ).

Let {v, v′, w} be any hyperedge of K
(3)
n,n(X,Y ). Without loss of generality, say v, v′ ∈ X

and w ∈ Y . Since {v, v′} is an edge in Ei for some 1 ≤ i ≤ n − 1 and Fi is a spanning
1-regular subgraph, the hyperedge {v, v′, w} belongs to exactly one 4-hyperclique in P.

Example 2.6. An illustration of Lemma 2.5 when n = 4.

LetX = {1,2,3,4} and Y = {a,b,c,d} be two partite sets ofK
(3)
4,4 , and let E={E1,E2,E3}

and F = {F1, F2, F3} be 1-factorizations of K4(X) and K4(Y ) respectively, where

E1 = {{1, 2}, {3, 4}}, E2 = {{1, 3}, {2, 4}}, E3 = {{1, 4}, {2, 3}},
F1 = {{a, b}, {c, d}}, F2 = {{a, c}, {b, d}}, F3 = {{a, d}, {b, c}},

as in Figure 3(a). Then we can construct 12 4-hypercliques in the collection P of

K
(3)
n,n(X,Y ) from E and F as shown in Figure 3(b).

When n is even, it follows from Lemmas 2.3 and 2.5 that each subhypergraph in the

layer decomposition of D(3)(Km(n)) has a K
(3)
4 -decomposition. Hence the following first

main theorem holds.

Theorem 2.7. Let m,n ≥ 2 be integers such that n is even. Then, there exists a K
(3)
4 -

decomposition of the hyperdistance multihypergraph D(3)(Km(n)).
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(a) (b)

Figure 3. (a) 1-factorizations E and F of K4(X) and K4(Y ), respec-
tively. (b) The collection P of 4-hypercliques.

2.2.D(3)(Km(n)) when n is Odd

When n ≥ 3 is odd, the construction is getting more complicated. We present a
technique to resolve some small cases.

First start with m = 2. To decompose the Type 2-subhypergraph of D(3)(K5,5) and

D(3)(K9,9), we modify the construction of the even case in the previous section by using
2-factorizations instead of 1-factorizations due to the number of vertices of each partite
set is odd.

Theorem 2.8. There exist K
(3)
4 -decompositions of D(3)(K5,5) and D(3)(K9,9).

Proof. (i) Let X and Y be two partite sets of K5,5. First, by the type decomposition in
Remark 1.4 (ii), we have

D(3)(K5,5(X,Y )) = 6K
(3)
5 (X) ∪ 6K

(3)
5 (Y ) ∪ 4K

(3)
5,5(X,Y ).

Let PX be the collection of all 4-subsets of X each of which form a 4-hyperclique. Since
|X| = 5, each 3-subset of X must belong to exactly two 4-hypercliques in PX . Then
PX covers exactly two copies of each distinct hyperedge on partite set X. Hence, 3PX

form a K
(3)
4 -decomposition of 6K

(3)
5 (X). Similarly, there exists a K

(3)
4 -decomposition of

6K
(3)
5 (Y ).

Now, it remains to construct a K
(3)
4 -decomposition of the Type 2-subhypergraph of

D(3)(K5,5(X,Y )), say 2P. In other words, P will be aK
(3)
4 -decomposition of 2K

(3)
5,5(X,Y ).

We create hypercliques in P using a 2-factorization of K5 as follows. By Theorem 2.2,
there exist 2-factorizations, say EX = {E1, E2} and FY = {F1, F2} of K5(X) and K5(Y ),
respectively. Let

P = {{a, b, c, d} : {a, b} ∈ Ei, {c, d} ∈ Fi, 1 ≤ i ≤ 2}.

Since both Ei and Fi have 5 edges, there are 25 4-hypercliques in the collection P
which are associated with Ei and Fi.

Hence, P consists of 50 4-hypercliques. It follows that P covers at most 200 hyper-

edges counted repeatedly. Moreover, since 2K
(3)
5,5(X,Y ) has a total of 200 hyperedges, it

suffices to show that P covers at least two copies of each distinct hyperedge of Type 2 in

K
(3)
5,5(X,Y ). Now let {v, v′, w} be a hyperedge where v, v′ ∈ X and w ∈ Y , then {v, v′} is

an edge in Et for some t ∈ {1, 2}. Together with the fact that Ft is a spanning 2-regular
subgraph of Y , so the hyperedge {v, v′, w} belongs to at least two 4-hypercliques in P.
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Hence, P covers 2K
(3)
5,5(X,Y ), and thus 2P decomposes 4K

(3)
5,5(X,Y ) into 4-hypercliques.

(ii) Let A and B be two partite sets in K9,9. Then

D(3)(K9,9(A,B)) = 6K
(3)
9 (A) ∪ 6K

(3)
9 (B) ∪ 4K

(3)
9,9(A,B).

Let CA be the collection of all 4-subsets of A. Similar to (i) except now |A| = 9, each

hyperedge inK
(3)
9 (A) belongs to exactly six 4-hypercliques in CA. Therefore, there exists a

K
(3)
4 -decomposition of 6K

(3)
9 (A), and so does one of 6K

(3)
9 (B). To decompose 4K

(3)
9,9(A,B)

into 4-hypercliques, we use the similar argument as in (i). Therefore, D(3)(K9,9(A,B))

has a K
(3)
4 -decomposition.

Corollary 2.9. For an integer n ≥ 2, there exists the K
(3)
4 -decomposition of 2K

(3)
n,n.

Proof. If n is even, then the decomposition exists by Lemma 2.5. If n is odd, then we
create a collection of 4-hypercliques by using a 2-factorization of Kn as in the proof of

Theorem 2.8 which form a K
(3)
4 -decomposition of 2K

(3)
n,n.

It could be noted that each 4-hyperclique in the decomposition from the construction
of Theorem 2.8 always contains hyperedges of the same type. However, when n = 4k+ 3,
the number of hyperedges of Type 1 in D(3)(Km(n)) is not divisible by 4. This implies that
some hyperedges of Type 1 must form a 4-hyperclique with some hyperedges of another

type, for instance, Example 1.3 shows a K
(3)
4 -decomposition of D(3)(K3,3) and a result in

[9] reveals a K
(3)
4 -decomposition of D(3)(K7,7) . The construction for D(3)(K7,7) in [9] is

a bit subtle which uses a 2-factorization of K7 and a length function of edges in K7. This
result is concluded here for future reference in Theorem 2.10.

Theorem 2.10. [9] There exists a K
(3)
4 -decomposition of D(3)(K7,7).

Now we move on to the complete multipartite hypergraphs with more than two partite
sets. If the number of partite sets is an even integer at least four, we utilize Latin cube
to handle hyperedges of Type 3 in our construction.

A Latin cube L = {Li,j,k} of order n on the set X = {1, 2, . . . , n} is an n× n× n cube
(n rows, n columns and n layers) such that the entry Li,j,k ∈ X, where Li,j,k denotes the
entry in row i column j and layer k, and if two indices are fixed and the remaining index
is allowed to vary from 1 to n, then these entries form a permutation of X.

1 2 3 2 3 1 3 1 2
2 3 1 3 1 2 1 2 3
3 1 2 1 2 3 2 3 1
k = 1 k = 2 k = 3

Figure 4. A Latin cube L = {Li,j,k} of order 3.

The existence of Latin cubes is shown in the following theorem. (See more details in
[3])

Theorem 2.11. [10],[3] Let n ≥ 2 be an integer. There exists a Latin cube of order n.

The next lemma is to decompose the Type 3-subhypergraph of D(3)(Km(n)) for an
even m.
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Lemma 2.12. Let m,n ≥ 2 be integers such that m is even. The Type 3-subhypergraph

of D(3)(Km(n)) has a K
(3)
4 -decomposition.

Proof. Let H3 be the Type 3-subhypergraph of D(3)(Km(n)). Let V1, V2, . . . , Vm be the
m-partite sets of H3. Then |Vi| = n for all i ∈ {1, 2, . . . ,m}.

We will create 4-hypercliques in our decomposition using hyperedges of Type 3 from
certain groups of four partite sets of H3.

To specify groups of four partite sets, we consider the set of indices I = {1, 2, . . . ,m}
as the vertex set of complete graph Km. Since m is even, by Theorem 2.1, Km(I) has a
1-factorization, say M = {Mi : 1 ≤ i ≤ m− 1}.

Now, define the collection of sets, called groups, of four partite sets of H3 according to
M as follows;

Q = {{Va, Vb, Vc, Vd} : {a, b} 6= {c, d} ∈Mi, 1 ≤ i ≤ m− 1}.

Then Q contains
(
m/2
2

)
(m− 1) groups of four partite sets.

Next, for each group in Q, we will create the collection of 4-hypercliques of H3 as
follows. By Theorem 2.11, let L be a Latin cube of order n.

We define a collection of 4-hypercliques of H3 by

P = {{ai, bj , ck, dLi,j,k
} : 1 ≤ i, j, k ≤ n, {Va, Vb, Vc, Vd} ∈ Q}

where Va = {a1, a2, . . . , an}, Vb = {b1, b2, . . . , bn}, Vc = {c1, c2, . . . , cn}, and Vd =
{d1, d2, . . . , dn}.

Then P contains
(
m/2
2

)
(m−1)n3 4-hypercliques. Observe that any hyperedge of Type

3 contains three vertices from different three partite sets.
Let e be a hyperedge of Type 3. Since M is a 1-factorization of Km(I), any three

partite sets are together in the same group in Q exactly three different groups. Moreover,
e belongs to a hyperclique in P once by the property of a Latin cube. It means that
P covers exactly three copies of each distinct hyperedge in H3. Consequently, P is a

K
(3)
4 -decomposition of H3.

Example 2.13. An illustration of Lemma 2.12 when m = 4 and n = 3.
Let Va = {a1, a2, a3}, Vb = {b1, b2, b3}, Vc = {c1, c2, c3}, and Vd = {d1, d2, d3} be four

partite sets of D(3)(K4(3)), and let F = {F1, F2, F3} be a 1-factorization of K4({a, b, c, d})
where

F1 = {{a, b}, {c, d}}, F2 = {{a, c}, {b, d}}, F3 = {{a, d}, {b, c}}.
Let L = {Li,j,k} be the Latin cube of order 3 in Figure 4. Figure 5 lists all 4-hypercliques

of D(3)(K4(3)(Va, Vb, Vc, Vd)) constructed from F2 ∈ F and L = {Li,j,k} for k = 1, 2.

Figure 5. The 4-hypercliques in P associated with F2 ∈ F and Latin
cube L = {Li,j,k} for k = 1, 2.
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The next main theorem shows that if D(3)(K2(n)) has a K
(3)
4 -decomposition, so does

D(3)(Km(n)) whenever m is even.

Theorem 2.14. Let n,m ≥ 2 be integers such that m is even. If there exists a K
(3)
4 -

decomposition of D(3)(Kn,n), then there exists a K
(3)
4 -decomposition of D(3)(Km(n)).

Proof. Let G = D(3)(Km(n)(V1, V2, . . . , Vm)). Then |Vi| = n for all i ∈ {1, 2, . . . ,m}.
First, by the type decomposition, we have

G = H1 ∪ H2 ∪ H3, where Hi is a Type i-subhypergraph.

Next we will partition H2 into two smaller subhypergraphs using a 1-factor as follows:
Consider the set of indices I = {1, 2, . . . ,m} as the vertex set of the complete graph
Km. Since m is even, Km(I) has a 1-factor, say M = {{2i − 1, 2i} : 1 ≤ i ≤ m

2 }. Let
E = E(Km(I)). We have that

H2 =
⋃

{i,j}∈M

4K(3)
n,n(Vi, Vj) ∪

⋃
{i,j}∈E\M

4K(3)
n,n(Vi, Vj).

Let K = H1 ∪
⋃
{i,j}∈M 4K

(3)
n,n(Vi, Vj). Then K can be viewed as the (hyperedge)

disjoint union of m
2 copies of D(3)(Kn,n), and hence it has a K

(3)
4 -decomposition by

the assumption. Furthermore, by Corollary 2.9 and Lemma 2.12, there exists a K
(3)
4 -

decomposition of
⋃
{i,j}∈E\M 4K

(3)
n,n(Vi, Vj) and H3, respectively. Therefore our desired

decomposition exists.

When n = 3, 5, 7, 9, the existence of K
(3)
4 -decomposition of D(3)(K2(n)) is provided in

Example 1.3 and, Theorems 2.8 and 2.10. Corollary 2.15 concludes the current result,
and hence the problem remains open when m and n are odd.

Corollary 2.15. Let m be an even integer and n = 3, 5, 7, 9. There exists a K
(3)
4 -

decomposition of D(3)(Km(n)).

For our final remark, we would like to illustrate more application of our technique
using 2-factorizations and Latin cubes which presented in Corollary 2.9 and Lemma 2.12,
respectively. The technique yields a decomposition not only of a distance multihypergraph
but also one of a complete 3-uniform multipartite hypergraph.

Corollary 2.16. Let m,n and λ be positive integers such that m is even, n is odd and

λ ≡ 0 (mod 6). Then there exists a K
(3)
4 -decomposition of λK

(3)
m(n).

Proof. Let G = K
(3)
m(n)(V1, V2, . . . , Vm) and λ = 6t for some positive integer t. Then

|Vi| = n for all i ∈ {1, 2, . . . ,m}. First note that

6tG = (6tH3) ∪
⋃

1≤i<j≤m 6tK
(3)
n,n(Vi, Vj),

where H3 is the Type 3-subhypergraph of D(3)(Km(n)).

Since
⋃

1≤i<j≤m 2tK
(3)
n,n(Vi, Vj) and 3tH3 can be decomposed into a collection of 4-

hypercliques by Corollary 2.9 and Lemma 2.12, respectively, 6tG has aK
(3)
4 -decomposition

as desired.
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