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Abstract This research presents the problem of the finite-time synchronization of neural networks
with interval and distributed time-varying delays. A state feedback control is planned for finite-time
synchronization of neural networks. By constructing the Lyapunov-Krasovskii functional (LKF) is derived
for finite-time stability criteria of neural network systems with interval and continuous differentiable time-
varying delays. An extended reciprocally convex matrix inequality, a free-matrix-based integral inequality,
Jensen’s inequality and Wirtinger-based integral inequality are used to estimate the upper bound of the
derivative of the LKF. The new sufficient finite-time stability conditions have been proposed in the form
of linear matrix inequalities. Finally, a numerical example is presented to show the effectiveness of the

proposed methods.
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1. INTRODUCTION

In the past decades, neural networks have generally been recognized as one of the
simplest forms of neural processing in the human brain, which have an excellent ability to
process various complicated engineering problems and improve the efficiency of dynamic
systems. Neural networks have already been used in many majors, such as associate
memories, robotics and control, optimization problems, pattern recognition, and other
engineering areas [1-3]. In such applications, an important factor is the stability feature
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of equilibrium points of the designed neural networks. In addition, owing to the external
interference and finite speed of data processing, time-delay unavoidably exists in neural
networks [4]. As far as we well-know an important factor affecting the dynamic behavior of
the system is time-delay, which may create complicated dynamical behavior such as chaos,
instability, and oscillations [5-7]. Particularly, some primary stable systems may reach
into an oscillating or chaotic state, which caused huge damage for engineering. Hence, the
stability of the neural networks with time-delay has allured many researchers, and some
stability criteria have been shown in [8-13]. The improved stability criteria for neural
networks with time-delay can be divided into two types: delay-independent and delay-
dependent. After comparing, the delay-dependent stability criteria, which contain the
data of time delay, normally have less conservative, principally when applied to neural
networks with time-delay with small delay, because the latter takes advantage of the
further information of the time delays. Therefore, most researchers are interested in
delay-dependent stability analysis and the main goal is to reduce the conservatism of the
stability condition.

In many systems, consideration of long-time behavior of status variables is not enough
because the state variable values during the transient period may be too large or un-
realistic before reaching the equilibrium point. In a chemical process, for instance, the
temperature inside a container must be maintained within certain criteria for a period
of time for the chemicals to take effect. This situation is commonly known as finite-time
stability (FTS) which was introduced by Dorato in 1961 [14]. As a result, a large num-
ber of researchers are more interested in studying the FTS of various systems. During
the past decades, researchers presented criteria that guarantee FTS of various systems
with finding the smallest upper bound of the norm square of state variables or finding
the maximum time that guarantees values of the state variables to be within the given
bounds for a certain time. Some examples of FTS of linear system with constant delay
are studied in [15-22]. FTS of linear system with time-varying delays [23-27] and FTS
on other systems [28-34].

However, in some practical situations, stabilization and synchronization should be ex-
ecuted in finite time. Thus, a study for finite-time synchronization is necessary. Some
authors have investigated synchronization based on finite-time stability theory [35, 36].
In [35], the authors studied the finite-time synchronization of dynamical networks with
complex-variable chaotic systems. The Finite-time synchronization control for uncertain
Markov jump neural networks with input constraints was investigated [36]. In [37], the
authors showed the finite-time synchronization of time-delayed neural networks with un-
known parameters via adaptive control. The authors of [38] investigated the finite-time
synchronization of Markovian jumping complex dynamical networks and hybrid couplings.
As far as we know, there are few reports on the list of finite-time synchronization of de-
layed neural networks.

As mentioned above, FTS is one of the important topics that should have been further
studied. Thus, in this article, we investigate the finite-time synchronization of neural
networks with interval and distributed time-varying delays. This article is organized
as follows. In Section 2, we introduce the considered systems and review important
definitions and lemmas. Then, proof of the new integral inequality in the form of one free
matrix is proposed. This inequality will be used for bounding the derivative of LKF which
allows us to obtain delay-dependent FTS criteria in Section 3. A numerical example is
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given in Section 4 to show the effectiveness of the proposed criteria. The conclusion is
drawn in Section 5.

2. PROBLEM STATEMENT AND PRELIMINARIES

The following notations will be used in this paper: R"™ denotes the n—dimensional
space; R™"*™ denotes real value matrix with dimension n x m; A" denotes the transpose
of matrix A; A is symmetric if A = AT; A\(A) denotes all the eigenvalue of A; A\pax(A) =
max{Re A : A € AMA)}; Min(4) = min{Re A : A € A(4)}; A > 0 or A < 0 denotes
that the matrix A is a symmetric and positive definite or negative definite matrix; If
A, B are symmetric matrices, A > B means that A — B is positive definite matrix; [
denotes the identity matrix with appropriate dimensions. The symmetric term in the

matrix is denoted by *. The following norms will be used: || - || refer to the Euclidean
vector norm and diag{...} denotes a block diagonal matrix; sym{A} = A + AT and
col{ay,az,...,a,} = [a¥,al, ...;al]T.

In this paper, the master-slave neural networks with interval and distributed time-
varying delays are described as follows:

{ (1)
(1)

y(t)

—Ax(t) + Cf(x(t) + DF(x(t — () + E [y Fla(s))ds + J(0),
¢1(t), tE [*7’,0}7

—Ay(®) + CF(®) + DIt~ b)) + B 1y Fu())ds + I(0)
+Bu(t), (2.2)
y(t) = ¢2(t)7 te [_T7 O]a

where z(t) = [z1(t), z2(t), ..., zn(t)] € R™ and y(t) = [y1(t),y2(t), ..., yn(t)] € R™ are the
master systems state vector and the slave systems state vector of the neural networks,
respectively. ¢ (t) and ¢ (t) € C[[—7,0],R"] are the continuous initial function, f(z(t)) =
[f(x1(t), f(@2(1)), ..., f(zn(2))]T is the neuron activation function, A = diag{as, ..., an} >
0 is a diagonal matrix, B,C, D, E are the known real constant matrices with appropriate

dimensions.

(2.1)

The synchronization error e(t) is the form e(t) = y(t) — x(¢). Therefore, the neural
networks with mixed time varying delays of synchronization error between the master-
slave systems given in (2.1) and (2.2) can be described by

é(t) = —Ae(t) + Cf(e(t)) + Df(e(t — h(t))) + Eftt_d(t) f(e(s))ds + Bu(t), (2.3)
e(t) = ¢2(t) — ¢1(t) = ¢(t), te€[-,0]

where f(e(t)) = f(e(t)+z(t)) — f(x(t)). Now, we consider the state feedback control law:
u(t) = Ke(t), (2.4)

where K is a constant matrix control gain. Then, substituting (2.4) into (2.3), it is easy
to get the following:

é(t) = —(A—= BK)e(t) + Cf(e(t) + Df(e(t — h(£) + E [}y, F(e(s))ds, (25)
e(t) = ¢2(t) = o1(t) = ¢(t), t € [-7,0].
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The time-varying delay functions h(t) and d(t) satisfy the conditions

0 < hy <h(t) < ha, h(t) < p,
0<d(t) <d, (2.6)
where hy, ho, pu, d, 7 = max{hs,d} are known real constant scalars and we denote

hio = hy — hy, hyy = h(t) — hy, hay = ha — h(t).

Assumption 1. The neuron activation functions f (+) is bounded, f (0) = 0 and there
exits constant [; , lj such that

7 < fily) = fil@) <IFi=1,2,..,n, (2.7)
y—
where y, z € R with y # x. Denote Ly = diag{l; Ii,1515, ..., 171},

o+ -
Ly = diag{“ ;ll e #} and L = max{|l; |, ||}

Definition 2.1 ([25]). Given three positive constants c1,ca, T with ¢; < cg, the time-
delay system described by (2.5) and delay condition as in (2.6) is said to be finite-time
stable with respect to (¢1,ce, T, T), if the state variables satisfy the relationship:

7§2£)<0{6T(5)6(S), el (5)é(s)} < e1 = el (t)e(t) < e, Vt € [0,T).

Lemma 2.2 ([39]). For a positive definite matriz Z € R™*™, and two scalars 0 < r; < ro
and vector function x : [r1,73] — R™ such that the following integrals are well defined,
one has

(/:2 x(s)ds)TZ</r2 m(s)ds) < (ro—rm1) /T2 x7(s)Zx(s)ds.

T1 1

Lemma 2.3 ([10]). Letw be a differential function w : [o, 8] = R™. For a positive definite
symmetric matriz R, scalars f > « and any matrices My; € RX", My; € R¥X" § =
1,2, 3, the following integral inequalities hold:

5 )
- / W7 () Rw(s)ds < T (1B E(1), (2.8)

B8 - -
- / ST () Rio(s)ds < ET (1) @a (1), (2.9)

where
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1 1

® = (B—a)xt (MllR‘lMlTl + ngzR—le; + 5M13R—1M1§> T,
Fsym{ YT M1 211 + YT M19Z19 + YT M13Z13}
1 1

dy, = (B—a)Y¥ (M21R—1M§1 + gM22R—1M§; + 5M233—1Mg;,> Ty

+sym{ Y3 M21Z21 + Y3 MasZ0s + TTM23523}

- 1 B
) = ol SwB)wto) 70 [ wlo)d / / $)dsdd,
B —«
/ / / dsd@dr}
- CY
Tl = 601{61,62,63,64,65}, TQ :COZ{61,62,€3764}
Ei1 = (B—a)es, Eip=(8—a)(2e —e3), Zi3=(—a)(ez —6es + 12e5),
91 = €1 —eg, Doy =e1+ey—2e3, 93 =¢e] —ey+ 6ez— 12ey4,
€ = [OnX(i—l)n I 0n><(5—i)n]ai = ]-7 2a 3,4,5.

Lemma 2.4 ([10]). For a block symmetric matriz Ry = diag{R,3R,5R} with R > 0,
and any matrices Sy, then the following single integral inequality hold:

/tthl o7 (s)Rio(s)ds = /thl wT(s)Rw(s)dS/th(t) &7 (5) R (s)ds

—ho t*h(t) t—ho

o[ 2] {[% 5]

e 0 E
hi2 1
MY g } [ E } n(t), (2.10)
where
T, = Ry—-SiR'ST, Th=R, - STR;'S,
1 t—hq 1 t*h(t)
06 = coldwlt — hy)w(t — h(t)),w(t — ha), / w(s)ds, 7/ w(s)ds,
hlt t—h(t) D t—ho
t—h(t) pt—h(t)
/ / s)dsdb, ey / / w(s)dsdb
hey Ji h(t) 2t
E, = col{e; —ea,e1 + ea —2eq,e1 —eg + 6e4 — 1264},
E; = col{es —e3,e3+ e3 — 2e5,e5 — e3 + 6es — 12e7},
€ = [Onx(ifl)n I 0n><(77i)n]72. =1,2,..,7.

Lemma 2.5 ([11] Wirtinger-Based Integral Inequality). For a positive definite matric
R > 0, scalar a and B with o < 3, and continuously differentiable function w : [a, 8] —
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R™, the following integral inequality holds:

8
/ Wl (s)Ra(s)ds > TQTRQ - 5 3 ———QI'RO,, (2.11)
a — -«

where
Ql = W(ﬁ) - W(a)’

B
D = w@) +wla)-— 2 /w(s)ds.

Lemma 2.6 ([12] Extended Reciprocally Convex Matrix Inequality). For any real scalars
a; > 00 =1,2,...,m),nxn symmetric matrices R; > 0(i = 1,2, ...,m), and any mn X mn
matriz M, the following matriz inequality holds:

R 0 ... 0
1

0 LRrR ... 0

0 0 o R
a Ry* 0 0
0 OéQR_ 0

> M- MT - MT , 2 . M. (2.12)

0 0 e amRY

Lemma 2.7 ([13]). For a positive definite matriz R > 0, scalar o and § with o < 3,

and continuously differentiable function w : [, 8] — R™, the following integral inequality
holds:

/ / s)dsdu > 201 RQ3 + 407 RQ4 + 6Q1 RO, (2.13)

where

B
Qg = /UJ
6 B8 rB
Qy = /w ds— 2//w Ydsdu,
a —Oé)
B B B
Qs = /ws)ds+ 24 2/ / w(s)dsdu
—Q Jq —Oé)
B8 rB B
— 3 //w )dsdrdu.
B—a)

Q
Q
IS

Q
Q

Q
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3. MAIN RESULTS

Before introducing the main result, following notations are defined for simplicity

€ = [Onx(ifl)n I 0n><(237i)n]7i =1,2,..,23,
€ = [Onx(i—l)n I Onx(ﬁ—i)n]vi =12,..,6,
L2d? h3 h3 h3 h3 h3 h3
= hoL? _ _ 1 2 _ 2 _ 1 _ 12
i1 24,772 B MG 2774 9 o 5= 2,%3 67’77 6778 6’

() = 001{6(15),6(?5—h1)»e(t—h2)7e(t—h(t))7é(t)7é(t—h1),é(t—hz),f(e(t)%

t
Fle(t - b)), / Fle(s))ds, - / [ / )dsdu
d(t) hy h thy
t—h1
s)dsdvdu, / / / s)dsdu,
hB/t hl./ / " hia h%z
t—h1 1 t—h
s)dsdvdu, / e(s)ds,
wl [ / I fhw
t— h1 1 tfh(t h(t)
s)dsdu, / / / s)dsdu,
hlt»/t h t)/ h t—ho h%t
s)dsdu, s)dsdvdu
o m/m/ hg/m// }

t—hq
col{e(t)—e(t—hl),e() (t—hl)—h%/ e(s)ds},

m(t)

m(t) = col{e(t—hl)—e(t—h(t)),e(t—hl)—|—e(t—h(t))—hi/t_ 1e(s)ds},

t—h(t)

)
n(t) = col {e(t — h(t)) —e(t — ha),e(t — h(t)) + e(t — he) — Tios /t e(s)ds} .

—hs

Now, we provide a stability criterion for the error system (2.5) with time-varying delay
h(t) and d(t) satisfy (2.6).

Theorem 3.1. The error systems (2.5) with time-varying delay h(t) and d(t) satisfying
(2.6) is finite-time stable with respect to (c1,c2,T,7), 0 < ¢1 < co, if there exist positive
scalar a, A, (m =1,2,...,17), symmetric positive definite matrices P, Wy, Wa, Q;, (i =
1,2,3,4,5), R;, Z;,(j = 1,2,3,4) € R™ ™, positive diagonal matrices G, Ga € R"*",
and any matrices N, X, Y € R**", S, € R3x3n  Af ¢ RS»>67 A, Ms, € R™X™ and
My, € R¥™@" | =1,2.3 such that the following LMIs hold:

m, = {EH gu} <0, (3.1)
* 22 | p(t)=ho

M, — [211 gu} <0, (3.2)
* 22 | p0)=h,
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MI<P<XI, Q<AI, Qx< I, Q3<AsI, Qi<XI, Q5 <M\,

Wi < Asl, Wo < Xgl, Zy < Xol, Zo < AIl, Z3<Mol, Zy< A3l

Ry < Aal, Rs < Msl, R3z<Mgl, Ry< M7l (3.3)
e®TAer — Aies <0,

where
A = X+ hi(As+ X6) +hia(Ma + As + A7) + 1A + 72 hg +73(Ao + A1)

+ya(A12 + A13) + ¥5A14 + Y6 A1s + VA6 + Y8AL7,

Y = Y451+,

S11o= Y+ Ps2 + vy,

Y12 = [MY] My, ha Y] Mio, b Y] Mg, b Y3 Moy, by Y3 Mo, by Y3 Moas,
hio YT My, hio Y2 Mo, hio Y3 Mss, ET ST EX MTEL | ET MT EL),

Y10 = MY My, YT Mo, by YT Moz, b 03 Moy, hi Y5 Moo, by YT Mo,
hio Y My, hio Y2 Msy, hio Y2 Mz, EY Sy, EX MT EL, EY MT EL),

Yoo = —diag{zl,:szl,521,ZQ,3Z2,522,Z3,323,5Z3,Z4,hille,hiuﬁzl},

(>

V3
Yy

Vs

= eg

Zy = diag{Zs,324,5Zs}, Ry =diag{Ry,3R},
= 1+ o+ 3+ P+ P + Y7+ Ps — el aPer,

= sym{elTPe5},
= el Qier — (1 — p)ej Qseq + €3 (Qa — Q1 + Q3)e2 — €5 Qaez + et Ques

+ei (Qs — Qa)es — ef Qser,

= 68TW168 — (1 — u)69TW2€9 + Bgd2W2€8 — 6?0W2€10,

= elTh%Zlq + 6%71%2265 + hlsym{T?MnEn + T’{MlgElQ + T?MlgElg}

Fhysym{YE My Zoy + Y MaoZos + T3 Mas=a3},

= €§h%2Z362 + Ggh%QZALBG + hlgsym{TgM:ﬂEgl + T?;M32532 + T§M33533}

_ [ hot \ &
o B, T (1 + h—;) Zy S1 { E, ]
| E2 | « (1—&—%)24 By |7
_ w _ [ El 177 24 S} E]
T B | o+ 22 Ey |7
_ wi_El_T_QZz; S Ey
o 5 E2 L * Z4 E2 ’

= e5Th2Rle5 + sym{E{MEg}7

h2 h? h2, — hih
?23265 + 6?513365 fel(H2——= 5 12

—67T§R27T3 — 27TIR37T4 — 4WgR3W5 — 67TgR37T6 — 27T$R47T7 — 47TgR47T8

—6WgR47T9,

)R4€6 — 27‘({R27T1 — 47‘(;327{'2
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g = —elL1Grer — el Gies — el L1Gaey — e Goeg + sym{el LyGies + el LoGoeg),
Y9 = sym{el (BY — NA)e; —el Nes +e]l NCeg + el NDeg + e] NEeyq
+el (BY — NA)ey — el Nes + el NCeg + el NDeg + el NEeyp},
T, = COl{61,€2,611,612,€13}, Ty = 001{61,62,611,612},
T3 = col{e, es3,¢14,€15, €16},
11 = hienn, Zi2 =hi1(2e12 —e11), E13 = hi(enn — berz + 12e13),
Eo1 = e1—e3, Esp=e1tex—e11, Za3=e1 — e+ berr — 12e2,
E31 = hisews, Ezz = hi2(2e15 —e14), E33 = hia(e1s — 6e1s + 12e56),
E; = col{es —eq,e9+ €4 —2e17,e0 — €4 + 6e17 — 1218},
E; = col{eq —e3,eq +e3 — 2e19,e4 — €3 + 6e19 — 12€90},
E; = col{e; —ea,e1 +eg —2e11,e9 —eq,e0+ €4 —2e17,64 —e3,e4 + €3 — 2e19},

Es; = col{és_1,62}(i=1,2,3),

m = e —ez;, T2 =e;+2ex —06eg, w3 =e; —3ea + 24eg — 60e23,
T4 = ey —ey, 75 =e;+ 211 —6ea, e =-e; — e + 24e1p — 60e;3,
T = ey — e, Tg=ex+2eq —beis, T9 = ey — 3e14 + 24e15 — 60e1q,

Moreover, the desired controller is given as follows:

K=YX ' (3.5)

Proof. Consider the following Lypunov-Krasovskii functional:

7
Vie(t)) = ZVJ‘(G(L‘))’ (3.6)
where
Vile(t) = e (t)Pe(t),
t t—hy t—hy
Va(e(t)) = /t_h eT(s)Qle(s)ds—i—/t_h[ eT(s)Qge(s)ds—i—/t_h(t) e (5)Qse(s)ds

t e
+/t—h1 éT'(5)Qué(s)ds +/t &T(5)Qs6(s)ds

—ho

t 0 t
Va(e(t)) = /th(t)fT(e(s))Wlf(e(s))derd/ efT(e(S))sz(e(S))dsdG,

+
Vile(t)) = hl/th/ s)Z1e(s dsdu+h1/ / 8)Z2é(s)dsdu,

t— h1 t— hl t— hl t— hl
Vs(e(t)) = hlg/ / (s)Zse(s )dsdu—l—h12/ / (s)Z4é(s)dsdu,
t
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Vele(t)) = /h /9 s)Ryé(s)dsdb,
2 Jt+
Vz(e(t)) /th // s)Roé(s dsdrd9+/ . // s)Rzé(s)dsdrdf
- o pt=hi pt—hi 1
/ / / s)Ryé(s)dsdrdd.
t

The time derivative of V' (e(t)) along the trajectory of system is given by:

Vi(e(t)) = e"(t)Pé(t) + é" (t)Pe(t)
= T (Wig(t), (3.7)
Vale(t)) < eT(6)Que(t) — e (t — h1)(Q2 — Q1 + Q3) — (1 — p)e” (t — h(t))Qse(t — h(t))
—e" (t — ha)Qae(t — ha) + " (£)Qué(t) + 7 (t — b1 )(Qs — Qu)é(t — ha)
—&T(t — hy)Qsé(t — hy)
= T (t)at(1), (3-8)
Va(e(t)) < fTe®)Wif(e(t) — (1 —p) T (e(t — h(t)))Wrf(e(t — h(t)))

B [T C)Waf(et) =d [ [T (el)Was(e(s))ds.
Using Lemma 2.2 we can get

Vs(e(t)) < fT(e)Wif(e(t) — (1 —u)f (e(t — h(1)))Wif(e(t — h(1)))

T

T (1) Waf (e(1)) - ( Lo f(e(S))d8> w, ( Lo f(e(S))d8>
= €Tl (39

By using integral inequalities (2.8)—(2.10) in Lemma 2.3 and Lemma 2.4, we can calcu-
lating the derivative of V4 (z(t)) and Vs(x(t)), respectively. We have

Vile(t)) = h2eT(t)Zie(t) + h2eT (1) Zae(t) — hy /t el'(s)Zye(s)ds
t—hy
hy /t_h ¢ (5) Zaé(s)ds

_ 1 ~ 1 B
< &T() {m + YT (M Z7 P M+ ngZl ME + 51\41321 "ME)T,

_ 1 _ 1 _
3T (Mo, Zy P MY + 3 Moz 2, "ML+ = MosZ, 1M27;))T2} (t), (3.10)
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Va(e(t) = h2eT(t — hi)Zse(t — hy) + h2,eT (t — hl)Z4e(t—h1)
t*hl
fhu/ el (s)Zse(s) dsfhlg/ (5)Z4é(s)ds
t—ho t—ho
= hisel (t — h1)Zze(t — hy) + higéT (t — hi)Zyé(t — hy)
t—hy t— h(t)
—h12 ( )de( )ds—hlg/ ( )Z4€( )d
t—ho t

1 _
5M3SZ3 "MENTS

IN

~ _ 1 _
¢§r(t) {% + Wi Y5 (M3 Z3 ' M3, + 3 Ms2Z5 "M, +
+ET foat 5124 1T R, +ET Aot STZ4 151E2}5() (3.11)
t
Vs(e(t)) = hoeT (t)Rié(t) — / ¢T(s)Ryé(s)ds
t—hz
t
— e () Rye(t) — / ¢ (5) Ryé(s)ds
t—hq
t—hy tih(t)
—/ ¢T(s)Ryé(s)ds — / ¢T(s)Ryé(s)ds, (3.12)
t

—h(t) t—ha

by using Lemma 2.5 to estimate the upper bounds of the last three integral terms on the
right hand side of equality (3.12), we get

Vole(t)) < mﬂmmm—%%wmmm—iémmm@—éﬁwmmw

. .
m(t) R 0 0 m(t)
= haéT()Rye(t) + | ma(t) 0 —ih 0 mn(t) |,
N3(t) 0 0 —%%Rl n3(t)
(3.13)
for matrix M, it follows Lemma 2.6 that
—h—llél 0 0
0 R0
0 — Ry
MR 0 0
< M+MT+MT 0 hy Ry 0 M, (3.14)
0 0 hoy R}

from (3.13) and (3.14), we obtain
Vs(e(t)) < £7(t) {zpﬁ + M EIMTEL R B35y MEBs + hy EX MTEL R Esy M B3

+ho BT MTEg},,R;lEggMEg} £(t). (3.15)
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By applying (2.13) in Lemma 2.7, we get
) h h? )
V7(6(t)) = R R26 deT + ?6 (t)Rge(t)
t—ho Jr
h hih
/ / eT R36 deT‘ + % T( - hl)R4é(t — hl)
t—h1 Jr
t—hq
/ / s)Ryé(s)dsdr

< B, (3.16)

From the Assumption 1, for any positive diagonal matrices G; and G2, we have

e(t) g { LiGr —La2Gy } { e(t) }
e ] LTS [y ] 0 e
e(t—h(r) 1" { LGy —LyGy ] [ e(t — h(t)) }
{ Flelt = h(t))) } G et—nwy | = %G1
For any matrix N the following equality holds:
2" (t)N][—€(t) — (A — BK)e(t) + Cf(e(t)) + Df(e(t — h(t)))
t
+E f(e(s))ds] =0, (3.19)
t—d(t)
20" (H)N][=é(t) — (A = BK)e(t) + Cf(e(t)) + Df(e(t — h(t)))
+FE f(e(s))ds] = 0. (3.20)
t—d(t)
Combining (3.7)—(3.20), we can get
Vie(t)) < €M(1)OE(t) + aVile(t))
< ET(1)OE(t) + aV(e(t)), (3.21)
where
© = p+A+E @Sl 1STE, + ET Py STZ 1S Ey 4+ hi EX MTEL, R Esy M E4
+hy BT MTE32R1 'E3sMEs + hgtEgT MTEL R ' Es3 M Es,
=+ + 1,
Y9 = sym{el(~N(A - BK))e; — eI Nes + e’ NCeg + el NDeg + el NEey,
+eg(—N(A — BK))e; — €5 I'Nes + €5 INCeg + es I NDeg + es TNFEejp},
A = mYTonz vl + ngnglMu + ngnglMlg)Tl

1 1
+R3YT (M Z5 P M + §M22Z;1M§; + 5J\423Z;11\42T3)1r2

1 _
—M;33Z5 ' M) Y5,

1 _
~M3oZ3 ' ML, + z

+h3, Y8 (M3 Z3 ' ML + 3
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pre-multiplying and post-multiplying © by N~! and N~! respectively, letting X = N !
and K =YX~ !, we obtain

Vie(t) < E®IER) +aV(e(t)), (3.22)
where
. oh rh
I = ¢+A+E] ﬁslzglstl + E2 1 S1 Z7Y8 By + M ETMTEL R Es ) ME3
+hy BT MTE32R1 LB ME; + thEST MTELR ' Ess ME3,
O = Y+ s+

Based on convex combination technique, II < 0 holds if the following two inequalities
hold:

i+ A+ EgS?ZZ:lSlE‘Q + hlEgMTEgﬂRflE31ME3

+hioEX MTEL R ' EssME; < 0, (3.23)
S+ A+ BTS2 ST By + i BEY MY EL Ry By M Es
+hioEX MTELR ' EssME; < 0. (3.24)

Applying Schur complement the inequality (3.23) and (3.24) are equivalent to II; < 0 and
I, < 0 respectively. From (3.22) we get

Viet)) < aV(e(t)). (3.25)

Multiplying the above inequality by e~** and integrating form 0 to ¢ with ¢ € [0, 7], we
obtain

V(e(t)) < e*TV (e(0)), (3.26)

0 —hy
V(e(0)) = eT(O)Pe(O)—i—/_h eT(s)Qle(s)ds+/_h el (5)Qqe(s)ds
_hl

+/“meW@Qw@m&+/o'<>Qm<w&+/ &7 (5)Qse(s)ds

—h(0) hao

+/® ST (e(s) WS el w+d/l/fT ))Waf(e(s))dsdo

+h1/ / s)Ze(s dsdu+h1/ / 8)Z2é(s)dsdu
h1 h1
h1 —hl —h1
+h12/ / s)Zse( )dsdu—l—h12/ / 8)Zyé(s)dsdu
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/ / s)Rié(s dsd9+/ // $)Roé(s)dsdrdf
hQ h2
h1 h1
/ // s)Rsé(s dsdrd0+/ / / s)R4é(s)dsdrdd,
h1

= Xel(0)e (O)+)\3/ el'(s)e (5)ds+)\4/ el (s)e(s)ds

—h1 —ha

—h 0
+)\5/ el'(s)e(s)ds + )\6/ ¢T'(s)e(s)ds

—h(0) —h

—h 0
A7 / &7 (5)é(s)ds + Mg / FT(e()) Fe(s))ds

R (0)

+d)\9/ / fT ) d8d9+h1)\10/ / dsdu
hl
h1
+h1/\11/ / dsdu+h12)\12/ / de'LL
h1
hl
+h12>\13/ / deU+>\14/ / dsd9
ha
+)\15/ / / dsdrd9+/\16/ / / s)dsdrdf
h2 hl
hl hl
+)\17/ / / deT‘de

d3
< {)\2 + hiAs + hiaXs + hi2As + hide + hieAr + haL?As + ?L2)\9
h3 h3 h h3 h2 h3
+— )\10+ 1)\11 + 22N+ 12)\13"-32)\144' 62)\15
hi” h?z T T
+—A16 + >\17} sup {e’(s)e(s), e’ (s)é(s)}
6 6 —7<5<0
S ACl.

Since V(e(t)) > AeT (t)e(t) and V(e(0)) < Acy, thus for any t € [0, T, we obtain

aTA
T (te(t) < =24 < oy, (3.27)
A1
Hence, the condition (3.4) holds and the proof is complete. [

4. NUMERICAL EXAMPLE

In this section, we now provide an example to show the effectiveness of the result in
Theorem 3.1.

Example 1. Consider the master-slave neural networks (2.1) and (2.2) with the following
parameter:
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05 0 0.3 —-0.2
A_{ 0 0.5]7 C(_{0.1 —0.3}7 D=
1.1 0.3 2 0
E‘[oa —1.8}’ B—{o 1}’ Ll—[
¢1 = [—0.4cost,0.5cost], ¢y = [sint, sint].

%0

0.5

0.8 0.4

-0.3 05 |’
0 0 0.4
0 0.6}’ L2_[ 0

0.4r

0.3

FIGURE 1. Chaotic behavior of master neural

y,(0

0.5

0.6 0.8

network (2.1)

0.2

0.1f

-0.5

-0.8

-0.6

FIGURE 2. Chaotic behavior of slaver neural network (2.2)
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0.4

0.3

0.2

0.1

e,
&,(0)

-0.3

-0.4

-0.5 ;
0 30
Time t

10 20

40 50

FI1GURE 3. The state response of the resulting error system

Solution: From the condition (3.1)—(3.4) of Theorem 3.1, we let & = 0.00001, hy; = 0.1,
hy = 0.2, d =0.15 and p = 0.3. By using the LMI Toolbox in MATLAB, we obtain

p_| 6140 - —2xi07M T, 0.0034 5.6259 x 107°
T -2x107" 61140 |7 YT | 5.6259 x 107° 0.0033 ’
R — 105 | 29268 2x107° ] [ 04571 0.0085
27 2x 1075 29268 |’ "7 | 0.0085 0.4416 |’
Ry = [ 0.0025 2x1078 Q) = 0.2026  —7x 10712
Tl 2x107% 00025 |0 M| —7x10712 02026 |
Qs = [ 03085 —4x10°° Qs = 0.3224 0.0027
27| —4x107% 03082 |’ T | 0.0027 0.2656 |’
Qq — [ 0-0873 0.0133°1 ) [0.0504 0.0074
7 00133 0.0632 | <° | 0.0074 0.0370 |’
W — | 00521 0.0016 1 [ 1.0336 —0.0086
"7 00016 0.0478 |* 27 | —0.0086 1.2004 |’
0.5321 0 0.2678 0
G = [ 0 05321 } » Gz [ 0 02678 ] ’
5 [ 00307 1x107°] 00311 0.0002
'l 1x107® 00306 |° “*7 | 0.0002 0.0307 |’
g [ 00307 1x 107° 5. | 00005 3x 1078
T 1x107® 00306 | “*7 | 3x107® 0.0005 |’
g _ [ 05889 —0.0738
~ | —0.1860 —0.9046 |’
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—1.1778 —0.1477

and accordingly the feedback control is u(t) = _0.1860 —0.9046 (y(t) — =(t)).

We let J(t) = 0, h(t) = 0.2 + 1.2sin(¢), d(t) = |sint|, ¢1 = [-0.4cost,0.5cost], pa =
[sint,sint], for all ¢t € [—0.2,0], and the activation functions as follows:

7(s) = 5(Is + 1] = |s ~ 1]).

Figure 1 shows the trajectories of solutions z1(t) and z2(t) of the master neural network
system (2.1) with the initial condition ¢;(t) = [~0.4cost,0.5cost]T. Figure 2 shows the
trajectories of solutions y; (¢) and y2(t) of the slaver neural network system (2.2) with the
initial condition ¢o(t) = [sint,sint]T. Figure 3 shows the trajectories of solutions e (t)
and ey (t) of the error system with the activation function and mixed time-varying delays
~1.1778  —0.1477

with feedback control u(t) = _0.1860  —0.9046 (y(t) — x(¢)).

5. CONCLUSIONS

In this research, the problem of a finite-time synchronization of neural networks with
interval and distributed time-varying delays via feedback control was investigated. Firstly,
we considered a finite-time synchronization of neural networks with mixed time-varying
delays and construct the LKF for synchronization neural network systems. Secondly, by
using an extended reciprocally convex matrix inequality, a free-matrix-based integral in-
equality, Jensen’s inequality and Wirtinger-based integral inequality are used to estimate
the upper bound of the derivative of the LKF. Finally, a numerical simulation results
have been given to illustrate the effectiveness of the proposed method.
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