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Abstract Let S be a C-algebra generated by x, y, z, q and q−1 satisfies the relations

xy − qyx = (q − 1)(x+ y + z),

yz − qzy = (q − 1)(x+ y + z),

zx− qxz = (q − 1)(x+ y + z) and

xq = qx, yq = qy, zq = qz, qq−1 = 1 = q−1q.

We focus on a Poisson algebra Sq , constructed from S, with the Poisson bracket {x, y} = yx+x+y+z,

{y, z} = zy+x+ y+ z, and {z, x} = xz+x+ y+ z. There are only two Poisson maximal ideals of Sq . In
this study, we characterize the simple Poisson modules which annihilated by each of the Poisson maximal

ideals of Sq .
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1. Introduction

The Poisson algebra is an algebra with the brackets, called Poisson bracket, intro-
duced in 1809 by Joseph-Louis Lagrange and his student, Siméon-Denis de Poisson, as an
algorithm useful to produce solutions of motion. They defined the Poisson bracket by

{f, g} =

n∑
k=1

(
∂f

∂qk

∂g

∂pk
− ∂g

∂qk

∂f

∂pk

)
where f, g : Rn × Rn −→ Rn are smooth function and (qk, pk) are Lagrange’s canonical
coordinate. After that, in the thirties of the 19th century, Carl G. J. Jacobi proved the
basic properties of a Poisson bracket by using the Leibniz rule and the Leibniz identity of
Poisson bracket. So, they have {fg, h} = f {g, h}+ {f, h} g for all mapping f, g, h. Then
the vector field with this identity was called Hamiltonian vector fields and denoted by Xf .
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They extented the vector field Xf to X{f,g} = [Xf , Xg] where [−,−] is a commutator,
defined by [x, y] = xy − yx, and applied it to the mapping h, so they had the following
identity, called Jacobi identity,

{{f, g} , h} = {{g, h} , f} − {{g, f} , h} .
The more systematic study of Poisson brackets was started by Marius Sophus Lie in

the seventies of the 19th century. After that, there are many researchers construct a new
Poisson algebra and study the algebrais-structural properties on this algerbras.

In 2006, D. A. Jordan and N. Sasom [6–8] studied a Poisson algebra constructed from a
C−algebra, T , with Poisson bracket {x, y} = yx+ z, {y, z} = zy+x, and {z, x} = xz+ y.
They saw that there are five Poisson maximal ideals for this Poisson algebra and classified
the finite dimensional simple Poisson modules annihilated by the Poisson maximal ideals.
In the same year, N. Sasom [8] used the method in [6] constructed a Poisson algebra from
a quantized enveloping algebra Uq(sl2). She found that the Poisson bracket defined by
{x, y} = 2(1 − yx), {y, z} = 2(1 − zy) and {z, x} = 2(1 − xz) and it had two Poisson
maximal ideals. For each Poisson maximal ideal, there was the finite dimensional simple
Poisson modules annihilated by it. In 2011, P. Chansuriya, N. Sasom and S. Seankarun [3]
studied the Poisson algebra Pg with Poisson brackets {x, y} = yx+ az, {y, z} = zy + bx,
and {z, x} = xz+ cy. It was a general form of a Poisson algebra constructed in [6]. There
were five Poisson maximal ideals and, for each Poisson maximal ideal, there was the finite
dimensional simple Poisson modules annihilated by it. In 2018, K. Changtong and N.
Sasom [2] constructed a Poisson algebra Sq from a C-algebra S generated by x, y, z, q and
q−1 satisfying the relations

xy − qyx = (q − 1) (x+ y + z) ,

yz − qtzy = (q − 1) (x+ y + z) ,

zx− qxz = (q − 1) (x+ y + z) ,

and xq = qx, yq = qy, zq = qz, qq−1 = 1 = q−1q. They was a Poisson bracket {x, y} =
yx + x + y + z, {y, z} = zy + x + y + z, {z, x} = xz + x + y + z. They found that there
were two Poisson maximal ideals as following

J1 = xSq + ySq + zSq,

J2 = (x+ 3)Sq + (y + 3)Sq + (z + 3)Sq.

Later, they used the method in [4] classified finite-dimensional simple Poisson modules
over Sq annihilated by each Poisson maximal ideals. In this study, we focus on the Poisson
algebra Sq and its Poisson maximal ideals. We use the method in [6] characterize the
simple Poisson modules annihilated by Poisson maximal ideals J1 and J2.

2. Definitions and Notations

This section collect the basic definitions and notations of the Poisson algebra and
Poisson module for using in this research.

Definition 2.1. Let g be a vector space over a field F. A Lie algebra is a vector space
g with a bilinear [−,−] : g× g −→ g which satisfies the following properties:

(1) [x, x] = 0 for all x ∈ g.
(2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g (Jacobi identity).

The bilinear map [−,−] is called a Lie beacket on g.
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Definition 2.2. A Poisson algebra A is a commutative algebra over a field F together
with a bilinear map {−,−} : A × A −→ A such that (A, {−,−}) is a Lie algebra and
satisfies a Leibniz identity {xy, z} = x{y, z}+ {x, z}y, for all x, y, z ∈ A. We call {−,−}
a Poisson bracket on A.

A subalgebra B of A is a Poisson subalgebra if {b, c} ∈ B for all b, c ∈ B.

Definition 2.3. Let A be a Poisson algebra. An ideal I of A is a Poisson ideal if
{i, a} ∈ I for all i ∈ I, a ∈ A.

Moreover, the factor A/I is also a Poisson algebra with the Poisson bracket
{a+ I, b+ I} = {a, b}+ I for all a, b ∈ A.

Definition 2.4. Let A be a Poisson algebra. A Poisson ideal I of A, which I ̸= A, is
said to be a Poisson maximal ideal if it is also a maximal ideal of A.

Definition 2.5. Let A be a commutative Poisson algebra with the Poisson bracket {−,−}
and M be a module over A. An A-module M is called a Poisson Module if there is a
bilinear form {−,−}M : A×M → M such that

(1) {a, bm}M = {a, b}m+ b{a,m}M ,
(2) {ab,m}M = a{b,m}M + b{a,m}M ,
(3) {{a, b},m}M = {a, {b,m}M}M − {b, {a,m}M}M ,

for all a, b ∈ A and m ∈ M .

A submoduleN of a Poisson moduleM is called aPoisson submodule if {a, n}M ∈ N
for all a ∈ A and n ∈ N .

Definition 2.6. Let M be a Poisson A-module and J ⊆ M . The annihilator of J in A
is defined by:

AnnA (J) = {a ∈ A : {a,m}M = 0 for all m ∈ J} .

Lemma 2.7. Let A be a finitely generated Poisson algebra and M be a Poisson A-module.
Let J = AnnA (M).

(1) J is a Poisson ideal of A.
(2) If M is finite-dimensional and simple module then J is a maximal ideal of A.

Proof. See [5], Lemma 1.

3. Simple Poisson modules over a Poisson algebra Sq

In this section, we study on a Poisson algebra Sq with the Poisson maximal ideals
J1 = xSq + ySq + zSq and J2 = (x + 3)Sq + (y + 3)Sq + (z + 3)Sq. We characterize the
simple Poisson module annihilated by each Poisson maximal ideal.

3.1. Simple Poisson modules annihilated by J1

Lemma 3.1. Let M be a Poisson Sq−module annihilated by J1 = xSq + ySq + zSq and
m ∈ M . Then we obtain :

(1) xm = ym = zm = 0.
(2) {xy,m}M = {yz,m}M = {zx,m}M = 0.
(3) (a) {x, {y,m}M}M − {y, {x,m}M}M = {x,m}M + {y,m}M + {z,m}M ,

(b) {y, {z,m}M}M − {z, {y,m}M}M = {x,m}M + {y,m}M + {z,m}M ,
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(c) {z, {x,m}M}M − {x, {z,m}M}M = {x,m}M + {y,m}M + {z,m}M .

Proof. (1) It is easy to see that xm = ym = zm = 0.
(2) By (1) and Definition 2.5(2), we have

(a) {xy,m}M = x{y,m}M + y{x,m}M = 0,
(b) {yz,m}M = y{z,m}M + z{y,m}M = 0,
(c) {zx,m}M = z{x,m}M + x{z,m}M = 0.

(3) (a) By (2) and Definition 2.5(3), we have

{x, {y,m}M}M − {y, {x,m}M}M = {{x, y},m}M
= {yx+ x+ y + z,m}M
= {yx,m}M + {x,m}M + {y,m}M + {z,m}M
= {x,m}M + {y,m}M + {z,m}M .

Similarly, (b) and (c) are proved.

Lemma 3.2. Let M be a Poisson Sq−module annihilated by J1 and m ∈ M be an
eigenvector for {x,−}M with eigenvalue λ ∈ C. Then {x,m}M = λm and we also have

(1) {x, {y,m}M}M = (λ+ 1){y,m}Ma+ {z,m}M + λm;
(2) {x, {z,m}M}M = (λ− 1){z,m}M − {y,m}M − λm;
(3) {y, {z,m}M}M − {z, {y,m}M}M = {y,m}M + {z,m}M + λm

Proof. Let λ ∈ C such that {x,m}M = λm for some 0 ̸= m ∈ M . Then, by Lemma
3.1(3), we have

(1)

{x, {y,m}M}M = {y, {x,m}M}M + {x,m}M + {y,m}M + {z,m}M
= {y, λm}M + λm+ {y,m}M + {z,m}M
= λ{y,m}M + λm+ {y,m}M + {z,m}M
= (λ+ 1){y,m}M + {z,m}M + λm.

Likewise, we can calculate (2) and (3).

To classify the finite-dimensional simple Poisson modules annihilated by J1, we change
the generators by setting u := 1

2 (y − iz) and v := 1
2 (z − iy). Here we have the new

generators of a Poisson algebra Sq which are u, v and x.

Lemma 3.3. Let Sq = C[x, y, z] be a Poisson algebra with the Poisson brackets:

{x, y} = yx+ x+ y + z, {y, z} = zy + x+ y + z, {z, x} = xz + x+ y + z.

If u = 1
2 (y−iz) and v = 1

2 (z−iy), then Sq is generated by u, v, x and the Poisson brackets
is given by

{x, v} = −(x+ 1)ui− vi− 1

2
(1 + i)x;

{x, u} = (x+ 1)vi+ ui+
1

2
(1 + i)x;

{u, v} =
1

2

(
(x+ u+ v) + (u2 + v2 + u+ v)i

)
.
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Proof. If u = 1
2 (y−iz) and v = 1

2 (z−iy), then we obtain ui = 1
2 (yi+z) and vi = 1

2 (zi+y).
So y = u+ iv and z = v + ui. Thus Sq is generated by u, v, x.

{x, v} = {x, 1
2
(z − iy)}

=
1

2
{x, z} − 1

2
i{x, y}

=
1

2
(−xz − x− y − z)− 1

2
i(yx+ x+ y + z)

= −1

2
(z + iy)x− 1

2
(y + iz)− 1

2
(z + iy)− 1

2
(1 + i)x

= −xui− vi− ui− 1

2
(1 + i)x

= −(x+ 1)ui− vi− 1

2
(1 + i)x.

{x, u} = {x, 1
2
(y − iz)}

=
1

2
{x, y} − 1

2
i{x, z}

=
1

2
(yx+ x+ y + z)− 1

2
i(−xz − x− y − z)

=
1

2
(y + iz)x++

1

2
(y + iz) +

1

2
(z + iy) +

1

2
(1 + i)x

= xvi+ vi+ ui+
1

2
(1 + i)x

= (x+ 1)vi+ ui+
1

2
(1 + i)x.

{u, v} =

{
1

2
(y − iz),

1

2
(z − iy)

}
=

1

2

{
y − iz,

1

2
z

}
− 1

2

{
y − iz,

1

2
iy

}
=

1

4
{y, z} − 1

4
{z, y}

=
1

4
(zy + x+ y + z − (−zy − x− y − z))

=
1

2
(zy + x+ y + z)

=
1

2
[((v + iu)(u+ iv) + x+ u+ iv + v + iu)]

=
1

2

[
(x+ u+ v) + (u2 + v2 + u+ v)i

]
.

Therefore the lemma is proved.

Lemma 3.4. Let M be a Poisson Sq−module annihilated by J1 and let m ∈ M . Then
we have:

(1) xm = vm = um = 0.
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(2) {xu,m}M = {xv,m}M = {uv,m}M = {u2,m}M = {v2,m}M = 0.
(3) (a)

{x, {u,m}M}M − {u, {x,m}M}M = i{u,m}M + i{v,m}M +

1

2
(1 + i){x,m}M ;

(b)

{x, {v,m}M}M − {v, {x,m}M}M = −i{u,m}M − i{v,m}M −
1

2
(1 + i){x,m}M ;

(c)

{u, {v,m}M}M − {v, {u,m}M}M =
1

2
{x,m}M +

1

2
(1 + i){u,m}M +

1

2
(1 + i){v,m}M .

Proof. (1) Since x ∈ J1 and m ∈ M , it is easy to see that xm = 0.
In the case vm = 0 and um = 0, we can prove similarly.

(2) It is a routine calculation , by (1) and Definition 2.5(2), we have {xu,m}M =
{xv,m}M = {uv,m}M = {u2,m}M = {v2,m}M = 0.

(3) (a) By (2) and Definition 2.5(3), we have

{x, {u,m}M}M − {u, {x,m}M}M = {{x, u},m}M

=

{
(x+ 1)vi+ ui+

1

2
(1 + i)x,m

}
M

= i{xv,m}M + {vi,m}M + {ui,m}M

+
1

2
(1 + i){x,m}M

= i{v,m}M + i{u,m}M +
1

2
(1 + i){x,m}M .

Similarly, we can proved (b) and (c).

Lemma 3.5. Let M be a Poisson Sq−module annihilated by J1 and λ ∈ C such that

{x,m}M = λm for some 0 ̸= m ∈ M . If u =
1

2
(y − iz) and v =

1

2
(z − iy) , then we have

(1) {x, {v,m}M}M = (λ− i){v,m}M − i{u,m}M − 1

2
(1 + i)λm;

(2) {x, {u,m}M}M = (λ+ i){u,m}M + i{v,m}M +
1

2
(1 + i)λm;

(3) {u, {v,m}M}M−{v, {u,m}M}M =
1

2
λm+

1

2
(1+i){u,m}M+

1

2
(1+i){v,m}M .

Proof. Let λ ∈ C such that {x,m}M = λm for some 0 ̸= m ∈ M . It is a routine
calculation by using Lemma 3.4(3).
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3.2. Simple Poisson modules annihilated by J2

Lemma 3.6. Let M be a Poisson Sq−module annihilated by J2 = (x+3)Sq+(y+3)Sq+
(z + 3)Sq, and m ∈ M . Then we have:

(1) xm = ym = zm = −3m.
(2) (a) {xy,m}M = −3{y,m}M − 3{x,m}M ;

(b) {yz,m}M = −3{z,m}M − 3{y,m}M ;
(c) {xz,m}M = −3{z,m}M − 3{x,m}M .

(3) (a) {x, {y,m}M}M − {y, {x,m}M}M = {z,m}M − 2{x,m}M − 2{y,m}M ;
(b) {y, {z,m}M}M − {z, {y,m}M}M = {x,m}M − 2{y,m}M − 2{z,m}M ;
(c) {z, {x,m}M}M − {x, {z,m}M}M = {y,m}M − 2{z,m}M − 2{x,m}M .

Proof. (1) Since x+ 3 ∈ J2 and m ∈ M , (x+ 3)m = 0.
Consider

(x+ 3)m = 0

xm+ 3m = 0

xm = −3m.

Similarly, ym = zm = −3m.
(2) By (1) and Definition 2.5(2), we have

(a) {xy,m}M = x{y,m}M + y{x,m}M = −3{y,m}M − 3{x,m}M .
(b) {yz,m}M = y{z,m}M + z{y,m}M = −3{z,m}M − 3{y,m}M .
(c) {zx,m}M = z{x,m}M + x{z,m}M = −3{z,m}M − 3{x,m}M .

(3) (a) By (2) and Definition 2.5(3), we have that

{x, {y,m}M}M − {y, {x,m}M}M = {{x, y},m}M
= {yx+ x+ y + z,m}M
= {yx,m}M + {x,m}M + {y,m}M + {z,m}M
= −3{y,m}M − 3{x,m}M + {x,m}M + {y,m}M

+{z,m}M
= {z,m}M − 2{x,m}M − 2{y,m}M .

(b) and (c) are proved similarly.

Lemma 3.7. Let M be a Poisson Sq−module annihilated by J2 and m ∈ M be an
eigenvector for {x,−}M with eigenvalue λ ∈ C. Then {x,m}M = λm and we have

(1) {x, {y,m}M}M = (λ− 2){y,m}M + {z,m}M − 2λm,
(2) {x, {z,m}M}M = (λ+ 2){z,m}M − {y,m}M + 2λm,
(3) {y, {z,m}M}M − {z, {y,m}M}M = λm− 2{z,m}M − 2{y,m}M .

Proof. Let λ ∈ C such that {x,m}M = λm for some 0 ̸= m ∈ M . Then, by Lemma
3.6(3), we have

(1)

{x, {y,m}M}M = {y, {x,m}M}M + {z,m}M − 2{x,m}M − 2{y,m}M
= {y, λm}M + {z,m}M − 2λm− 2{y,m}M
= λ{y,m}M + {z,m}M − 2λm− 2{y,m}M
= (λ− 2){y,m}M + {z,m}M − 2λm.
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(2) and (3) are proved similarly.

We shall replace z by u := z − 3x− 3y to simplify these results.

Lemma 3.8. Let Sq = C[x, y, s] be a Poisson algebra with the Poisson brackets as the
following: {x, y} = yx+ x+ y + z, {y, z} = zy + x+ y + z, {z, x} = xz + x+ y + z.
If u = z − 3x− 3y then Sq is generated by x, y, u and the Poisson brackets is given by

(1) {x, y} = (x+ 4)y + 4x+ u,
(2) {x, u} = −(x+ 4)u− (3x+ 16)x− (6x− 16)y,
(3) {y, u} = (y + 4)u+ (6y + 16)x+ (3y + 16)y.,

Proof. Since u = z − 3x − 3y, then we obtainz = u + 3x + 3y. Thus Sq is generated by
x, y, u and we have

(1)

{x, y} = yx+ x+ y + z

= yx+ x+ y + (u+ 3x+ 3y)

= (x+ 4)y + 4x+ u.

(2)

{x, u} = {x, z − 3x− 3y}
= {x, z} − 3{x, y}
= (−xz − x− y − z)− 3(yx+ x+ y + z)

= −xz − 3yx− 4x− 4y − 4z

= −(x+ 4)z − 3yx− 4x− 4y

= −(x+ 4)(u+ 3x+ 3y)− 3yx− 4x− 4y

= −(x+ 4)u− (3x+ 16)x− (6x+ 16)y.

(3)

{y, u} = {y, z − 3x− 3y}
= {y, z} − 3{y, x}
= (zy + x+ y + z)− 3(−yx− x− y − z)

= zy + 3yx4x+ 4y + 4z

= (y + 4)z + 3yx+ 4x+ 4y

= (y + 4)(u+ 3x+ 3y) + 3yx+ 4x+ 4y

= (y + 4)u+ (3x+ 16)y − (6x+ 16)x.

Lemma 3.9. Let M be a Poisson Sq−module annihilated by J2 = (x+3)Sq+(y+3)Sq+
(u− 3)Sq. Then we have:

(1) xm = ym = −3m,um = 3m.
(2) (a) {xy,m}M = −3{y,m}M − 3{x,m}M ;

(b) {xu,m}M = −3{u,m}M + 3{x,m}M ;
(c) {yu,m}M = −3{u,m}M + 3{y,m}M .

(3) (a) {x, {y,m}M}M − {y, {x,m}M}M = {x,m}M + {y,m}M + {u,m}M ;
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(b) {x, {u,m}M}M − {u, {x,m}M}M = 17{x,m}M + 2{y,m}M − {u,m}M ;
(c) {y, {u,m}M}M − {u, {y,m}M}M = {u,m}M − 17{y,m}M − 2{x,m}M .

Proof. (1) Since x+ 3 ∈ J2 and m ∈ M , (x+ 3)m = 0.
Consider

(x+ 3)m = 0

xm+ 3m = 0

xm = −3m.

Similarly, ym = −3m.
Since u− 3 ∈ J2 and m ∈ M , (u− 3)m = 0.
Consider

(u− 3)m = 0

um− 3m = 0

um = 3m.

(2) By (1) and Definition 2.5(2), we have
(a) {xy,m}M = x{y,m}M + y{x,m}M = −3{y,m}M − 3{x,m}M .
(b) {xu,m}M = x{u,m}M + u{x,m}M = −3{u,m}M + 3{y,m}M .
(c) {yu,m}M = y{x,m}M + u{y,m}M = −3{u,m}M + 3{x,m}M .

(3) (a) By (2) and Definition 2.5(3), we have that

{x, {y,m}M}M − {y, {x,m}M}M = {{x, y},m}M
= {xy + 4y + 4x+ u,m}M
= {xy,m}M + 4{y,m}M + 4{x,m}M + {u,m}M
= −3{y,m}M − 3{x,m}M + 4{y,m}M + 4{x,m}M

+{u,m}M
= {x,m}M + {y,m}M + 2{u,m}M .

(b) and (c) are proved similarly.

Lemma 3.10. Let u = z − 3x − 3y. Let M be a Poisson Sq−module annihilated by J2.
Let λ ∈ C such that {u,m}M = λm for some 0 ̸= m ∈ M . Then

(1) {u, {x,m}M}M = (λ− 17){x,m}M − 2{y,m}M + λm;
(2) {u, {y,m}M}M = (λ+ 17){x,m}M + 2{y,m}M − λm;
(3) {x, {y,m}M}M − {y, {x,m}M}M = {x,m}M + {y,m}M + λm.

Proof. Let λ ∈ C such that {s,m}M = λm for some 0 ̸= m ∈ M . It is a routine
calculation by using Lemma 3.9(3).

Conclusion and Discussion

We have been followed the same method of [6], but the problem is the relations of our
Poisson brackets. It was very hard to change variables to get the nice Poisson brackets
as in [6]. Comparing the Poisson brackets in [6] which are

{x, y} = yx+ z, {y, z} = zy + x, {z, x} = xz + y (3.1)
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and our Poisson brackets:

{x, y} = yx+ x+ y + z, {y, z} = zy + x+ y + z, {z, x} = xz + x+ y + z. (3.2)

We see that the polynomials in (3.1) has the different term of degree one, but in (3.2)
all terms of degree one are the same. Therefore it was very hard to change the suitable
variable as in [6]. However, we still work hard to find a nice condition for characterize
the nice result and show that the results are finite dimensional.
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