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1. Introduction

Variational inequality problem (VIP) is an approach of finding a point ξ∗ ∈ E such
that

⟨A(ξ∗), ξ − ξ∗⟩ ≥ 0, ∀ ξ ∈ E, (1.1)

where E is a nonempty closed convex subset of a real Hilbert space H, A : H −→ H is a
monotone operator and ⟨·, ·⟩ denotes an inner product space. It is a fundamental problem
in optimization theory which is applied in many areas of study such as transportation
problems, economics, engineering and so on (see [7, 8, 20–23, 28, 29]).

There are two approaches for solving the VIP problem, namely, regularization and the
projection method. Based on these, many studies had carried out to study (1.1) with
several algorithms being considered and proposed (see for example [1–3, 13, 14, 17, 27]).
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In this study we are interested in the projection method. The basic idea of the pro-
jection method comes from extending the gradient projection method for minimizing a
function f(ξ) subject to ξ ∈ E which is given by:

ξn+1 = PE (ξn − λn∇f(ξn)) , ∀ n ≥ 1, (1.2)

where {λn} is a sequence of positive real numbers satisfying a particular condition and PE

is a metric projection onto E. Replacing the gradient operator ∇f(ξn) with an operator
A gives an immediate extension of the method to the VIP, where a sequence {ξn} is
generated by the following iterative scheme:

ξn+1 = PE (ξn − λnAξn) , ∀ n ≥ 1. (1.3)

However, a slightly strong assumption of strong monotonicity or strong inverse monotonic-
ity needs to be placed on the operator A to guarantee the convergence of the sequence
generated by this scheme (see [40]). To solve this problem, Korpelevich proposed the ex-
tragradient method for solving saddle point problem in [24], which was further extented
to solve (1.1). The method requires only the operator A to be monotone and L - Lipschitz
continuous for the convergence of the generated sequence {ξn} with λn ∈ (0, 1/L).

The extragradient method needs to compute two projections onto the set E in each
iteration, which is going to be difficult in a situation where E is not a simple set to
project onto. Censor et al. introduced the subgradient extragradient method in [11, 12]
to overcome this drawback, where they replaced the second projection with a projection
onto a constructible half - space which has an explicit formula to compute. In the same
vein, Tseng [38] proposed an algorithm that requires only one projection onto the feasible
set.

Another effort towards solving the problem of double projections is the introduction of
projection and contraction method by some researchers (see [10, 14, 33, 36]). This method
just like the subgradient extragradient method has only one projection in each iteration
with advantages in computation and implementation over the subgradient extra-gradient
method [15]. It has the following form:

zn = PE (ξn − λAξn) ,

d(ξn, zn) = ξn − zn − λ(Aξn −Azn),

ξn+1 = ξn − γβnd(ξn, zn), ∀n ≥ 1,

(1.4)

where γ ∈ (0, 2) and βn = ⟨ξn−zn,d(ξn,zn)⟩
∥d(ξn,zn)∥2 . The sequences generated by the above men-

tioned algorithms converge weakly to the respective solutions.
Yekini et al. [33] introduced a projection contraction type algorithm which converges

strongly to the solution of the problem. Their scheme only needs a single projection
in each iteration with a pseudomonotone and L -Lipschitzs operator as the underlying
operator. The algorithm is given by:

zn = PE (ξn − λnAξn) ,

d(ξn, zn) = ξn − zn − λn(Aξn −Azn),

ξn+1 = αnξ1 + (1− αn)(ξn − γτnd(ξn, zn)), ∀n ≥ 1,

(1.5)

where γ ∈ (0, 2), αn ⊂ (0, 1) and

τn =

{ ⟨ξn−zn,d(ξn,zn)⟩
∥d(ξn,zn)∥2 , if d(ξn, zn) ̸= 0,

0, if d(ξn, zn) = 0.



1114 Thai J. Math. Vol. 19 (2021) /A.I. Garba et al.

In virtue of the applicability of these methods, several works have been carried out in
this area by numerous researchers to extend, modify, and come up with algorithms that
are easier to implement and faster to converge to the solution of a given problem. Towards
this aim, inertial-type algorithms that are based upon a discrete version of a second-order
dissipative dynamical system [4] were proposed. The inertial step is considered to be a
strategy for accelerating the convergence of the iterates. Alvarez and Attouch [5] used
the procedure in solving the problem of finding zero of a maximal monotone operator.

Recently, inertial schemes have received increasing interests ( see for instance [6, 14,
17, 30–32, 37, 39]). In particular, Dong et al. [14] incorporated projection-contraction
scheme with inertial extrapolation step as follows:

wn = ξn + αn(ξn − ξn−1)

zn = PE (wn − λAwn) ,

d(wn, zn) = wn − zn − λ(Awn −Azn),

ξn+1 = wn − γβnd(wn, zn), ∀n ≥ 1,

(1.6)

where γ ∈ (0, 2),

βn =

{
ϕ(wn,zn)

∥d(wn,zn)∥2 , if d(wn, zn) ̸= 0,

0, if d(wn, zn) = 0

and

ϕ(wn, zn) = ⟨wn − zn, d(wn, zn)⟩ .
They established that the sequence generated by (1.6) algorithm converges weakly to the
solution of (1.1) similar to most inertial type algorithms. However, the paper [26] for
fixed point problems and recently in [34] introduced inertial type algorithms with strong
convergence.

In this paper, motivated and inspired by the above works, we propose an inertial one-
step projection-contraction algorithm by incorporating the inertial extrapolation step.
This modification aims to obtain an algorithm with faster and strong convergence prop-
erties which performs better under mild conditions imposed on the parameters. Further-
more, we present several numerical examples to illustrate the performance and the effect
of the inertial step when compared to the existing algorithms in the literature.

This paper is organized as follows: In Section 2, we give some definitions and lemmas
which we will use in our convergence analysis. In Section 3, we present the convergence
analysis of our proposed algorithm. Lastly, in Section 4, we illustrate the inertial-effect
and the computational performance of our algorithms by giving some examples.

2. Preliminaries

This section, recalls some known facts and necessary tools that we need for the con-
vergence analysis of our method.

Throughout this article H is a real Hilbert space with inner product ⟨·, ·⟩ and induced
norm ∥·∥, E is a nonempty, closed and convex subset of H. The notations ξn ⇀ ξ and
ξn −→ ξ are used to indicate that, the sequence {ξn} converges weakly and strongly to ξ
respectively. The following are known to hold in a real Hilbert space:

∥ξ ± y∥2 = ∥ξ∥2 + ∥y∥2 ± 2 ⟨ξ, y⟩ (2.1)
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and

∥αξ + (1− α)y∥2 = α∥ξ∥2 + (1− α)∥y∥2 − α(1− α)∥ξ − y∥2 (2.2)

for all ξ, y ∈ H and α ∈ R [9].

Definition 2.1. Let A : H −→ H be a mapping defined on a real Hilbert space H. A is
said to be:

(1) monotone if

⟨A(ξ)−A(y), ξ − y⟩ ≥ 0, ∀ξ, y ∈ H.

(2) L -Lipschitz continuous on H if there exists a constant L > 0 such that

∥Aξ −Ay∥ ≤ L ∥ξ − y∥ , ∀ξ, y ∈ H.

One of the nice property of a solution set of the VIP defined by a continuous monotone
operator is, it is closed and convex.

Lemma 2.2. [34] Let E be a nonempty closed and convex subset of H, ξ ∈ H be arbitrarily
given, y = PEξ and Γ := {ω ∈ H : ⟨ω − ξ, ω − y⟩ ≤ 0}. Then Γ ∩ E = {y}.

Lemma 2.3. [9] Let E be a nonempty, closed and convex subset of H and PE be the
metric projection from H onto E (i.e., for ξ ∈ H, ∥ξ − PEξ∥ = inf{∥ξ − y∥ : y ∈ E}.
Then, for any ξ ∈ H, y = PEξ if and only if there holds the relation:

⟨ξ − y, y − y⟩ ≤ 0, ∀ y ∈ E.

Lemma 2.4. [34] Let E be a nonempty, closed and convex subset of H. Let A : E −→ H
be a continuous, monotone mapping and ξ∗ ∈ E. Then

ξ∗ ∈ Ω, ⇐⇒ ⟨Aξ, ξ − ξ∗⟩ , ∀ ξ ∈ E, (2.3)

where Ω is the solution set of the VIP.

Lemma 2.5. [34] Let E be a nonempty, closed and convex subset of H, y = PEξ and
ξ∗ ∈ E. Then

∥y− ξ∗∥2 ≤ ∥ξ − ξ∗∥2 − ∥ξ − y∥2 (2.4)

3. Inertial One Step Projection and Contraction Algorithm

Here we present our proposed projection-contraction type algorithm and convergence
analysis of the sequence generated by it. In the sequel, we denote the solution set of (1.1)
as Ω and we assume the following to hold:

Assumption 3.1. The following conditions are assumed for the convergence of our
method:

(A1) The feasible set E is a nonempty closed and convex subset of the real Hilbert
space H.

(A3) The solution set Ω of the VIP (1.1) is nonempty.
(A2) A : H −→ H is a monotone, L - Lipschitz and uniformly continuous on bounded

subsets of H.
(A4) The real sequence {αn} is a non-decreasing with {αn} ∈ [0, α) for all n ∈

N for some α ∈ [0, 1/3) and {βn} ⊂ [ 12 , 1) is a non-increasing sequence with
limn→∞ βn = 0 and

∑∞
n=1 αn = ∞.
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Algorithm 1 Inertial one-step projection and contraction algorithm for variational in-
equality

Initialization: Choose the sequences {αn} and {βn} such that, the conditions from
assumption 3.1 hold. Let λn ⊂ (0, 1) and γ ⊂ (0, 2). Let ξ0, ξ1 ∈ H be given starting
points:
Steps 1: Set

wn = βnξ0 + (1− βn)ξn + αn(ξn − ξn−1),

and compute

zn = PE (wn − λnAwn) . (3.1)

If zn = wn STOP.
Step 2: Compute

ξn+1 = βnwn + (1− βn) tn,

where
tn = wn − γτnd(wn, zn)

with

d(wn, zn) = wn − zn − λn (Awn −Azn) , (3.2)

and

τn =

{ ⟨wn−zn,d(wn,zn)⟩
∥d(wn,zn)∥2 , if d(wn, zn) ̸= 0,

0, if d(wn, zn) = 0,

Step 3. Set n = n+ 1 and go back to Step 1.

Definition 3.2. Suppose k1, k2 are given positve constants. For given ξn, let zn and
d(ξn, zn) be defined by (3.1) and (3.2) respectively. We say that the parameter λn ∈ (0,∞)
in Algorithm 1 satisfies the step-size conditions, if its related direction d(ξn, zn) satisfies

⟨wn − zn, d(wn, zn)⟩ ≥ k1∥wn − zn∥2 (3.3)

and

⟨wn − zn, d(wn, zn)⟩
∥d(wn, zn)∥2

≥ k2. (3.4)

Lemma 3.3. Let ξ∗ ∈ Ω, then, from Algorithm 1, we have

∥tn − ξ∗∥2 ≤ ∥wn − ξ∗∥2 − 2− γ

γ
∥tn − wn∥2 (3.5)

and

∥wn − tn∥2 ≤ 1 + λ2
nL

2

γ2(1− λnL)2
∥zn − wn∥2. (3.6)

Proof. Observe that tn = wn − γτnd(wn, zn) and

∥tn − ξ∗∥2 = ∥(wn − ξ∗)− γτnd(wn, zn)∥2

= ∥wn − ξ∗∥2 − 2γτn ⟨wn − ξ∗, d(wn, zn)⟩+ γ2τ2n∥d(wn, zn)∥2.
(3.7)
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Observe that

⟨wn − ξ∗, d(wn, zn)⟩ = ⟨wn − zn, d(wn, zn)⟩+ ⟨zn − ξ∗, d(wn, zn)⟩ . (3.8)

Since ξ∗ ∈ Ω, it follows from (3.1) and Lemma 2.3 that

⟨zn − ξ∗, wn − zn − λnAwn⟩ ≥ 0. (3.9)

Since ⟨Aξ∗, zn − ξ∗⟩ ≥ 0 and the fact that ξ∗ ∈ Ω, from the monotonicity of A, we have

⟨Azn, zn − ξ∗⟩ ≥ 0. (3.10)

Thus, we have

⟨λnAzn, zn − ξ∗⟩ ≥ 0. (3.11)

Adding (3.9 )and (3.11), we get

⟨zn − ξ∗, wn − zn − λnAwn + λnAzn⟩ ≥ 0.

Therefore, we have

⟨zn − ξ∗, d(wn, zn)⟩ ≥ 0. (3.12)

From (3.8) and (3.12), it follows that

⟨wn − ξ∗, d(wn, zn)⟩ ≥ ⟨wn − zn, d(wn, zn)⟩ . (3.13)

Substituting (3.13) in to (3.7), we get

∥tn − ξ∗∥2 ≤ ∥wn − ξ∗∥2 − 2γτn ⟨wn − zn, d(wn, zn)⟩+ γ2τ2n∥d(wn, zn)∥2

= ∥wn − ξ∗∥2 − 2γτn ⟨wn − zn, d(wn, zn)⟩+ γ2τn ⟨wn − zn, d(wn, zn)⟩
= ∥wn − ξ∗∥2 − γ(2− γ)τn ⟨wn − zn, d(wn, zn)⟩ .

(3.14)

By the definition of tn, we obtain

τn ⟨wn − zn, d(wn, zn)⟩ = ∥τnd(wn, zn)∥2 =
1

γ2
∥zn − wn∥2. (3.15)

Substituting (3.15) in (3.14), implies

∥tn − ξ∗∥2 ≤ ∥wn − ξ∗∥2 − 2− γ

γ
∥zn − wn∥2. (3.16)

Now, observe that, from the Cauchy - Schwarz inequality and the Lipchitz property of
A,

⟨wn − zn, d(wn, zn)⟩ = ⟨wn − zn, wn − zn − λn(Awn −Azn)⟩
= ∥wn − zn∥2 − λn ⟨wn − zn,Awn −Azn⟩
≥ ∥wn − zn∥2 − λn∥wn − zn∥∥Awn −Azn∥
≥ (1− λnL)∥wn − zn∥2.

(3.17)

Using equation (2.1) and the monotonicity property of A, we get

∥d(wn, zn)∥2 = ∥wn − zn − λn(Awn −Azn)∥2

= ∥wn − zn∥2 + λ2
n∥Awn −Azn∥2 − 2λn ⟨wn − zn,Awn −Azn⟩

≤ ∥wn − zn∥2 + λ2
n∥Awn −Azn∥2

≤ (1 + λ2
nL

2)∥wn − zn∥2.
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(3.18)

By (3.17) and (3.18), we have

τn =
⟨wn − zn, d(wn, zn)⟩

∥d(wn, zn)∥2
≥ 1− λnL

1 + λ2
nL

2
. (3.19)

From (3.15), (3.17) and and (3.19), we obtain

∥tn − wn∥2 ≥ γ2τn(1− λnL)∥wn − zn∥2

≥ γ2 (1− λnL)
2

1 + λ2
nL

2
∥wn − zn∥2,

(3.20)

which implies that

∥wn − tn∥2 ≤ 1 + λ2
nL

2

γ2(1− λnL)2
∥zn − wn∥2. (3.21)

This completes the proof.

Lemma 3.4. Suppose that, Assumption 3.1 holds. Then for each n ∈ N, we have

−2βn ⟨ξn − ξ∗, ξn − ξ0⟩ ≥ ∥ξn+1 − ξ∗∥2 − ∥ξn − ξ∗∥2 + 2αn+1∥ξn+1 − ξn∥2

− 2αn∥ξn − ξn−1∥2 + βn+1∥ξ0 − ξn+1∥2 − βn∥ξn − ξ0∥2

− αn∥ξn − ξ∗∥2 + αn−1∥ξn−1 − ξ∗∥2

+ (1− 3αn+1 − βn)∥ξn − ξn+1∥2

(3.22)

Proof. Now, it follows from the definition of ξn+1 and equation (2.2) that

∥ξn+1 − ξ∗∥2 = ∥βn(wn − ξ∗) + (1− βn)(tn − ξ∗)∥2

= βn∥wn − ξ∗∥2 + (1− βn)∥tn − ξ∗∥2 − βn(1− βn)∥tn − wn∥2

= βn∥wn − ξ∗∥2 + (1− βn)∥tn − ξ∗∥2 − βn

(1− βn)
∥ξn+1 − wn∥2.

(3.23)

From Lemma 3.3, we have,

∥ξn+1 − ξ∗∥2 ≤ βn∥wn − ξ∗∥2 + (1− βn)

(
∥wn − ξ∗∥2 − 2− γ

γ
∥ξn+1 − wn∥2

)
− βn

(1− βn)
∥ξn+1 − wn∥2

= ∥wn − ξ∗∥2 − (1− βn)(2− γ)

γ
∥ξn+1 − wn∥2 −

βn

(1− βn)
∥ξn+1 − wn∥2

≤ ∥wn − ξ∗∥2 − βn

(1− βn)
∥ξn+1 − wn∥2.

(3.24)

Since βn ∈ [ 12 , 1), this implies that βn

(1−βn)
≥ 1. Therefore, we have

∥ξn+1 − ξ∗∥2 ≤ ∥wn − ξ∗∥2 − ∥ξn+1 − wn∥2. (3.25)
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Using (2.1) and the definition of wn, we get

∥wn − ξ∗∥2 = ∥(ξn − ξ∗) + αn(ξn − ξn−1)− βn(ξn − ξ0)∥2

= ∥ξn − ξ∗∥2 + ∥αn(ξn − ξn−1)− βn(ξn − ξ0)∥2

− 2 ⟨ξn − ξ∗, αn(ξn − ξn−1)− βn(ξn − ξ0)⟩
= ∥ξn − ξ∗∥2 + 2αn ⟨ξn − ξ∗, ξn − ξn−1⟩ − 2βn ⟨ξn − ξ∗, ξn − ξ0⟩
+ ∥αn(ξn − ξn−1)− βn(ξn − ξ0)∥2.

(3.26)

Similarly, by replacing ξ∗ with ξn+1 in the previous equations, we have

∥wn − ξn+1∥2

= ∥ξn − ξn+1∥2 + 2αn ⟨ξn − ξn+1, ξn − ξn−1⟩ − 2βn ⟨ξn − ξn+1, ξn − ξ0⟩
+ ∥αn(ξn − ξn−1)− βn(ξn − ξ0)∥2.

(3.27)

Now, substituting (3.26) and (3.27) in (3.25) and using (2.2), we obtain

∥ξn+1 − ξ∗∥2

≤ ∥ξn − ξ∗∥2 + 2αn ⟨ξn − ξ∗, ξn − ξn−1⟩ − 2βn ⟨ξn − ξ∗, ξn − ξ0⟩
− ∥ξn − ξn+1∥2 − 2αn ⟨ξn − ξn+1, ξn − ξn−1⟩
+ 2βn ⟨ξn − ξn+1, ξn − ξ0⟩

= ∥ξn − ξ∗∥2 + 2αn ⟨ξn − ξ∗, ξn − ξn−1⟩ − 2βn ⟨ξn − ξ∗, ξn − ξ0⟩
− ∥ξn − ξn+1∥2 + αn∥ξn − ξn+1∥2 + αn∥ξn − ξn−1∥2

− αn∥ξn − ξn+1 + (ξn − ξn−1)∥2 + 2βn ⟨ξn − ξn+1, ξn − ξ0⟩ .

(3.28)

Therefore, we have

∥ξn+1 − ξ∗∥2 − ∥ξn − ξ∗∥2 − αn∥ξn − ξn−1∥2 + (1− αn)∥ξn − ξn+1∥2

≤ −2βn ⟨ξn − ξ∗, ξn − ξ0⟩+ 2αn ⟨ξn − ξ∗, ξn − ξn−1⟩+ 2βn ⟨ξn − ξn+1, ξn − ξ0⟩
= −2βn ⟨ξn − ξ∗, ξn − ξ0⟩ − αn∥ξn−1 − ξ∗∥2 + αn∥ξn − ξ∗∥2 + αn∥ξn − ξn−1∥2

− ∥ξ0 − ξn+1∥2 + β∥ξn+1 − ξn∥2 + β∥ξn − ξ0∥2,
(3.29)

where we applied (2.2) in the last equation. Hence, we have

− 2βn ⟨ξn − ξ∗, ξn − ξ0⟩
≥ ∥ξn+1 − ξ∗∥2 − ∥ξn − ξ∗∥2 − 2αn+1∥ξn+1 − ξn∥2 − 2αn∥ξn − ξn−1∥2

+ αn

(
∥ξn−1 − ξ∗∥2 − ∥ξn − ξ∗∥2

)
+ βn

(
∥ξ0 − ξn+1∥2 − ∥ξn − ξ0∥2

)
+ (1− αn − 2αn+1 − βn)∥ξn+1 − ξn∥2.

(3.30)

Therefore, from the fact that, the sequences {αn} and {βn} are non-decreasing and non-
increasing sequences respectively, then (3.22) follows. Hence, the proof.

Theorem 3.5. Suppose that Assumption 3.1 holds. Then the sequence {ξn} generated
by Algorithm 1 is bounded.
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Proof. By the simple rearrangement of (3.22), we have

∥ξn+1 − ξ∗∥2 − ∥ξn − ξ∗∥2

≤ αn∥ξn − ξ∗∥2 − αn−1∥ξn−1 − ξ∗∥2 − (1− 3αn+1 − βn)∥ξn+1 − ξn∥2

− 2αn+1∥ξn+1 − ξn∥2 + 2αn∥ξn − ξn−1∥2 − βn+1∥ξ0 − ξn+1∥2

+ βn∥ξn − ξ0∥2 − 2βn ⟨ξn − ξ0, ξn − ξ∗⟩
= αn∥ξn − ξ∗∥2 − αn−1∥ξn−1 − ξ∗∥2 − (1− 3αn+1 − βn)∥ξn+1 − ξn∥2

− 2αn+1∥ξn+1 − ξn∥2 + 2αn∥ξn − ξn−1∥2 − βn+1∥ξ0 − ξn+1∥2

+ βn∥ξn − ξ0∥2 + βn∥ξ0 − ξ∗∥2 − βn∥ξn − ξ0∥2 − βn∥ξn − ξ∗∥2,

(3.31)

where we used (2.2) in the last equation. Hence we have

∥ξn+1 − ξ∗∥2 − ∥ξn − ξ∗∥2 + βn∥ξn − ξ∗∥2

≤ αn∥ξn − ξ∗∥2 − αn−1∥ξn−1 − ξ∗∥2 − (1− 3αn+1 − βn)∥ξn+1 − ξn∥2

− 2αn+1∥ξn+1 − ξn∥2 + 2αn∥ξn − ξn−1∥2 + βn∥ξ0 − ξ∗∥2.
(3.32)

Let ρk = exp
∑k

i=1 βi , k ≥ 1. Notice that, since expx ≥ 1 + x for some x ∈ R, we obtain

1

ρn+1

(
ρn+1∥ξn+1 − ξ∗∥2 − ρn∥ξn − ξ∗∥2

)
= ∥ξn+1 − ξ∗∥2 − ∥ξn − ξ∗∥2 + 1

ρn+1
(ρn+1 − ρn)∥ξn − ξ∗∥2

≤ ∥ξn+1 − ξ∗∥2 − ∥ξn − ξ∗∥2 + βn+1∥ξn − ξ∗∥2.

(3.33)

Using the fact the sequence {βn} is non-increasing in (0, 1], we have

1

ρn+1

(
ρn+1∥ξn+1 − ξ∗∥2 − ρn∥ξn − ξ∗∥2

)
≤ ∥ξn+1 − ξ∗∥2 − ∥ξn − ξ∗∥2 + βn∥ξn − ξ∗∥2.

(3.34)

Substituting (3.34) in (3.32), we have

1

ρn+1

(
ρn+1∥ξn+1 − ξ∗∥2 − ρn∥ξn − ξ∗∥2

)
≤ αn∥ξn − ξ∗∥2 − αn−1∥ξn−1 − ξ∗∥2 − (1− 3αn+1 − βn)∥ξn+1 − ξn∥2

− 2αn+1∥ξn+1 − ξn∥2 + 2αn∥ξn − ξn−1∥2 + βn∥ξ0 − ξ∗∥2.

From the fact that ρn ≤ ρn+1 = ρn exp
βn+1 and {βn} is non-increasing, we have

ρn+1∥ξn+1 − ξ∗∥2 − ρn∥ξn − ξ∗∥2

≤ ρn+1αn∥ξn − ξ∗∥2 − ρnαn−1∥ξn−1 − ξ∗∥2 − ρn+1(1− 3αn+1 − βn)∥ξn+1 − ξn∥2

− 2ρn+1αn+1∥ξn+1 − ξn∥2 + 2ρnαn exp
βn+1 ∥ξn − ξn−1∥2 + ρn+1βn∥ξ0 − ξ∗∥2.

Since βn+1 ≤ βn, this can be written as

ρn+1∥ξn+1 − ξ∗∥2 − ρn∥ξn − ξ∗∥2

≤ ρn+1αn∥ξn − ξ∗∥2 − ρnαn−1∥ξn−1 − ξ∗∥2

− ρn+1

[
1− αn+1(3 + 2(expβn+1 −1))− βn

]
∥ξn+1 − ξn∥2

− 2ρn+1αn+1∥ξn+1 − ξn∥2 + 2ρnαn exp
βn+1 ∥ξn − ξn−1∥2 + ρn+1βn∥ξ0 − ξ∗∥2.
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By Assumption 3.1 and {αn} ⊂ [0, αn], we have

1− αn+1(3 + 2(expβn+1 −1))− βn ≥ 1− α(3 + 2(expβn+1 −1))− βn.

Using the fact that limn→∞ βn = 0 and αn ∈ [0, 1/3), it follows that, for all N ∈ N large
enough, there is a δ > 0 such that

1− α(3 + 2(expβn+1 −1))− βn ≥ δ

for all n ≥ N. Therefore, we have

ρn+1∥ξn+1 − ξ∗∥2 − ρn∥ξn − ξ∗∥2

≤ ρn+1αn∥ξn − ξ∗∥2 − ρnαn−1∥ξn−1 − ξ∗∥2 − δρn+1∥ξn+1 − ξn∥2

− 2ρn+1αn+1∥ξn+1 − ξn∥2 + 2ρnαn exp
βn+1 ∥ξn − ξn−1∥2

+ ρn+1βn∥ξ0 − ξ∗∥2.

Now, for all n ≥ N , we have

∥ξ0 − ξ∗∥2
n∑

j=N+1

ρj+1βj

≥ ρn+1∥ξn+1 − ξ∗∥2 + 2ρn+1αn+1 exp
βn+1 ∥ξn+1 − ξn∥2 − ρn+1αn∥ξn − ξ∗∥2

− ρN+1∥ξN+1 − ξ∗∥2 − 2ρN+1αN+1 exp
βN+1 ∥ξN+1 − ξN∥2 + ρN+1αN∥ξN − ξ∗∥2.

(3.35)

Dividing (3.35) by ρN+1 and dropping the non-positive term −2ρn+1αn+1 exp
βn+1 ∥ξn+1−

ξn∥2, we have

∥ξn+1 − ξ∗∥2 − αn∥ξn − ξ∗∥2

≤ exp−tn+1
[
ρN+1∥ξN+1 − ξ∗∥2 + 2ρN+1αN+1 exp

βN+1 ∥ξN+1 − ξN∥2

−ρN+1αN∥ξN − ξ∗∥2
]
+ ∥ξ0 − ξ∗∥2 exp−tn+1

n∑
j=N+1

βj exp
tj+1 ,

(3.36)

where tn =
∑n

j=1 βj . Notice that βj exp
tj+1 ≤ exp2(exptj − exptj−1) for all j ≥ 2. There-

fore, we have

n∑
j=N+1

ρj+1βj =

n∑
j=N+1

βj exp
tj+1 ≤ exp2(exptn − exptN ) ≤ exp2 exptn . (3.37)

Putting (3.37) in (3.36) with exp−tn+1 ≤ 1, we get

∥ξn+1 − ξ∗∥2

≤ −αn∥ξn − ξ∗∥2 + ρN+1∥ξN+1 − ξ∗∥2 + 2ρN+1αN+1 exp
βN+1 ∥ξN+1 − ξN∥2

− ρN+1αN∥ξN − ξ∗∥2 + exp2 exptn ∥ξ0 − ξ∗∥2

≤ −α∥ξn − ξ∗∥2 + ρN+1∥ξN+1 − ξ∗∥2 + 2ρN+1αN+1 exp
βN+1 ∥ξN+1 − ξN∥2

+ exp2 ∥ξ0 − ξ∗∥2

(3.38)
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By the simple calculation and using the convergence of a geometric series, we obtain

∥ξn+1 − ξ∗∥2 ≤ −αn−N∥ξN+1 − ξ∗∥2

+
1

1− α

(
ρN+1∥ξN+1 − ξ∗∥2 + 2ρN+1αN+1 exp

βN+1 ∥ξN+1 − ξN∥2

+exp2 ∥ξ0 − ξ∗∥2
)
.

(3.39)

Since the α ≤ 1, It now follows that the sequence {ξn} is bounded.

Lemma 3.6. Let Assumption 3.1 holds and let {ξn} be the sequence generated by Algo-
rithm (1). Suppose that

lim
n→∞

∥ξn+1 − ξn∥ = 0

and
lim

n→∞

(
∥ξn+1 − ξ∗∥2 − αn∥ξn − ξ∗∥2

)
= 0.

Then, the sequence {ξn} strongly converges to the solution ξ∗ ∈ Ω.

Proof. By the hypothesis, we have

0 = lim
n→∞

(
∥ξn+1 − ξ∗∥2 − αn∥ξn − ξ∗∥2

)
= lim

n→∞
[(∥ξn+1 − ξ∗∥+

√
αn∥ξn − ξ∗∥) (∥ξn+1 − ξ∗∥ −

√
αn∥ξn − ξ∗∥)] .

(3.40)

Now, we claim that

lim
n→∞

(∥ξn+1 − ξ∗∥+
√
αn∥ξn − ξ∗∥) = 0.

To see this, assume that the above equality does not hold. Then there exist ν > 0 and a
subset N ⊂ N such that, for all n ≥ N,

∥ξn+1 − ξ∗∥+
√
αn∥ξn − ξ∗∥ ≥ ν. (3.41)

Using the fact that, αn ≤ α ≤ 1 and (3.40), we have

0 = lim
n∈N

(∥ξn+1 − ξ∗∥ − αn∥ξn − ξ∗∥)

= lim sup
n∈N

(∥ξn+1 − ξn + ξn − ξ∗∥+
√
αn∥ξn − ξ∗∥)

≥ lim sup
n∈N

(∥ξn − ξ∗∥ − ∥ξn+1 − ξn∥ −
√
αn∥ξn − ξ∗∥)

≥ lim sup
n∈N

(1−
√
αn) ∥ξn − ξ∗∥ − ∥ξn+1 − ξn∥

= (1−
√
αn) lim sup

n∈N
∥ξn − ξ∗∥ − lim

n∈N
∥ξn+1 − ξn∥

= (1−
√
αn) lim sup

n∈N
∥ξn − ξ∗∥.

(3.42)

This implies that lim supn∈N ∥ξn− ξ∗∥ ≤ 0. Clearly, lim infn∈N ∥ξn− ξ∗∥ ≥ 0. Therefore,
it follows that limn∈N ∥ξn − ξ∗∥ = 0. By (3.41), this implies

∥ξn+1 − ξn∥ ≥ ∥ξn+1 − ξ∗∥ − ∥ξn − ξ∗∥
= ∥ξn+1 − ξ∗∥+

√
αn∥ξn − ξ∗∥ − (1 +

√
αn) ∥ξn − ξ∗∥

≥ ν

2
for all n ∈ N large enough, which is a contradiction. Hence the proof follows.



An Inertial Projection and Contraction Scheme ... 1123

In the next theorem, we prove the convergence of the sequence {ξn} generated by
Algorithm 1.

Theorem 3.7. Suppose that Assumption 3.1 holds. Then, the sequence {ξn} generated
by Algorithm 1 strongly converges to a solution ξ∗ ∈ Ω.

Proof. Let {Tn} be a sequence defined by

Tn = ∥ξn − ξ∗∥2 − αn−1∥ξn−1 − ξ∗∥2 + 2αn∥ξn − ξn−1∥2 + βn∥ξn − ξ0∥2.

Now, we claim that the sequence {Tn} is non-negative. To see this, using the assumptions
on the sequence {αn} in Assumption 3.1 and (2.1), we have

Tn = ∥ξn − ξ∗∥2 − αn−1

(
∥ξn−1 − ξn∥2 + ∥ξn − ξ∗∥2 + 2 ⟨ξn+1 − ξn, ξn − ξ∗⟩

)
+ 2αn∥ξn − ξn−1∥2 + βn∥ξn − ξ0∥2

= ∥ξn − ξ∗∥2 − αn−1

(
2∥ξn−1 − ξn∥2 + 2∥ξn − ξ∗∥2 − ∥ξn+1 − 2ξn − ξ∗∥2

)
+ 2αn∥ξn − ξn−1∥2 + βn∥ξn − ξ0∥2

≥ ∥ξn − ξ∗∥2 − 2αn−1∥ξn−1 − ξn∥2 +
2

3
∥ξn − ξ∗∥2 − αn−1∥ξn+1 − 2ξn − ξ∗∥2

+ 2αn∥ξn − ξn−1∥2 + βn∥ξn − ξ0∥2

≥ 1

3
∥ξn − ξ∗∥2 + βn∥ξn − ξ0∥2

≥ 0.

(3.43)

Applying {Tn} in Lemma 3.4, we have

Tn+1 − Tn + (1− 3αn+1 − βn)∥ξn − ξn+1∥2

≤ −2βn ⟨ξn − ξ∗, ξn − ξ0⟩ .
(3.44)

We now consider two cases

Case 1: Suppose for some N ∈ N sufficiently large enough Tn+1 ≤ Tn, that is, the
sequence {Tn} is monotonically non-decreasing. Then obviously {Tn} is convergent. It
follows from Assumption 3.1 and 3.5 that, there exists δ > 0 and M > 0 such that
1 − 3αn+1 − βn ≥ δ and 2 |⟨ξn − ξ∗, ξn − ξ0⟩| ≤ M respectively. Therefore, from (3.44),
we obtain

δ∥ξn+1 − ξn∥2 ≤ βnM + Tn − Tn+1 → 0 as n → ∞. (3.45)

Therefore, we have

lim
n→∞

∥ξn+1 − ξn∥2 → 0.

Using the fact that βn → 0, the boundedness of the sequence {ξn} and the convergence
of {Tn}, the limit

µ := lim
n→∞

(
∥ξn+1 − ξ∗∥2 − αn∥ξn − ξ∗∥2

)
(3.46)
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exists and is equal to limn→∞ Tn+1. In particular, (3.43) implies that µ ≥ 0. Now, we
show that µ = 0. Suppose that µ > 0. Since the sequence {ξn} is bounded, we can select
a subsequence {ξnk

} which converges weakly to p ∈ H such that

lim inf
n→∞

⟨ξn − ξ∗, ξ∗ − ξ0⟩ = lim
k→∞

⟨ξnk
− ξ∗, ξ∗ − ξ0⟩ = ⟨p− ξ∗, ξ∗ − ξ0⟩ .

Next, we show that p ∈ Ω. Observe that

δ∥wn − ξn∥ ≤ ∥βn(ξ0 − ξn) + αn(ξn − ξn−1)∥
≤ βn∥ξ0 − ξn∥+ αn∥ξn − ξn−1∥ → 0 as n → ∞.

(3.47)

This implies that

∥ξn+1 − wn∥ ≤ ∥ξn − wn∥+ ∥ξn+1 − ξn∥ → 0 as n → ∞. (3.48)

Now, it follows from (3.25) and the assumption on the sequence {βn} in Assumption 3.1
that

∥ξn+1 − ξ∗∥2 ≤ ∥wn − ξ∗∥2 − ∥ξn+1 − wn∥2

≤ ∥wn − ξ∗∥2 − β2
n∥wn − zn∥2

≤ ∥wn − ξ∗∥2 − ∥wn − zn∥2
(3.49)

Since {ξn} is bounded and hence {wn} are bounded, it follows from (3.49) that

∥wn − zn∥2 ≤ ∥wn − ξ∗∥2 − ∥ξn+1 − ξ∗∥2

= (∥wn − ξ∗∥ − ∥ξn+1 − ξ∗∥)
(
∥wn − ξ∗∥2 + ∥ξn+1 − ξ∗∥

)
≤ (∥wn − ξ∗∥ − ∥ξn+1 − ξ∗∥)M
≤ ∥wn − ξn+1∥M,

(3.50)

where M := supn≥1{∥wn − ξ∗∥, ∥ξn+1 − ξ∗∥}. It now follows from (3.48) that

lim
n→∞

∥wn − zn∥ = 0.

It then follows from (3.6) that

lim
n→∞

∥wn − tn∥ = 0.

This implies that ξn − zn → 0. Therefore, znk
⇀ p and since zn ∈ E, we have p ∈ E.

Similarly, wnk
⇀ p. Now, for all ξ ∈ E, using Lemma 2.3 and the monotonicity of A, we

have

0 ≤ ⟨znk
− wnk

+ λnAwnk
, ξ − znk

⟩
= ⟨znk

− wnk
, ξ − znk

⟩+ λn ⟨Awnk
, wnk

− znk
⟩+ λn ⟨Awnk

, ξ − wnk
⟩

≤ ⟨znk
− wnk

, ξ − wnk
⟩+ λn ⟨Awnk

, wnk
− znk

⟩+ λn ⟨Aξ, ξ − wnk
⟩

(3.51)

Passing through the limit, we have

⟨Aξ, ξ − p⟩ ≥ 0, ∀ ξ ∈ E.

Then Lemma (2.4), implies p ∈ Ω so that

lim inf
n→∞

⟨ξn − ξ∗, ξ∗ − ξ0⟩ = ⟨p− ξ∗, ξ∗ − ξ0⟩ ≥ 0, (3.52)

where the last inequality follows from Lemma 2.3. Now, from (3.46), we have

lim inf
n→∞

∥ξn+1 − ξ∗∥2 ≥ lim
n→∞

(
∥ξn+1 − ξ∗∥2 − αn∥ξn − ξ∗∥2

)
= µ.
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Since µ > 0, for some N1 ∈ N large enough, we have

∥ξn+1 − ξ∗∥2 ≥ 1

2
µ, ∀n ≥ N1.

Observe that

⟨ξn − ξ∗, ξn − ξ0⟩ = ∥ξn − ξ∗∥2 + ⟨ξn − ξ∗, ξ∗ − ξ0⟩ . (3.53)

Using (3.53), the equation (3.52) will be

lim inf
n→∞

⟨ξn − ξ∗, ξn − ξ0⟩ = lim inf
n→∞

(
∥ξn − ξ∗∥2 + ⟨ξn − ξ∗, ξ∗ − ξ0⟩

)
≥ lim inf

n→∞

(
1

2
µ+ ⟨ξn − ξ∗, ξ∗ − ξ0⟩

)
=

1

2
µ+ lim inf

n→∞
(⟨ξn − ξ∗, ξ∗ − ξ0⟩)

≥ 1

2
µ.

It implies once again that, for some N2 ∈ N large enough,

⟨ξn − ξ∗, ξn − ξ0⟩ ≥
1

4
µ ∀n ≥ N2

Therefore, it follows from (3.44) that

Tn+1 − Tn ≤ −1

2
βnµ, ∀n ≥ N2,

which implies that

1

2
µ

n∑
k=N2

βk ≤ TN2
− Tn ≤ TN2

, ∀n ≥ N2.

This contradicts our assumption on the sequence {βn} in Assumption 3.1. Therefore we
must have µ = 0. Hence the sequence {ξn} converges strongly to a solution ξ∗.

Case 2: Suppose the sequence {Tn} is not monotically decreasing. For some N ∈ N
large enough, define a map ϕ : N → N for all n ≥ N by

ϕ(n) := max{k ∈ N : k ≤ n, Tn ≤ Tn+1}. (3.54)

Clearly, ϕ(n) is a non-decreasing sequence such that ϕ(n) → ∞ as n → ∞ and Tϕ(n) ≤
Tϕ(n)+1 for all n ≥ N . Therefore, in a similar manner as the proof of Case 1, it follows
from (3.44) that

δ∥ξϕ(n)+1 − ξϕ(n)∥2 ≤ βϕ(n)M → 0 as n → ∞, (3.55)

where M > 0 is a constant. Thus

∥ξϕ(n)+1 − ξϕ(n)∥ → 0 as n → ∞. (3.56)

Similarly as in Case 1 above, it follows that

∥ξϕ(n)+1 − wϕ(n)∥ → 0 as n → ∞,

∥wϕ(n) − ξϕ(n)∥ → 0 as n → ∞, (3.57)



1126 Thai J. Math. Vol. 19 (2021) /A.I. Garba et al.

and

∥ξϕ(n) − zϕ(n)∥ → 0 as n → ∞. (3.58)

Again, notice that, for k ≥ 0, by (3.44) , Tk+1 < Tk when ξk ̸∈ Γ = {ξ ∈ H :
⟨ξ − ξ0, ξ − ξ∗⟩ ≤ 0}. Therefore, since Tϕ(n) ≤ Tϕ(n)+1, we have ξϕ(n) ∈ Γ for all n ≥ N.
Now, since {ξϕ(n)} is bounded, we can select a subsequence (for simplicity, we denote it

by {ξϕ(n)} ) which weakly converges to ξ̂ ∈ H. Since Γ is a closed convex and hence

weakly closed, it then implies that ξ̂ ∈ Γ. Similarly as in Case 1, using (3.58), we have

zϕ(n) ⇀ ξ̂ and ξ̂ ∈ Ω. Consequently, we have ξ̂ ∈ Γ ∩Ω, and so, from Lemma 2.2, ξ̂ = ξ∗.
Moreover, since ξϕ(n) ∈ Γ, we have

∥ξϕ(n) − ξ∗∥2 =
⟨
ξϕ(n) − ξ0, ξϕ(n) − ξ∗

⟩
−

⟨
ξ∗ − ξ0, ξϕ(n) − ξ∗

⟩
≤ −

⟨
ξ∗ − ξ0, ξϕ(n) − ξ∗

⟩
.

Taking the limsup through the last inequality gives

lim sup
n→∞

∥ξϕ(n) − ξ∗∥ ≤ 0.

Thus we have

∥ξϕ(n) − ξ∗∥ → 0 as n → ∞.

Now, we claim that limn→∞ Tϕ(n)+1 = 0. It is easy to see by simple calculation and using
(3.56) and (3.58) that, limn→∞ Tϕ(n)+1 which is given by

lim
n→∞

Tϕ(n)+1 = lim
n→∞

(
∥ξϕ(n)+1 − ξ∗∥2 − αϕ(n)∥ξϕ(n) − ξ∗∥2

+ 2αϕ(n)+1∥ξϕ(n)+1 − ξϕ(n)∥2 + βϕ(n)+1∥ξϕ(n)+1 − ξ0∥2
)

goes to zero. We next show that, the limit of Tn is actually zero, that is, limn→∞ Tn = 0.
Notice that, if n ̸= ϕ(n), Tn ≤ Tϕ(n)+1 for all n ≥ N since Tk > Tk+1 for ϕ(n) + 1 ≤ k ≤
n− 1. It follows that, for all n ≥ N ,

Tn ≤ max{Tϕ(n), Tϕ(n)+1} = Tϕ(n)+1 → 0,

and so lim supn→∞ Tn ≤ 0. On the other hand, (3.43) implies that lim infn→∞ Tn ≥ 0.
Therefore, limn→∞ Tn = 0. Consequently, by the boundedness of the sequence {ξn},
(3.44) and Assumption 3.1, we have

lim
n→∞

∥ξn − ξn+1∥ → 0 as n → ∞.

Thus, the definition of {Tn} implies

lim
n→∞

(
∥ξn+1 − ξ∗∥2 − αn∥ξn − ξ∗∥2

)
= 0.

It is now easy to see that, using Assumption 3.1, the last equation gives the strong
convergence of {ξn} to ξ∗.
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4. Numerical Illustrations

Here, we analyze the computational performance and the inertial-effect of our proposed
algorithm by giving some computational experiments and comparisons with some existing
algorithms in the literature. For reference, our codes were written using the Matlab
program (Matlab R2016b) and were run on a PC with Intel(R) Core(TM)i5, CPU @
1.4GHz, and RAM 4.00 GB.

Example 4.1. [14] Let consider the VIP (1.1) with an operator A defined as

A(ξ1, ξ2) = (2ξ1 + 2ξ2 + sin(ξ1),−2ξ1 + 2ξ2 + sin(ξ2))

for all ξ1, ξ2 ∈ H with E := {ξ ∈ R2 : −10 ≤ ξn ≤ 10, n = 1, 2}. The unique solution of
this problem is ξ∗ = (0, 0)T . It can be shown that A is a strongly monotone and L -

Lipschitz with Lipschitz constant L =
√
26.

We give the numerical analysis of Example 4.1 in Table 1, where ε, ξ0, ”iter” and CPU
denote respectively the tolerance, initial point, number of iterations and CPU time.

Table 1. Results of Example 4.1 for Algorithm 1 with different initial values

ε 10−3 10−4 10−5 10−7 10−3 10−4 10−5 10−7

ξ0 Iter. Iter. Iter. Iter. cpu. cpu. cpu. cpu.
(1, 10)T 10 43 329 32334 0.2598 0.3939 3.2108 354.5379
(10, 10)T 12 56 458 44957 0.2799 0.4388 4.2567 510.9625
(−5, 20)T 15 77 662 66477 0.2898 0.6129 6.8006 627.5416

Example 4.2. [19] Let us consider the fractional programming problem defined as fol-
lows:

minT (ξ) =
ξTPξ + cT ξ + c0

dT ξ + d0

subject to ξ ∈ X := {ξ ∈ R4 : dT ξ + d0 > 0}

with

P =


5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5

 , c =


1
−2
−2
1

 , d =


2
1
1
0

 , c0 = 2, d0 = 4.

It can be seen that P is symmetric and positive definite in R4, therefore, T is pseudo-
convex on X. Minimizing T over E =

{
ξ ∈ R4 : 1 ≤ ξn ≤ 10, n = 1, ..., 4

}
⊂ X using

Algorithm 1 with A(ξ) :=
(
(dT ξ + d0)(2Pξ + c)− d(ξTPξ + cT ξ + a0)

)
/(dT ξ + d0)

2. It

is clear that ξ∗ = (1, 1, 1, 1)T in E is the unique solution of this problem.

In Table 2 we present the numerical analysis of Example 4.2 with different initial values
and stopping criteria.
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Table 2. Results of Example 4.1 for Algorithm 1 with different initial values

ε 10−3 10−4 10−5 10−6 10−3 10−4 10−5 10−6

ξ0 Iter. Iter. Iter. Iter. cpu. cpu. cpu. cpu.
(10, 10, 10, 10)T 75 236 749 2369 0.5752 1.8721 7.4670 23.3459
(5, 10, 15, 20)T 89 283 898 44957 0.6249 2.2638 9.3607 29.9212
(10, 20, 30, 40)T 128 408 1292 4087 0.9729 3.4837 13.1561 43.9974

Example 4.3. [16] Let the operator A(ξ) := Mξ + q, ξ ∈ Rn. This is a prominent
Example considered in the literature by many authors, see for example [33, 35], where
M = BBT + C +D, with B, C and D as n × n square matrices such that C is a skew-
symmetric, and D is a diagonal matrix with nonnegative diagonal entries. Therefore, M
is a positive semi-definite and q is a vector in Rn. We defined the feasible set E := {ξ ∈
Rn : Qξ ≤ b} as a closed and convex subset E ⊂ Rn, where Q is an l × n matrix and b
is a nonnegative vector. It can be seen that A is monotone and M -Lipschitz-continuous.
When q = 0, the solution set is Ω := {0}.
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(c) m = 30, l = 70

0 200 400 600 800 1000 1200 1400 1600 1800 2000

 iterartion

10
-3

10
-2

10
-1

10
0

10
1

Alg1.0

Alg4.0

Alg4.1

Alg4.3

(d) m = 20, l = 100

Figure 1. Comparison of error estimate with respect to the number of
iterations of Alg.1, Alg.4.0, Alg.4.1 and Alg.4.3 with different sizes of m
and l (see Example 4.3 ).
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In this example we use H := Rn, and L := ∥M∥. Similar to the example in [16],
we choose randomly the starting points ξ0 ∈ [0, 1]m and ξ1 ∈ [0, 1]m. We compare our
proposed Algorithm with the Inertial Projection and Contraction Algorithm [14] given by
(1.6), the Single Projection Method Algorithm introduced in [33] and the Halpern type
Subgradient Extragradient Algorithm studied in [25]. For convenience we denote these
algorithms respectively as Alg. 4.0, Alg. 4.3 and Alg. 4.1. We use ∥ξn − ξ∗∥ ≤ ϵ = 0.005
as the stopping criterion. For this experiment we take λn = 0.9/∥M∥ for Alg. 1, Alg. 4.3
and Alg. 4.0, λ = 1/2∥M∥ for Alg. 4.1. We randomly generate the matrices A, b,B,C,D
and, we take βn = 1/(n + 2), αn = 0.3 and γ = 1.99 for Alg. 1, αn = 1/(13n + 2) and
γ = 1.99 for Alg.4.3, αn = 0.4 for Alg. 4.0 and αn = 1/(100n+ 2) for Alg. 4.1.

We recall that, the Halpern-type subgradient extragradient algorithm studied in ([25])
is given by:


ξ0 ∈ H,

zn = PE (ξn − τf(ξn)) ,

Tn = {w ∈ H : ⟨ξn − τf(ξn)− zn, w − zn⟩ ≤ 0} ,
ξn+1 = αnξ0 + (1− αn)PTn

(ξn − τf(zn))

(4.1)

where f : H −→ H and E ⊂ H is nonempty, closed and convex. We also recall the Single
Projection Method Algorithm introduced in [33] given as follows:

Initialization: Choose sequence {αn} ⊂ (0, 1) with limn→∞ αn = 0 and
∑∞

n=1 αn =
∞. Ler λn ∈ (0,∞), γ ∈ (0, 2) and let ξ1 ∈ H be a given stating point: Set n = 1.
Steps 1:

zn = PE (ξn − λnAξn) (4.2)

If ξn − zn = 0 STOP
Step 2 Compute

d(ξn, zn) = ξn − zn − λn (Aξn −Azn) , (4.3)

Step 3 Compute

ξn+1 = αnξ1 + (1− αn) (ξn − γρnd(ξn, zn)),

where ρn is given by

ρn =

{ ⟨ξn−zn,d(ξn,zn)⟩
∥d(ξn,zn)∥2 , if d(ξn, zn) ̸= 0,

0, if d(ξn, zn) = 0,

Step 3. Set n = n+ 1 and go back to Step 1.

We compare the number of iterations and the execution time of these algorithms for
different sizes of m and l in Table 3, Figure 1 and Figure 2.
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Table 3. Comparison of Algorithm 1 with some existing Algorithms

m, l . Alg. 1 Alg. 4.0 Alg. 4.1 Alg. 4.3
20, 20 Iter. 110 1039 813 188

cpu 1.4292 12.0576 10.7666 2.7607

20, 50 Iter. 93 947 558 129
cpu 1.1522 10.8669 7.226187 1.5127

30, 70 Iter. 270 1726 1216 506
cpu 4.0807 23.6044 17.9609 8.7087

30, 100 Iter. 258 1975 1443 368
cpu 4.0943 34.2453 24.5201 6.2354
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(b) m = 20, l = 50
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(c) m = 30, l = 70
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Figure 2. Comparison of error estimate with respect to the elapsed
time of Alg. 1, Alg. 4.0, Alg. 4.1 and Alg. 4.3 with different sizes of m
and l (see Example 4.3 ).
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5. Conclusion

In this article, we presented a one-step inertial projection algorithm for solving VIP.
The algorithm incorporates an inertial term with the projection-contraction method. We
have shown that the sequence generated by our proposed algorithm converges strongly
under mild assumptions imposed on the underlying operator. We also presented some nu-
merical examples to illustrate the computational performance of our proposed algorithm.
Moreover, we compared the proposed algorithm with other strong convergence algorithms
[25, 33] and inertial projection and contraction algorithm presented in [14]. Our proposed
algorithms performed better in both the number of iteration and computational time
compared to these algorithms.

6. Acknowledgements

The second author was supported by the Petchra Pra Jom Klao Doctoral Scholarship,
Academic for Ph.D. Program at KMUTT (Grant No.38/2561).

References

[1] J. Abubakar, P. Kumam, H. ur Rehman, A.H. Ibrahim, Inertial iterative schemes
with variable step sizes for variational inequality problem involving pseudomonotone
operator, Mathematics 8 (4) (2020) 609.

[2] J. Abubakar, P. Kumam, H. Rehman, Self-adaptive inertial subgradient extragradi-
ent scheme for pseudomonotone variational inequality problem, International Journal
of Nonlinear Sciences and Numerical Simulation (2021).

[3] J. Abubakar, K. Sombut, H. Rehman, A.H. Ibrahim, An accelerated subgradient ex-
tragradient algorithm for strongly pseudomonotone variational inequality problems,
Thai Journal of Mathematics 18 (1) (2019) 166–187.

[4] F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal
point algorithm for maximal monotone operators in Hilbert space, SIAM Journal on
Optimization 14 (3) (2004) 773–782.

[5] F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone opera-
tors via discretization of a nonlinear oscillator with damping, Set-Valued Analysis 9
(1-2) (2001) 3–11.

[6] H. Attouch, J. Peypouquet, P. Redont, A dynamical approach to an inertial forward-
backward algorithm for convex minimization, SIAM Journal on Optimization 24
(1) (2014) 232–256.

[7] J. Aubin, I. Ekeland, Applied nonlinear analysis, John Wiley & Sons, New York,
1984.

[8] C. Baiocchi, Variational and quasivariational inequalities, Applications to Free-
boundary Problems, 1984.

[9] H.H. Bauschke, P.L. Combettes, Convex analysis and monotone operator theory in
Hilbert spaces 408 (2011).

[10] X. Cai, G. Gu, B. He, On the o (1/t) convergence rate of the projection and con-
traction methods for variational inequalities with lipschitz continuous monotone op-
erators, Computational Optimization and Applications 57 (2) (2014) 339–363.

[11] Y. Censor, A. Gibali, S. Reich, Strong convergence of subgradient extragradient
methods for the variational inequality problem in Hilbert space, Optimization Meth-
ods and Software 26 (4-5) (2011) 827–845.



1132 Thai J. Math. Vol. 19 (2021) /A.I. Garba et al.

[12] Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solv-
ing variational inequalities in Hilbert space, Journal of Optimization Theory and
Applications 148 (2) (2011) 318–335.

[13] S. Denisov, V. Semenov, L. Chabak, Convergence of the modified extragradient
method for variational inequalities with non-lipschitz operators, Cybernetics and
Systems Analysis 51 (5) (2015) 757–765.

[14] Q. Dong, Y. Cho, L. Zhong, T.M. Rassias, Inertial projection and contraction al-
gorithms for variational inequalities, Journal of Global Optimization 70 (3) (2018)
687–704.

[15] Q.L. Dong, Y.J. Cho, T.M. Rassias, The projection and contraction methods for
finding common solutions to variational inequality problems, Optimization Letters
12 (8) (2018) 1871–1896.

[16] Q.L. Dong, D. Jiang, A. Gibali, A modified subgradient extragradient method for
solving the variational inequality problem, Numerical Algorithms 79 (3) (2018) 927–
940.

[17] Q.L. Dong, Y.Y. Lu, J. Yang, The extragradient algorithm with inertial effects for
solving the variational inequality, Optimization 65 (12) (2016) 2217–2226.

[18] B. He, A class of projection and contraction methods for monotone variational
inequalities, Applied Mathematics and optimization 35 (1) (1997) 69–76.

[19] X. Hu, J. Wang, Solving pseudomonotone variational inequalities and pseudoconvex
optimization problems using the projection neural network, IEEE Transactions on
Neural Networks 17 (6) (2006) 1487–1499.

[20] E.N. Khobotov, Modification of the extra-gradient method for solving variational
inequalities and certain optimization problems, USSR Computational Mathematics
and Mathematical Physics 27 (5) (1987) 120–127.

[21] A. Padcharoen, D. Kitkuan, Iterative methods for optimization problems and image
restoration, Carpathian Journal of Mathematics 37 (3) (2021) 497–512.

[22] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and
their applications 31 Siam (1980).

[23] I. Konnov, Combined relaxation methods for variational inequalities 495 Springer
Science & Business Media (2001).

[24] G. Korpelevich, The extragradient method for finding saddle points and other prob-
lems, Matecon 12 (1976) 747–756.

[25] R. Kraikaew, S. Saejung, Strong convergence of the halpern subgradient extra-
gradient method for solving variational inequalities in Hilbert spaces, Journal of
Optimization Theory and Applications 163 (2) (2014) 399–412.
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