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Abstract In this work, we study an iterative method with an inertial term extrapolation step and
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1. Introduction

Let C be a nonempty closed and convex subset of Ω, where Ω is an open convex subset
of a Hilbert space H with the inner product ⟨·, ·⟩ and induced norm ∥·∥. Let f : Ω×Ω→ R
on. The equilibrium problem (see [1]) is to find x∗ ∈ C such that

f(x∗, x) ≥ 0, for all x ∈ C. (1.1)

In this work, we shall assume that the bifunction f satisfies f(x, x) = 0 and shall denote
by EP (C, f), the solutions set of (1.1). Associated with the equilibrium problem (1.1) is
the Minty equilibrium problem (see [2]) which is to find x̂ ∈ C such that

f(x, x̂) ≤ 0, for all x ∈ C. (1.2)

Let the solution set of the Minty equilibrium problem be represented as SM .
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The equilibrium problems include as particular cases, the scalar and vector optimiza-
tion problems, saddle-point problems, variational inequality problems, Nash equilibria,
complementarity problems and have in recent years engaged the interest of many math-
ematicians, see, for example, [1, 3–15, 17] and some of the references therein.

Recently, Dinh and Kim [18] proposed the following projection algorithms with line-
search for solving equilibrium problem where the bifunction is not required to be pseu-
domonotone.

Algorithm 1.1. Initialization: pick x0 ∈ C, choose parameters η ∈ (0, 1), ρ > 0 and
C0 = C. Iteration n(n = 0, 1, 2, 3, ...). Having xn do the following steps:
Step 1 : Solve the strongly convex program

argmin{f(x, y) + ρ

2
∥y − xn∥2 : y ∈ C}, (1.3)

to obtain its unique solution yn. If yn = xn, then stop. Otherwise do go to the next step
Step 2 : (Armijo linesearch rule) Find mn as the smallest nonnegative integer m
satisfying

zn,m = (1− nm)xn + nmyn,

un,m ∈ ∂2f(zn,m, zn,m),

⟨un,m, xn − yn⟩ ≥ ρ
2 ∥yn − xn∥2 .

(1.4)

Set ηn := ηmn , zn = zn,mn
, un = un,mn

. Take

Hn = {x ∈ H : ⟨un, x− zn⟩ ≤ 0} , Cn+1 = Cn ∩Hn. (1.5)

Step 3 :Compute

xn+1 = PCn+1
(xn), (1.6)

and go to step 1 with n replaced by n+ 1.

Using Algorithm 1.1, Dinh and Kim [18] obtained weak convergence result for solving
the equilibrium problem (1.1) under the assumption that the bifunction f is continuous,
convex and not required to satisfy any monotonicity property and the nonemptyness of
the solution set of the Minty equilibrium problem (1.2).

In 2017, Van et.al. [19] study a quasi-equilibrium problem with a nonmonotone bi-
function is considered in a finite-dimensional space. The following algorithm is presented
for obtaining weak convergence theorem:

Algorithm 1.2. Step 0 : Let x0 ∈ C,C ∈ [0, 1] and η ∈ [0, 1]. Let also µk ⊆ [a, b] where
0 < a ≤ b < 1. Set n = 0.
Step 1 : Compute yn = argmin

y∈C(wn)

{f(wn, y) +
1
2 ∥y − wn∥2}.

If yn = wn, then Stop. Otherwise go to Step 2.
Step 2 : Find m the smallest nonnegative integer such that{

⟨un,m, wn − yn⟩ ≥ c ∥wn − yn∥2

where zn,m = (1− ηm)wn + ηmyn and un,m ∈ ∂2f(zn,m, zn,m)
(1.7)

and set ηn = ηm, zn = zn,m and yn = yn,m. Consider the half-space

Bn = {x ∈ Rn| ⟨un, x− zn⟩ ≤ 0}. (1.8)
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Step 3 : Find xn = PCn
(xn) where Cn denotes the convex closed set

Cn = C ∩ (∩n
i=0

Bi). (1.9)

Calculate xn+1 = µnwn + (1− µn)vn where vn = PK(un)un.
Set n := n+ 1 and go back to Step 1.

In 2018, Iyiola et.al. [20] motivated the inertial-type algorithms and the work of Dinh
and Kim [18], they obtained convergence theorems and presented the following inertial
type iterative method with step-size called, Armijo linesearch which is faster and more
efficient than the Algorithm 1.1 by Dihn and Kim [18].

Algorithm 1.3. Step 1 : Choose sequence {ϵn}∞n=1 ∈ l1 and take η ∈ (0, 1), ρ > 0. Select
arbitrary points x0 ∈ C0, x1 ∈ C1;C0 = C1 = C and θ ∈ [0, 1). Set n := 1.
Step 2 : Given the iterates xn−1 and xn, n ≥ 1, choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n =

{
min{θ, ϵn

∥xn−xn−1∥2 }, xn ̸= xn−1

θ, otherwise.

Step 3 : Compute

wn := xn + θn(xn − xn−1).

Step 4 : Compute

yn := argmin{f(wn, y) +
ρ

2
∥y − wn∥2 : y ∈ C},

if yn=wn , then stop. Otherwise go to Step 5.
Step 5 : Find mn as the smallest nonnegative integer m satisfying

zn,m = (1 + nm)xn + nmyn,

un,m ∈ ∂2f(zn,m, zn,m),

⟨un,m, xn − yn⟩ ≥ ρ
2 ∥yn − xn∥2

(1.10)

Set ηn := ηmn , zn = zn,mn
, un = un,mn

.
Step 6 : Compute

xn+1 = PCn+1
(wn), (1.11)

where Cn+1 = Cn ∩Bn, Bn = {x ∈ H : hn(x) ≤ 0} and
hn(x) := ⟨un, x− yn⟩. (1.12)

Step 7 : Set n ← n+1 and go to 2.
Here, θn is an extrapolation factor and the inertial is represented by the term θn(xn −
xn−1). It is remarkable that the inertial term extrapolation step greatly improves the
performance of the algorithm and has a nice convergence properties [21, 22]

In this work, we study the common equilibrium problem (CEP) which is to find x∗ ∈ C
such that

fi(x
∗, x) ≤ 0 for all x ∈ C. (1.13)

For the set of common solution of the Minty equilibrium problem respert with fi, we
denote it CSM

Motivated by the recent interest on inertial-type algorithms and the work of Dinh,
Kim [18], Van [23] and Iyiola [20], we propose an algorithm which is a combination of
Algorithm 1.1, Algorithm 1.2 and Algorithm 1.3 above and inertial extrapolation step



Solving Common Nonmonotone Equilibrium Problems ... 1099

for solving equilibrium problem (1.1) in infinite dimensional Hilbert spaces. Under with
parallel algorithm the same conditions imposed on the bifunction fi.

2. Preliminaries and Lemmas

We next recall some properties of the projection, cf. [24] for more details. For any
point u ∈ H, there exists a unique point PCu ∈ C such that

∥u− PCu∥ ≤ ∥u− y∥ ,∀y ∈ C.

PC is called the metric projection of H onto C. We know that PC is a nonexpensive
mapping of H onto C. It is also known that PC satises

⟨x− y, PCx− PCy⟩ ≥ ∥PCx− PCy∥2 ,∀x, y ∈ H. (2.1)

In particular, we get

⟨x− y, PCx− PCy⟩ ≥ ∥PCx− PCy∥2 ,∀x ∈ C, y ∈ H. (2.2)

Furthermore, PCx is characterized by the properties

PCx ∈ C and ⟨x− PCx, PCx− y⟩ ≥ 0,∀y ∈ C. (2.3)

Further properties of the metric projection can be found, for example, in Section 3 of [25].

Lemma 2.1. Let C be a nonempty closed and convex subset of H, y := PC(x) and
x∗ ∈ C. Then

∥y − x∗∥2 ≤ ∥x− x∗∥2 − ∥x− y∥2 . (2.4)

We shall denote by dist (.,K) distance function to K, i.e.,

dist(x,K) = inf {∥x− y∥ : y ∈ K} .

Lemma 2.2. [26] Let h be a real-valued function onH and defineK := {x ∈ H : h(x)) ≤ 0} .
If K is nonempty and h is Lipschitz continuous on C with modulus θ > 0, then

dist(x,K) ≥ θ−1 max {h(x), 0} ,∀x ∈ C.

Definition 2.3. A bifunction f : C × C → R is said to be jointly weakly continuous on
C × C if for all x, y ∈ C and {xn} , {yn} are two sequences in C converging weakly to x
and y respectively, then f (xn, yn) converges to f (x, y) .

We now state the followings assumptions which is required in the sequel.
(A1) f(x, ·) is convex on H forevery x ∈ H;
(A2) f is jointly weakly continuous on H ×H.

For each x, z ∈ H, by ∂2f (z, x) we denote the subdifferential of convex function f(z, ·)
at x, i.e.,

∂2f (z, x) := {u ∈ H : f (z, y) ≥ f (z, x) + ⟨u, y − x⟩ ,∀y ∈ H} .
In particular,

∂2f (z, z) = {u ∈ H : f (z, y) ≥ ⟨u, y − z⟩ ,∀y ∈ H} .

We now state the following lemmas which will be used in the convergence analysis in
the sequel.

Lemma 2.4. Let f : H ×H → R be a function satisfying conditions (A1) and (A2). Let
x̄, ȳ ∈ H and {xn} , {yn} be two sequences in Hconverging weakly to x̄, ȳ, respectively.
Then, for any ϵ > 0, there exists η > 0 and nϵ ∈ N such that
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∂2f (xn, yn) ⊂ ∂2f (x̄, ȳ) + ϵ
ηB,

for every n ≥ nϵ , where B denote the closed unit ball in H.

Lemma 2.5. [[18], Lemma 2.19] Under the assumptions (A1) and (A2) , if {zn} ⊂ H
is a sequence such that {zn} converges strongly to z̄ and the sequence {zn}, with un ∈
∂2f (zn, zn) , converges weakly to ū, then ū ∈ ∂2f (z̄, z̄) .

Lemma 2.6. [[18], Lemma2.20] Suppose the bifunction f satisfies the assumptions (A1)
and (A2). If {xn} ⊂ C is bounded, ρ > 0 and {yn} is a sequence such that

yn = argmin
{
f (xn, y) +

ρ
2 ∥y − xn∥2 : y ∈ C

}
,

then {yn} is bounded.

Lemma 2.7. The following well-known result holds in a real Hilbert space:

∥x+ y∥2 = ∥x∥2 + 2 ⟨x, y⟩+ ∥y∥2 ,∀x, y ∈ H.

Lemma 2.8. [27] Assume φn ∈ [0,∞) and δn ∈ [0,∞) satisfy:
1. φn+1 − φn ≤ θn (φn − φn−1) + δn,
2.
∑
n=1

∞
δn <∞,

3. {θn} ⊂ [0, θ], where θ ∈ (0, 1).
Then the sequence {φn} is convergent with

∑∞
n=1 [φn+1 − φn]+ < ∞ , where [t]+ :=

max {t, 0} (for any t ∈ R).

3. Main results

In this section, we introduce our proposed method for solving the equilibrium problem
(1.1) and give some comments regarding the iterative parameters.

Algorithm 3.1. Step 1 : Choose sequence {ϵn}∞n=1 ∈ l1 and take η ∈ (0, 1), ρ > 0. Select
arbitrary points x0 ∈ C0, x1 ∈ C1 : C0 = C1 = C and θ ∈ [0, 1). Set n := 1.
Step 2 : Given the iterates xn−1 and xn, n ≥ 1, choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n =

{
min

{
θ, ϵn

∥xn−xn−1∥2

}
, xn ̸= xn−1

θ, otherwise.

Step 3 : Compute

wn := xn + θn (xn − xn−1) .

Step 4 : Compute

yin := argmin
{
fi (wn, y) +

ρ
2 ∥y − wn∥2 : y ∈ C

}
, ∀ i = 1, 2, ..., N.

If yin = wn, ∀i = 1, 2, ..., N , then stop. otherwise go to Step 5.
Step 5 : Find mi

n as the smallest nonnegative integer mi satisfying
zin,m = (1− nmi

)wn + ηm
i

yni ,

ui
n,m ∈ ∂2fi(z

i
n,m, zin,m),⟨

ui
n,m, wn − yin

⟩
≥ ρ

2

∥∥yin − wn

∥∥2 . (3.1)

set ηin := ηmn , zin = zin,mn
, ui

n = ui
n,m.

Step 6 : Compute

xn+1 = Pcn+1(wn), (3.2)
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where Cn+1 = Cn

∩(∩
i=1

N
Bi

n

)
, Bi

n =
{
x ∈ H : hi

n(x) ≤ 0
}
and

hi
n(x) :=

⟨
ui
n, x− yin

⟩
. (3.3)

Step 7 : Set n← n+ 1 and go to Step 2.

It is clear that if yin = wn, then wn is a solution of the equilibrium problem. In our
convergence theory, we will implicitly assume that this does not occur after finitely many
iterations, so that Algorithm 3.1 generate an infinite sequences satisfying, in particular,
yin − wn ̸= 0 for all n ∈ N .

Remark 3.2. 1. We remark here that Step 2 in Algorithm 3.1 is easily implemented in
numerical computation since the value of ∥xn − xn−1∥ is a priori known before choos-
ing θn. Furthermore, observe that by the assumption that {ϵn}∞n=1 ⊂ l1, we have that∑
n=0

∞
θn ∥xn − xn−1∥2 <∞.

2. It is well known that the projection of a point on the intersection is very hard to
compute. However for computation purposes, this can alternatively be written as the
following optimization problem:

PC∗(x) := min
y∈C∗

∥y − x∥2,

where

C∗ := Cn

∩( N∩
i=1

Bi
n

)
.

Kindly see [28] for many other ways to computationally handle projection onto inter-
section of sets. We give the following result which is very similar to algorithm 3.1 of [18]
but the proof is given for the sake of completeness.

Lemma 3.3. Let the solution set CSM of the Minty equilibrium problem (1.2) be
nonempty. Then the following hold.

1. There exist an integer number mi > 0 satisfying the inequality ⟨ui
n,m, wn − zin⟩ ≥

ρ
2∥wn − yin∥2 for every ui

n,m ∈ ∂2fi(z
i
n,m, zin,m).

2. Cn is nonempty closed convex.

Proof. We start with showing that at each iteration n, there exists a positive integer
mi

0,∀i = 1, 2, ..., N . such that⟨
ui
n,mi

0
, wn − yin

⟩
≥ ρ

2

∥∥wn − yin
∥∥2 ,∀ui

n,mi
0
∈ ∂fi(z

i
n,mi

0
, zi

n,mi
0
),∀i = 1, 2, ..., N.

Thus the linesearch is well defined. Since ⟨ui
n, wn−zin⟩ = ηn⟨ui

n, wn−yin⟩ combining with
the linesearch rule (3.1), we get

⟨ui
n, wn − zin⟩ ≥

ηnρ

2

∥∥yin − wn

∥∥2 .
Next, we show that Cn is nonempty. Indeed, by the assumption CSM ̸= ϕ , then for

each x∗ ∈ CSM , we get fi(y
i
n, x

∗) ≤ 0,∀y ∈ C. ∀i = 1, 2, ..., N. So, fi(z
i
n, x

∗) ≤ 0,∀n =
1, 2, ..., N. From the convexity of fi

(
zin, .

)
, we have

fi
(
zin, y

)
≥ fi

(
zin, z

i
n

)
+
⟨
ui
n, y − yin

⟩
,∀y ∈ C.
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Therefore,

0 ≥ fi
(
zin, x

∗) ≥ ⟨ui
n, x

∗ − yin
⟩
.

Hence, x∗ ∈ Bi
n,∀i = 1, 2..., N. This means xn generated by Algorithm 3.1 is well

defined. This implies that x∗ ∈ Cn,∀n.

Our main contribution in this paper is given in the next result. In this next result, we
establish the convergence analysis of the sequence of iterates generated by our proposed
Algorithm 3.1 to the solution of the equilibrium problem (1.1). Here, xn ⇀ x∗ means xn

converges weakly to x∗.

Theorem 3.4. Let CSM ̸= ϕ and let fi : Ω × Ω → R satify Assumptions (A1), (A2)
hold for all i = 1, 2, ..., N . Then the sequence {xn} generated by Algorithm 3.1 converges

weakly to z ∈
∩N

i=1 EP (C, fi) .

Proof. We break our proof into several steps below for the sake of clarity.
Step (i) : We first show that {xn} is bounded and there exists a weak cluster point

of {xn}. Let x∗ ∈ CSM , then from Lemma 3.3, we have that x∗ ∈ Cn.

∥xn+1 − x∗∥2 = ∥Pcn+1
(wn)− x∗∥2

≤ ∥wn − x∗∥2. (3.4)

But

∥wn − x∗∥2 = ∥xn + θn (xn − xn−1)− x∗∥2

= ∥xn − x∗∥2 + 2θn ⟨xn − x∗, xn − xn−1⟩+ θ2n ∥xn − xn−1∥2 . (3.5)

Observe that

2 ⟨xn − x∗, xn − xn−1⟩ = ∥xn − x∗∥2 − ∥xn−1 − x∗∥2 + ∥xn − xn−1∥2 . (3.6)

Thus, from (3.4) and (3.5) and noting that θ2n ≤ θn, we have

∥wn − x∗∥2 = ∥xn − x∗∥2 + θn

(
∥xn − x∗∥2 − ∥xn−1 − x∗∥2

)
+
(
θn + θ2n

)
∥xn − xn−1∥2

≤∥xn − x∗∥2 + θn

(
∥xn − x∗∥2 − ∥xn−1 − x∗∥2

)
+ 2θn ∥xn − xn−1∥2 . (3.7)

Hence, it follows from (3.5) and (3.6) that

∥xn+1 − x∗∥2 ≤∥xn − x∗∥2 + θn

(
∥xn − x∗∥2 − ∥xn−1 − x∗∥2

)
+ 2θn ∥xn − xn−1∥2 . (3.8)

Now, since ϵn ∈ l1, it follows that∑∞

n=1
θn ∥xn − xn−1∥

2

<∞.

Therefore, letting δn = 2θn ∥xn − xn∥2 and φn = ∥xn − x∗∥2, we deduce from Lemma 2.8

that the sequence {∥xn − x∗∥} is convergent. Thus, {xn}is bounded and
∑∞

n=1
[∥xn+1−

x∗∥2−∥xn−x∗∥2] <∞. Furthermore, since {xn} is bounded, there exists a subsequence
{xnk

} of {xn} such that {xnk
}⇀ p ∈ H.
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Step (ii) : We now show that any weak accumulation point p of the sequence {xn}
belongs to Cn for all n. Suppose that

{
xnj

}
⊂ {xn} , xnj

⇀ p as j →∞, and there exists
n0 such that p /∈ Cn0

. Then by the closedness and convexity of Ck0
, Ck0

is also weakly
closed. Hence, there exists nj0 > n0 such that

{
xnj

}
/∈ Cn0 for all nj ≥ nj0 , especially

xn
j0

/∈ Cn0 . This contradicts the fact that xn
j0
∈ Cnj0

−1 ⊂ ··· ⊂ Ck0+1 ⊂ Ck0 . Therefore

p ∈ Cn,∀n or p ∈
∩∞

n=0 Cn. Since Cn ⊂ Bn,∀n. then we have

p ∈
∞∩

n=0

Bn.

Step (iii) : Next, we show that p ∈
∩N

i=1 EP (C, fi). Using Algorithm 3.1, we have

∥xn+1 − x∗∥2 =
∥∥PCn+1 (wn)− x∗∥∥2

=
∥∥(PCn+1

(wn)− wn

)
+ (wn − x∗)

∥∥2
=
∥∥PCn+1 (wn)− wn

∥∥2 + ∥wn − x∗∥2

+ 2⟨PCn+1
(wn)− wn, wn − x∗⟩

=
∥∥PCn+1 (wn)− wn

∥∥2 + ∥wn − x∗∥2

+ 2⟨PCn+1
(wn)− wn, wn − PCn+1

(wn)⟩
+ 2⟨PCn+1

(wn)− wn, PCn+1
(wn)− x∗⟩. (3.9)

Hence ∥∥PCn+1 (wn)− x∗∥∥2 = ∥wn − x∗∥2 −
∥∥PCn+1 (wn)− wn

∥∥2
+ 2⟨PCn+1

(wn)− wn, PCn+1
(wn)− x∗⟩. (3.10)

From (3.7) and (3.10), we have∥∥PCn+1
(wn)− wn

∥∥2 = ∥xn − x∗∥2 + θn

(
∥xn − x∗∥2 − ∥xn−1 − x∗∥2

)
− ∥xn+1 − x∗∥2 + 2θn ∥xn − xn−1∥2

+ 2⟨PCn+1
(wn)− wn, PCn+1

(wn)− x∗⟩.

≤
(
∥xn − x∗∥2 − ∥xn+1 − x∗∥2

)
+ θn

(
∥xn − x∗∥2 − ∥xn−1 − x∗∥2

)
+
+ 2θn ∥xn − xn−1∥2

+ 2⟨PCn+1
(wn)− wn, PCn+1

(wn)− x∗⟩. (3.11)

Clearly, by (2.2) we get

⟨PCn+1
(wn)− wn, PCn+1

(wn)− x∗⟩ ≤ 0 and lim
n→∞

θn ∥xn − xn−1∥2 = 0

from Algorithm 3.1. Thus, from (3.11), we conclude that

lim
n→∞

∥∥PCn+1
(wn)− wn

∥∥ = 0.

From wn = xn + θn (xn − xn−1) , we get

∥wn − xn∥2 ≤ θn ∥xn − xn−1∥2 → 0
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and hence

∥wn − xn∥ → 0, n→∞. (3.12)

Furthermore,

∥xn+1 − wn∥ =
∥∥PCn+1

(wn)− wn

∥∥→ 0, n→∞. (3.13)

From (3.12) and (3.13), we get

∥xn+1 − xn∥ ≤ ∥xn+1 − wn∥+ ∥xn − w
n
∥ → 0, n→∞. (3.14)

Since xnj
⇀ p, then it follows that wnj

⇀ p. Observe that hn is Lipschitz continuous
with modulus M > 0. Combining Lemma 2.1, 2.2 and 3.3, we get

∥xn+1 − x∗∥2 =
∥∥∥PC

n+1
(wn)− x∗

∥∥∥ ≤ ∥wn − x∗∥2 −
∥∥PCn+1

(wn)− wn

∥∥2
= ∥wn − x∗∥2 − dist2 (wn, Cn+1)

≤ ∥wn − x∗∥2 −
(

1

M
hi
n (wn)

)2

≤ ∥wn − x∗∥2 −
(

1

2M
ρηn

∥∥wn − yin
∥∥2)2

. (3.15)

Then from (3.15), we obtain that

(
1

2M
ρηn∥wn − yin∥2)2 ≤ ∥wn − x∗∥2 − ∥xn+1 − x∗∥2

= (∥wn − x∗∥ − ∥xn+1 − x∗∥)(∥wn − x∗∥+ ∥xn+1 − x∗∥)
≤ (∥wn − x∗∥ − ∥xn+1 − x∗∥)M1

≤ ∥wn − xn+1∥M1 → 0, n→∞, (3.16)

where M1 := supn≥1 {∥wn − x∗∥+ ∥xn+1 − x∗∥} . Thus ηn
∥∥wn − yin

∥∥2 → 0, n→∞.
Case I : Suppose that lim inf

n→∞
ηn > 0. Then

0 ≤
∥∥wn − yin

∥∥2 =
ηn
∥∥w

n
− yin

∥∥2
ηn

,

which implies that

lim sup
n→∞

∥∥wn − yin
∥∥2 ≤ lim sup

n→∞

(
ηn
∥∥wn − yin

∥∥2)(lim sup
n→∞

1

ηn

)
= lim sup

n→∞

(
ηn
∥∥wn − yin

∥∥2)( 1

lim inf
n→∞

ηn

)
= 0, (3.17)

which implies

lim
n→∞

∥∥wn − yin
∥∥ = 0. (3.18)

Moreover,∥∥xn − yin
∥∥ ≤ ∥wn − xn∥+

∥∥wn − yin
∥∥→ 0, n→∞. (3.19)

Since xnj
⇀ p and (3.19), it follows that yinj

⇀ p as j → ∞. By the definition of yinj

such that

yinj
= argmin

{
fi
(
wnj , y

)
+ ρ

2

∥∥y − wnj

∥∥2 : y ∈ C
}
,
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we have

0 ∈ ∂2fi

(
wnj , y

i
nj

)
+ ρ

(
yinj

, wnj

)
+Nc(yinj

),

so there exists vinj
∈ ∂2f

(
wnj

, yinj

)
such that⟨

vinj
, y − yinj

⟩
+ ρ

⟨
yinj
− wnj

, y − yinj

⟩
≥ 0,∀y ∈ C.

Combining with

fi
(
wnj

, y
)
− fi

(
wnj

, yinj

)
≥
⟨
vinj

, y − yinj

⟩
,∀y ∈ C,

we have

fi
(
wnj

, y
)
− fi

(
wnj

, yinj

)
+
⟨
yinj
− wnj

, y − yinj

⟩
≥ 0,∀y ∈ C. (3.20)

Moreover, ⟨
yinj
− wnj

, y − yinj

⟩
≤
∥∥∥yinj

− w
nj

∥∥∥ ∥∥∥y − yinj

∥∥∥.
Thus, we get

fi
(
wnj , y

)
− fi

(
wnj , y

i
nj

)
+ ρ

∥∥∥yinj
− wnj

∥∥∥∥∥∥y − yinj

∥∥∥ ≥ 0.

Letting j → ∞, by the jointly weak continuity of f , (3.12) and (3.17), we obtain in the
limit that

fi (p, y)− fi (p, p) ≥ 0.

Hence

fi (p, y) ≥ 0,∀y ∈ C,

which gives that p ∈
∩N

i=1 EP (C, fi) ,∀i = 1, 2, ..., N .
Case II : On the other hand, suppose lim

n→∞
ηn = 0. Then from the boundedness of{

yin
}
, it deduces that there exists

{
yink

}
⊂
{
yin
}

such that
{
yink

}
⇀ yi as k → ∞.

Replacing y by wnk
in (3.20), we have

fi(wnk
, yink

) + ρ ∥ynk
− wnk

∥2 ≤ 0. (3.21)

Moreover, by the Armijo linesearch rule (3.1) , for mnk−1, there exists ui
nk
,mnk−1 ∈

∂2fi(zni ,mnk−1, zni ,mnk−1) such that⟨
ui
nk,mnk

−1, wnk
− ynk

⟩
<

ρ

2

∥∥yink
− wnk

∥∥2 . (3.22)

By the convexity of fi(z
i
nk
,mnk−1) and (3.22), we have

fi

(
zink,mnk

−1, ynk

)
≥ fi

(
zink,mnk

−1, z
i
nk,mnk

−1

)
+
⟨
ui
nk,mnk

−1, y
i
nk−z

i
nk,mnk

−1

⟩
= (1− ηnk,mk−1)

⟨
ui
nk,mk−1, y

i
nk
− wnk

⟩
> −

(
1− ηnk,mnk

−1

) ρ

2

∥∥yink
− wnk

∥∥2 . (3.23)



1106 Thai J. Math. Vol. 19 (2021) /K. Kankam et al.

From (3.21) and (3.23), we obtain

fi

(
zink,mnk

−1, y
i
nk

)
> −

(
1− ηnk,mnk

−1

) ρ

2

∥∥yink
− wnk

∥∥2
≥ 1

2

(
1− ηnk,mnk

−1

)
fi
(
wnk

, yink

)
. (3.24)

By (3.1), zink,mnk
−1 =

(
1− ηmnk

−1
)
wnk

+ ηmnk
−1yink

, ηnk,mnk
−1 → 0 and wnk

converges

weakly to p , yink
converges weakly to ȳ , it implies that zink,mnk

−1 ⇀ p as i → ∞.

Beside that

{∥∥∥yin
k
− wnk

∥∥∥2} is bounded, without loss of generality, we may assume that

lim
i→∞

∥∥∥yin
k
− wnk

∥∥∥2 exists. Hence, we get in the limit (3.24) that

fi (p, ȳ) ≥ −
ρ

2
lim
k→∞

∥∥yink
− wnk

∥∥2 ≥ 1

2
fi (p, ȳ) . (3.25)

Therefore, fi (p, ȳ) = 0 and lim
k→∞

∥∥yink
− wnk

∥∥2 = 0. By the Case I, it is immediate that

p ∈
∩N

i=1 EP (C, fi) ,∀i = 1, 2, ..., N.
step(iv) : We finally show that {xn} converges weakly to a point in EP (c, fi),∀i =

1, 2, .., N. Now , let x∗ and p be two accumulation points of {xn}. Then there ex-
ist
{
xnj

}
⊂ {xn} such that xnj

⇀ p and
{
xnj

}
⊂ {xn} such that xnk

⇀ x∗. Us-

ing similar arguments as in Step (ii) above, we can show that x∗ , p ∈
∩∞

n=0 Cn. Let

lim
n→∞

∥xn − x∗∥2 = α and lim
n→∞

∥xn − p∥2 = β. Then

α = lim
n→∞

∥xn − x∗∥2 = lim
k→∞

∥xnk
− x∗∥2

= lim
k→∞

[
∥xnk

− p∥2 + 2 ⟨xnk
− p, p− x∗⟩+ ∥p− x∗∥2

]
= lim

k→∞

[
∥xnk

− p∥2 + ∥p− x∗∥2
]

= lim
n→∞

[
∥xnk

− p∥2 + ∥p− x∗∥2
]

= lim
n→∞

[
∥xnk

− x∗∥2 + 2 ∥p− x∗∥2
]

= α+ ∥p− x∗∥2 .

Therefore, ∥p− x∗∥ = 0 and so {xn} convreges weakly to p. This completes the proof.

4. Numerical Experiments

In this section, we present some numerical examples to the signal recovery. We consider
our algorithm defined by projection method. In this case, we set proxλg(wn−λ∇f(wn)) =

argmin{fi(wn, y)+λ∥y−wn∥2 : y ∈ C} when λ ∈ (0, 2/L) and L is the Lipschitz constant
of ∇f . Compressed sensing can be modeled as the following underdeterminated linear
equation system:

t = Ax+ ϵ, (4.1)

where x ∈ RN is a vector with m nonzero components to be recovered, t ∈ RM is the
observed or measured data with noisy ϵ, and A : RN → RM (M < N) is a bounded linear
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operator. It is known that to solve (4.1) can be seen as solving the LASSO problem:

min
x∈RN

1

2
∥t−Ax∥22 + λ∥x∥1, (4.2)

where λ > 0. So we can apply our method for solving (4.2) in case f(x) = 1
2∥t − Ax∥22

and g(x) = λ∥x∥1. It is noted that ∇f(x) = AT (Ax− t).
The goal in this paper is to remove noise without knowing the type of noise. Thus, we

focus in the following problem

min
x∈RN

1

2
∥A1x− t1∥22 + λ1∥x∥1,

min
x∈RN

1

2
∥A2x− t2∥22 + λ2∥x∥1,

...

min
x∈RN

1

2
∥ANx− tN∥22 + λN∥x∥1. (4.3)

where x is original signal, Ai is a bounded linear operator and ti is observed signal with
noisy for all i = 1, 2, ..., N. In our experiment, the sparse vector x ∈ RN is generated
from uniform distribution in the interval [-2,2] with n nonzero elements. The matrix
A1, A2 ∈ RM×N is generated from a normal distribution with mean zero and invariance
one. The observation t1, t2 is generated by with Gaussian noise white signal-to-noise ratio
SNR. The initial point x1 is picked randomly. The restoration accuracy is measured by
the mean squared error as follows:

MSE =
1

N
∥xn − x∗∥22 < 10−3,

where x∗ is an estimated signal of x.
In what follows, let ηin = 0.5 for all i = 1, 2 and let the step size λ1 = 1

∥A1∥2 and

λ2 = 1
∥A2∥2 . Next, we aim to find the common solutions of signal recovery problem (4.3)

with N = 2 by using the proposed algorithm is also tested (input A1 and A2 on the
proposed algorithm) shown in as follows:

dimension Case input Iter CPU

512× 256 1.1 A1 31539 350.7598
1.2 A2 27329 273.0109
1.3 A1A2 27236 297.3950

1536× 768 2.1 A1 24498 1.3632e+03
2.2 A2 28809 1.9419e+03
2.3 A1A2 25296 1.2823e+03

Table 1. The convergence behavior of inputting Ai, i = 1, 2, stop con-
dition(mean squared error) < 10−3.
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From Table 1: we observe that the number of iterations and CPU time of our proposed
algorithm small reduction when N = 512, M = 256.

0 0.5 1 1.5 2 2.5 3 3.5

the number of iterations 10
4

10
-3

10
-2

M
S

E

Case1.3

Case1.1

Case1.2

0 0.5 1 1.5 2 2.5 3

the number of iterations 10
4

1

2

3

4

5

6

7

8

9

M
S

E

10
-3

Case2.3

Case2.1

Case2.2

Figure 1. Graph of number of iterations versus MSE

Next, we provide performance of the studied proposed algorithm with the following
two original signal are tested.

Original signal (N=512, M=256, 20 spikes)

50 100 150 200 250 300 350 400 450 500
-1

0

1

Measured values with SNR=30

50 100 150 200 250

-10
0

10

Measured values with SNR=40

50 100 150 200 250

-10
0

10

Recovered signal by Case 1.3 ( 27236 iterations, CPU=297.3950 )

50 100 150 200 250 300 350 400 450 500
-1

0

1

Recovered signal by Case 1.1  ( 31539 iterations, CPU=350.7598 )

50 100 150 200 250 300 350 400 450 500
-1

0

1

Recovered signal by Case 1.2  ( 27329 iterations, CPU=273.0109 )

50 100 150 200 250 300 350 400 450 500
-1

0

1

Figure 2. From top to bottom: original signal, observation data SNR=30
and SNR=40, recovered signal by Case 1.3, Case 1.1 and Case 1.2, respectively.
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Original signal (N=1536, M=768, 20 spikes)

200 400 600 800 1000 1200 1400
-1

0

1

Measured values with SNR=30

100 200 300 400 500 600 700

-10
0

10

Measured values with SNR=40

100 200 300 400 500 600 700

-10
0

10

Recovered signal by Case 2.3  ( 25296 iterations, CPU=1.2823e+03 )

200 400 600 800 1000 1200 1400
-1

0

1

Recovered signal by Case 2.1  ( 24498 iterations, CPU=1.9419e+03 )

200 400 600 800 1000 1200 1400
-1

0

1

Recovered signal by Case 2.2  ( 28809 iterations, CPU=1.3632e+03 )

200 400 600 800 1000 1200 1400
-1

0

1

Figure 3. From top to bottom: original signal, observation data SNR=30
and SNR=40, recovered signal by Case 3.3, Case 3.1 and Case 3.2, respectively.

From Table 1 and Figure 1-3, we see that Case 1.3 and Case 2.3 have a fewer number of
iterations and CPU time that Case 1.1-1.2 and Case 2.2-2.3 8.07% and 16.87% averages,
respectively.

5. Conclusion

In this work, we introduce an iterative method with an inertial extrapolation step and
parallel algorithm for solving common equilibrium problems of nonmonotone bifunctions
in real Hilbert spaces. We then prove weak convergence theorems under some continuity
and convexity assumptions on the bifunction and the condition that the common solution
set of the associated Minty equilibrium problems is nonempty. Moreover, we apply our
main result to signal processing and demonstrate its computational performance.
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