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Abstract This paper presents 2-D magnetotelluric (MT) modeling with finite volume (FV) method

incorporating unstructured quadrilateral mesh. The accuracy, efficiency, and reliability are presented

and compared to other numerical methods. The numerical results indicate that our FV method provides

good accuracy when the appropriate mesh is incorporated. The reliability of the developed FV scheme

is also confirmed with both analytical values and COMMEMI projects. In addition, our developed FV

codes with unstructured quadrilateral mesh show valuable and powerful features such as handling the

irregular and complex subregions.
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1. Introduction

Several numerical techniques such as finite difference (FD) method [14, 18], finite el-
ement (FE) method [5, 9, 10, 15, 17, 18, 22, 23], and finite volume (FV) method [4] are
developed and implemented for 2-D magnetotelluric (MT) forward modeling. The FD
method is the numerical technique that is often used for some simple models. However,
the FD method cannot handle some real-world models, including many complex subre-
gions such as terrain, seafloor, and irregular anomalous substructures, because it has a
limitation on the rectangular mesh. With these problems, the FE and FV methods are
proven to overcome those problems because both methods can incorporate several un-
structured mesh types for handling complex substructures. Presently, the accuracy and
efficiency of the FE method for 2-D MTmodeling have been proven [5, 9, 10, 15, 17, 22, 23].
For the FV method, it is now gained and has more attention. Evidence of its efficiency
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and accuracy can be found in MT modeling [4, 6] and 2-D reservoir simulation prob-
lem [7]. The FV scheme with structured mesh and unstructured tetrahedral mesh have
successfully applied to both 2-D and 3-D MT modeling [4, 6]. In the present, some ad-
vantages of unstructured quadrilateral mesh with FE method and FV method can be
found in [7, 17]. In the present, there is no application of the FV scheme with unstruc-
tured quadrilateral mesh for MT modeling. So, it is exciting and challenging to use the
unstructured quadrilateral mesh for the FV method to solve 2-D MT modeling.

In this work, the alternative FV method incorporating with unstructured quadrilat-
eral mesh for solving 2-D MT modeling is proposed. The FV codes employing the paving
algorithm [1] to generate the unstructured quadrilateral mesh were developed on MAT-
LAB programming. The accuracy, efficiency, and reliability of our FV method will be
presented and tested on various 2-D benchmark models.

2. 2-D Magnetotellurics modeling

MT modeling describes the behavior of the natural electromagnetic (EM) interacting
with the Earth. The naturally occurring EM fields are considered as a harmonic plane-
wave with neglecting displacement currents. Here, the time dependence is assumed to
be e−iωt, where ω is the angular frequency. For the 2-D case, we assume that the strike
direction (the direction that the resistivity’s structure does not change) is paralleled to
the x−direction. Therefore, the resistivity ρ = ρ(y, z). The governing equations for the
2-D MT problem with the bounded domain Ω ⊂ R2 are given by

∇ · α∇U + βU = 0. (2.1)

The notations α, β and U denote different representations depending on the two MT
modes:

The Transverse Electric (TE) mode: U = Ex, α = 1, β = iωµ/ρ,
The Transverse Magnetic (TM) mode: U = Hx, α = ρ, β = iωµ,

where Ex and Hx are the electric and magnetic fields, respectively, µ is the magnetic
permeability in free space. Here, µ = µ0 = 4π × 10−7 Vs/Am. For the 2-D problem, the
computing domain is defined as a region Ω ⊂ R2.

Figure 1. Graphical representation of computing domain for the 2-D problem.



1084 Thai J. Math. Vol. 19 (2021) /T. Khampichit et al.

As illustrated in Figure 1, Ω = Ω1 ∪ Ω2 ∪ Γ ∪ Γint, where the subregion Ω1 is defined
as the air layer, the subregion Ω2 is defined as the earth layer, the boundary Γ is the
outer boundary, and Γint is the air-earth interface. The partial differential equation (2.1)
subjected to the Dirichlet boundary conditions:

U = U0(y, z) ∈ Γ, (2.2)

where U0(y,z) is obtained by solving the 1-D problem analytically or numerically [5].

3. Unstructured Quadrilateral Mesh

To incorporate the unstructured quadrilateral mesh for the FV method. Here, the
mesh algorithm called the paving algorithm[1] is implemented. The concept of the paving
algorithm for the 2-D model have been illustrated in [17]. Its idea is summarized again
in Figure 2.

(a) Domain (b) Boundary mesh (c) Exterior paving

(d) Row generation (e) Seam (f) Cleanup

Figure 2. The paving algorithm for 2-D model[17].

It is started with meshing on a boundary (Fig. 2 b) and is followed by the interior
paving. The boundary is paved clockwise and progresses outward from the permanent
interior boundary. This step is called row choice (Fig. 2 c). Then, adding and adjusting
new rows to edit the element size and improve the mesh quality using the smoothing
process and row adjustment, respectively, are applied (Fig. 2 d). When rows is begun
to overlap at the inside of the subregions, the validity of mesh is checked by using the
seaming process (Fig. 2 e). Finally, the cleanup process, the process that re-adjusted to
improve the aspect ratio in the local, reduce the number of irregular nodes, or eliminate
elements with bad internal angles by removing and/or adding an volume, is taken to
obtain the completed unstructured quadrilateral mesh (Fig. 2 f).

In this paper, Trelis commercial software is taken to create the unstructured quadrilat-
eral mesh for FV method. All information of quadrilateral volumes, including the nodal
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coordinates and nodal volumes (node indices surrounding each volume) are required for
our FV MATLAB codes.

4. Finite volume method

To apply the FV method to the governing equations (2.1), the element-based finite
volume (EbFV) method is chosen. With the EbFV concept, the conservation of mass
is enforced over polygonal control volume (CV) constructing in a vertex-centered FV
method. This yields the discrete equation is physically balance over CVs [7]. As shown
in Figure 3, the considered domain is now composed of quadrilateral elements or volumes
by using unstructured quadrilateral mesh. Each CV is set up by neighborhoods volumes.

Figure 3. Constructing the CV based on the EbFV method.

Each unknown is set and calculated at each node located at every volume corner. The
equation of each CV is constructed by forming the portions of the volumes that share a
common node. A certain face area delimits every CV. For each CV, we assume that the
residual of the (2.1) is r = ∇ · α∇U + βU. Here, U is assumed to be an approximated
solution by the FV method. The EbFV method try to seek a minimization of the non-
weighted residual by taking double integral over each CV ∆V . Therefore,∫∫

∆V

rds =

∫∫
∆V

(∇ · α∇U + βU)ds. (4.1)

Reducing the second-order term by using divergence theorem, the equation (4.1) is ex-
pressed as∫∫

∆V

rds =

∫
∪∆Si

(α∇U) · dS +

∫∫
∆V

βUdV, (4.2)

where ∪∆Si is the boundary of CV. The conservation of physical quantities over every
CV is the essential premise of the EbFV method. Since the shape of CVs constructed
following the described procedure may be extremely complex, a special strategy is required
for dealing with the increased geometrical complexity. The strategy employed in the EbFV
method taken from the FE technique defines the local coordinate system ξ, η instead of the
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real yz−coordinate inside every element by the coordinate transformation. The graphical
representation of transformation is illustrated in Figure 4.

Figure 4. Coordinate transformation between quadrilateral volume in
real coordinate and 2-unit square volume in local coordinate.

Therefore, all calculations can be easily made based upon the geometry of a standard
transformed element. Then, the conservation equations of every CV can be assembled
using the contributions coming from all neighboring volumes. For quadrilateral shape, the
coordinate transformation can be conveniently expressed employing the following bilinear
shape functions [8]

Ue
x(y, z) =

Ne∑
j=1

Se
j (ξ, η)u

e
j , (4.3)

where Se
j are the real-valued basis functions, ue

j are the unknown coefficients with complex-
valued, and N is the number of nodes per element. In this case, Ne = 4 for the linear
quadrilateral shape. For simplicity, the basis functions are defined in new coordinates
and are given by

Se
1(ξ, η) =

1

4
(1− ξ)(1− η)

Se
2(ξ, η) =

1

4
(1 + ξ)(1− η)

Se
3(ξ, η) =

1

4
(1 + ξ)(1 + η)

Se
4(ξ, η) =

1

4
(1− ξ)(1 + η)


, (4.4)

where (ξ, η) is the local coordinates. The expressions of the transformation are given by

y(ξ, η) =

4∑
j=1

sej(ξ, η)y
e
j

z(ξ, η) =

4∑
j=1

Se
j (ξ, η)z

e
j


, (4.5)
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where (y, z) are the real coordinates of the j−th node. Next, consider the line integral in
the first term of (4.2). The line integrals is approximated by using the midpoint rule [7],
we obtain∫

∪∆Si

(α∇U) · dS =
∑
e

[
∑
i

(α∇U)i ·∆Si]e, (4.6)

where i denotes the integration points locating at face centers. ∆Si denotes the face area
vector that point outside of the CV. Using bilinear approximation, the inner term in (4.6)
can be expressed as

[αi(∇U)i ·∆Si]e ≈ (αi)[D]Ti [u]e, (4.7)

where ue is a column vector whose components are located at the four node of the element
e and [D]Ti is a row vector defined by

[Dξ,η]
T
i = [S]i([W ]Ti [J ]

−1
i )[n̄∗]i, (4.8)

where [S]i is the basis function, [W ]i and [J ]i are the derivatives matrix that calculated at
the integration point i and [n̄∗]i is the coordinates of the normal vectors. Next, assembling
the discrete equation (4.6) for each CVs yields

∑
e

[
∑
i

(α∆U) · n̄]e ≈


α1[β]

T
1 − α1[β]

T
4

α1[β]
T
2 − α1[β]

T
1

α1[β]
T
3 − α1[β]

T
2

α1[β]
T
4 − α1[β]

T
3



u1

u2

u3

u4

 = [A]e[u]e, (4.9)

the matrix [A]e is an volume matrix for volume (e). Each row of this matrix is related to
one of the four adjoining CVs and includes two contributions.

For the second term in (4.2), the double integral over volume can be evaluated numer-
ically using Gauss-Quadrature rule for each quadrilateral volume. This yields∫∫

∆V

βUdV = [K]e[u]e. (4.10)

Substituting (4.9) and (4.10) into (4.2) and rearranging terms, we get∫∫
∆V

rds = ([A]e + [K]e) [u]e. (4.11)

Assembling (4.11) for all quadrilateral volumes in the given mesh and enforcing to zero,
i.e. ∫∫

Ω

rds =

M∑
e=1

∫∫
∆V

rds =

M∑
e=1

(([A]e + [K]e) [u]e) = 0, (4.12)

where M is the total number of volumes. Finally, the obtained system of equation is
expressed as

[K][u] = [b], (4.13)

where [K] is the coefficient matrix, [u] is the unknown vector, and [b] is the source vector
corresponding to the Dirichlet boundary conditions. The system of the equations in (4.13)
is solved by LU factorization. Once the electric and magnetic fields are obtained, taking
the ratio between the orthogonal electric and the magnetic fields yields the impedances.
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The impedances for TE-and TM modes, denoted by Zxy and Zyx, respectively, are defined
by

Zxy =
Ex

Hy
, Zyx =

Hx

Ey
. (4.14)

Finally, the apparent resistivity, denoted as ρ and phase, denoted as ϕ , can be evaluated
by

ρij =
1

ωµ
|Zij |2, (4.15)

and

ϕij = arg(Zij), (4.16)

where i,j = y,z. Note that, the responses Zij , ρij , and ϕij are calculated at desired sites
on the earth’s surface or seafloor.

5. Numerical Results

In this section, the accuracy and efficiency of our FV codes are presented, compared,
and discussed. The models designed and selected for this section are half-space, three-
layered, and COMMEMI2D-4 models [23]. Our FV codes are developed under MATLAB
programming and modified from the FE codes developing by [17]. The commercial soft-
ware is used to generated the unstructured quadrilateral mesh. Then, the information
of nodes and volume inside the domain is imported as input files for our FV codes. All
numerical tests are computed and run on a computer desktop with CPU 1.99 GHz and
RAM 4 GB.

5.1. Half-space model

The simple half-space model used to test accuracy is illustrated in Figure 5 (left). The
size of this model is designed as 400 km × 200 km. Here, the thickness of the air layer is
extended to 200 km. The earth’s surface is assumed to be flat and homogeneous clay with
resistivity of 100 ohm-m. Here, we assume that there are 19 sites in the range −30 km
to 30 km with a distance 3 km located on the earth’s surface (z = 0 km) . The apparent
resistivity and phases are computed at 4 periods: T = 0.1, 1.0, 10, and 100 s for both TE
and TM modes. The resistivity model of this model is shown in Figure 5 (left).

To solve 2-D MT modeling by using FV method, the given model is discretized into
unstructured quadrilateral mesh with many volumes and nodes. The computing domain
and its generated mesh are shown in Figure 5 (right). The smallest volume’s size (mini-
mum edge’s length of volume) around MT sites is set as 100 m. The size of the volumes
which located far away from the sites and the interested area are increased with rate 1.2
and 1.4 for both earth and air layers. The total number of generated nodes and volumes
are 20, 725 and 20, 696, respectively. Note that, the given mesh information is identical
to those of [17] used for the FE method.

For each period, our FV algorithm takes about 250 seconds to finish the task. For this
model, the exact apparent resistivity at each site is identical to the assumed resistivity,
i.e., 100 ohm-m and the phase is equal to 45 degrees. The root mean square (RMS) errors
of the apparent resistivity and phase are shown in Table 1.
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Figure 5. The 100 ohm-m homogeneous earth (left) and meshing with
unstructured quadrilateral mesh (right). The 19 sites are marked as red
triangles [17].

Table 1. RMS errors of apparent resistivity and phase of half-space model.

TE-mode TM-mode
Period(s) ρxy ϕxy ρyx ϕyx

0.1 0.3265 0.0073 0.5689 0.0460
1 0.2848 0.0111 0.3273 0.0375
10 0.3174 0.0207 0.2807 0.0108
100 0.2969 0.1557 0.0594 0.1482

The maximum RMS errors of apparent resistivity and phase occurred at the shortest
tested period at T = 0.1 s, whereas the minimums have occurred at the longest period T
= 100 s. The trend of RMS is reduced when the period is increased. The results indicate
that our FV codes give good accuracy.

5.2. Three-layered model

For the second model, the domain is set as 400 km × 200 km. As same as the first
model, the thickness of the air layer is extended to 200 km. The 100 ohm-m layer is
designed at the top and the thickness of the layer in the left is less narrow than that
of the right-hand. The resistivity of the second layer is assigned as 1000 ohm-m. The
thickness of the left-hand side is wider than that of the right-hand side. For the rest
region at the bottom, the resistivity is 10 ohm-m. The total number of sites is 19 sites
with a distance 3 km. The periods of EM wave used to test here are 1, 10, 100, and 1000
s. The resistivity model is shown in Figure 6 (a).

Since this model is not homogeneous and not horizontal layered model. Then, the
analytical apparent resistivity and phases cannot be computed analytically. Thus, the
purpose of testing this model is focused on comparison of the solutions obtaining by the
fine and coarse mesh instead. For the coarse mesh, the 3, 950 nodes and 3, 905 volumes
are generated whereas the 15, 709 nodes and 15, 620 volumes are generated for the fine
mesh. Note that the initial mesh size and the grow rate for these two cases are different.
The coarse mesh and fine mesh are shown in Figure 6 (b) and 6 (c), respectively.
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(a) (b) (c)

Figure 6. The resistivity model of three-layered model (a). The model
with coarse mesh case (b) whereas that with fine mesh case (c). The 19
sites are marked as red triangles.

The apparent resistivity and phases computed at T = 1 s are shown in Figure 7. The
maximum difference between the coarse and fine mesh for apparent resistivity and phases
are 0.8250 % and 0.3136 %.

Apparent resistivity Phase
for TE-mode (left) and TM-mode(right). for TE-mode (left) and TM-mode (right).

Figure 7. The apparent resistivity and phases: T = 1 second.

At T = 10 seconds, the apparent resistivity and phases are shown in Figure 8. The
maximum difference between the coarse and fine mesh for apparent resistivity and phase
are 2.3393 % and 0.8076 %, respectively.

At T = 100 seconds, the apparent resistivity and phases are shown in Figure 9. The
maximum difference between the coarse and fine mesh for apparent resistivity and phase
are 0.7663 % and 0.5393 %, respectively.
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Apparent resistivity Phase
for TE-mode (left) and TM-mode(right). for TE-mode (left) and TM-mode (right).

Figure 8. The apparent resistivity and phases at period T = 10 seconds.

Apparent resistivity Phase
for TE-mode (left) and TM-mode(right). for TE-mode (left) and TM-mode (right).

Figure 9. The apparent resistivity and phases: T = 100 seconds.

At T = 1000 seconds, the apparent resistivity and phases are shown in Figure 10. The
maximum difference between the coarse and fine mesh for apparent resistivity and phase
are 1.2503 % and 0.0567 %, respectively.

Apparent resistivity Phase
for TE-mode (left) and TM-mode(right). for TE-mode (left) and TM-mode (right).

Figure 10. The apparent resistivity and phases: T = 1000 seconds.

According to the above results, the FV codes with coarse and fine mesh are comparable.
With the appropriate local mesh refinement of unstructured quadrilateral mesh, our FV
codes may not need to use very fine mesh for providing the accurated solutions.
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5.3. COMMEMI2D-4 model

For the last model, the COMMEMI2D-4 model was proposed by Zhdanov et al.[23] for
comparison of modeling methods for electromagnetic modeling. The resistivity model is
illustrated in Figure 11 (left). Here, the size of domain is 200 km × 200 km. To solve
2-D MT modeling using FV method, the model is meshed into 18, 990 nodes and 18, 910
volumes. The smallest element’s size is set as 80 m. The close-up of some mesh near
earth’s surface and shallow depth with local mesh refinement are shown in Figure 11
(right).

Figure 11. The resistivity structure of COMMEMI2D-4 model (right).
The 23 sites are marked as red triangles.

The apparent resistivity of 23 sites, where located in range −30 km to 30 km are
computed at periods T = 1 and 100 s. At period T = 1 s, the obtained apparent
resistivity is shown in Figure 12 and those at T = 100 s are shown in Figure 13.

Figure 12. Apparent resistivity at period T = 1 second for TE-mode
(left) and TM-mode (right).

Our numerical results quite agree and comparable with those of COMMEMI2D-4
projects and FE codes [17]. The errors of apparent resistivity for TE-mode are less
than those of TM-mode. These comparisons confirm the validity and reliability of our
FV codes. Since the processing to construct the coefficient matrix obtaining by the FV
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Figure 13. Apparent resistivity at period T = 100 seconds for TE-mode
(left) and TM-mode (right).

method has more operations, our FV codes therefore take a longer time than FE codes
about 40%.

6. Conclusions

This paper developed the FV method with unstructured quadrilateral mesh to solve
2-D MT problem. Our FV scheme provides a good accuracy of MT responses when it is
tested on the half-space model. Furthermore, our FV codes give a better accuracy when
compared to that of the FE method with the same mesh for all range of tested periods.
It is indicated that the FV method do not use more density of volume to provide a good
accuracy, but it requires only an appropriate local refinement mesh. For the reliability
of codes, the obtained responses and those calculated by the COMMEMI projects [23]
are comparable for two modes. These show that our FV codes are accurate and reliable.
However, the efficiency our FV codes, which is considered in term of CPU time, is slower
than that of the FE method with the same mesh because the processes to construct the
coefficient matrix is more complicated. With these experiments, our FV codes may be
an interesting numerical method to use as a forward solver for MT inversion algorithms
in future.
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