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Abstract Analysis of artillery craters is an indispensable tool due to its importance in military in-

vestigation and other precautionary purposes. It is used to verify suspected locations of hostile fire,

detect the presence of enemy ammunition as well as tracing the direction from which weapons are fired.

Traditionally, crater analysis is done manually. Not only that the manual process consumes time, but

also, they are prone to errors and sometimes, result in loss of crater information. Hence, the need for

automation. Recently, deep neural networks have recorded great breakthroughs and achieved promising

results in different applications. In this paper, we propose the use of deep convolution neural networks

(DCNNs) for the automatic classification of artillery craters. Specifically, due to the small size of training

data, transfer learning is employed. We used satellite images to fine tune five pretrained DCNN models,

VGG16, VGG19, ResNet50, MobileNet and EfficientNetB0. Interestingly, all these pretrained models

achieved impressive classification accuracy in classifying craters from other environmental potholes. Our

proposed approach is automatic, and can assist military and other human right investigation in automatic

crater analysis instead of the manual ways.
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1. Introduction

Artillery craters are marks left on the ground after explosion of heavy artillery projec-
tiles. These craters play a vital role for investigating suspected locations of hostile fire,
identifying the presence of other ammunition and tracing their trajectories to know the
directions from which they are fired. Depending on the artilleries, craters are of different
types including Low-Angle Fuze-Quick Craters (LAFCs), Low-Angle Fuze-Delay Craters,
Mortar Craters, among others. LAFCs leave some distinctive arrow-head shape and are
characterized by their movement in low angle and their quick explosion immediately they
touch the ground [1].

Nowadays, a lot of attacks and bombardments occur in different places of the world,
and sometimes, one challenging task is the ability to figure out the perpetrators behind
the attacks. With crater analysis, it is possible to study and analyse the shapes left
on the ground by the exploded projectiles and eventually, the direction from which the
weapons are fired can be traced. To achieve this, there is need to firstly classify the craters
accurately and discriminate them from other confusing environmental potholes.

One of the advantages of crater analysis is its applicability in military operation to
investigate environments and safeguard themselves from enemy attacks in a battle field.
Most importantly, with the distinctive arrow-head shape of LAFCs, investigation team
can trace the direction of an unknown attack. Traditionally, there are two methods
involved in identifying and classifying craters as well as tracing the weapons direction.
The first method is the fuze furrow and center of crater method, and the second one is the
side spray method [1]. Both of these methods involve using compass and stakes manually.
Although the manual methods have been helpful, they are prone to errors and consume
a lot of time. Moreover, manual crater identification lead to loss of crater information
because craters exposed to weather and personnel erode overtime and blend into the earth
surface [1].

Our motivation in this work is that, the distinctive features and shapes of the LAFCs
make it possible to analyse them and figure out the direction from where artillery weapon
emerged, however, the initial step to achieve this is to firstly classify the craters and
discriminate them with other confusing environmental objects. The manual methods used
are prone to errors, consume time and lead to loss of crater information. Therefore, there is
need for better alternatives. With the recent advancements and the great breakthroughs in
the field of computer vision, particularly, the success of DCNNs in these years, we propose
the use of off-the-shelf pretrained models to automate the classification of LAFCs. The
contributions of this work include the following:

• The use of machine learning training procedures to achieve excellent results in
LAFCs analysis.
• Performance of five state of-the-art DCNNs is compared and evaluated on
LAFCs dataset.
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2. Related Work

As mentioned earlier, craters are of different types and due to the importance of their
analysis, a lot of works have been proposed to classify and detect different types of craters
for different purposes. Wetzler et al [2] used planetary images to detect small impact
craters using machine learning techniques. In their work, they employ different super-
vised learning algorithms such as support vector machine, continuously-scalable template
matching (CSTM) algorithms and some ensemble methods (Bagging and Adaboost) to
detect craters from groundtruth images. Their results were evaluated on a set of Viking
orbiter images of Mars and 60% accuracy was achieved using SVM with image patches.
Although this result is better compare to other methods, but it is just above chance.

Ding et al. [3] used boosting and transfer learning and presented an integrated au-
todetection approach of subkilometer craters. Their approach consist of three steps, first,
identifying crater candidate using the concept of mathematical morphology. This is fol-
lowed by extracting and selecting image features, then classifying the crater candidates
with ensemble learning algorithms. The final step integrate transfer learning into boost-
ing to enhance detection performance. They achieved more than 85% F1-score which is
a significant improvement in comparison with other algorithms.

Currently, researchers have been employing the advanced techniques of DCNNs in
classification and detection tasks to achieve better accuracy. Christoff et al. [4] proposed
a novel approach for crater morphological classification based on 3D triangulated mesh
of Mars sample. They used curvature analysis and local quantization method together
with convolutional neural networks to classify impact craters into valid, secondary and de-
graded crater categories. With this approach, they achieved 88.3% accuracy in classifying
the craters into the stated three catergories.

Emami et al. [5] proposed an extension of their work in [6] on crater classification
and evaluated the prformance of deep neural networks in lunar crater detection. Specif-
ically, they compare the performance of three pretrained models, VGG16, GoogleNet
and Resnet models for the classification tasks. The classification accuaracy achieved by
their approach demonstrate the strong capacity of DCNNs in classifying craters and non-
craters. Although a classification accuracy of about 99% is achieved, the approach is
specifically for lunar craters.

Recently, Aji et al. [7] used transfer learning to classify LAFCs where three pretrained
models are used for feature extraction, and then, the extracted features are fed into a
support vector machine for classification. It is clear from the literature that most of the
studies focus specifically on the craters from celestial bodies. Our aim in this work is to use
DCNNs, specifically, to employ the idea of transfer learning to fine tune diffrent pretrained
models for LAFCs classification due to their interesting shape and the usefulness of their
features in studying the direction of unknown attacks.

Deep neural networks have gained popularity in recent years due to their exceptional
performance in image classification and object recognition, and they have contributed
significantly in object detection, speech recognition [8–11] and medical imaging [12, 13].
In neural networks, an input image is passed from the input layer to some hidden layers
before reaching the output layer for the classification results [14]. However, unlike the
traditional neural networks, CNNs varies slightly as different inputs share weights instead
of having single weight [15]. Therefore, in CNNs, hierarchical layers are used to identify
low level to high level features which make them capable of learning complex abstractions
used in making intelligent decisions. With all these, DCNNs depends largely on huge
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amount of data to be able to train and perform well. When there is no enough dataset
to train DCNNs, data augmentation and transfer learning are used. Data augmentation
is a method used to increase the diversity of the dataset by producing more training data
from the existing dataset. Transfer learning involve using knowledge learned from a task
for which there is a huge available labelled training data into a settings in which the
labelled dataset is limited. To conduct transfer learning, two strategies can be employed.

• Use pretrained network for feature extraction and feed the extracted features
to a machine leaning classifier
• Fine-tuning, that is retraining few layers of a pretrained network using the
data under question.

Using pretrained networks have proved to be an effective approach in image classi-
fication and other deep learning applications. Researchers use models trained on some
tasks having large amount of labelled data (usually the popular ImageNet dataset [16])
and transfer the learned features to other different tasks especially when there is limited
amount of labelled data. Transfer learning solves the problem of data limitation and does
not require large computation power because weights of pretrained models are used, so,
only few last dense layers are trained. Moreover, despite training on small amount of
data, transfer learned model seems to train at high speed. Usually, to perform transfer
learning, models trained on the well-known ImageNet dataset (ILSVRC) [16] are used as
base models. ImageNet is a large dataset of anotated images developed specifically for
computer vision consisting of more than 14 million images with more than 21 thousand
classes. Researchers used subsets of the Imagenet dataset for the annual ILSVRC com-
petition using around 1 million images with 1000 categories. Some of the most popular
models trained on Imagenet includes AlexNet [17], VGG16 and VGG19 [18], ResNet [9],
MobileNet [19] and EfficientNets [20] among others.

In this paper, due to relative small size of the dataset and the fact that fine tuning
involves retraining just few layers of a pretrained model, transfer learning trains at a high
speed, thus, we propose using transfer learning-based approach to classify LAFCs using
satellite images. This fully automated approach uses five pretrained models (VGG16,
VGG19, ResNet50, MobileNet and EfficientNet-B0) as the base models, and after fine
tuning these pretrained models, their performance on our crater dataset is also compared.
Most importantly, this work is the first attempt to classify these special types of craters
with end-to-end structure on satellite images without using any hand-crafted feature
extraction.

3. Materials and Methods

In this section, the description of the pretrained models leveraged during training and
details about the dataset used is given. Instead of training from scratch, these models
were already trained to solve similar classification task. They are trained on the ImageNet
dataset having more than 1 million labelled images with 1000 classes, and are also the
state of-the-art networks used in computer vision to achieve different goals. Below, we
give a brief description of the pretrained models fine tuned in this work.

3.1. Visual Geometry Group Network (VGGNet)

The VGGNet [18] was developed by VGG researchers at the university of Oxford. This
model scored first in image localisation task and second in image classification task at
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the ILSVRC challenge in 2014. The architecture was designed by checking the effect of
network depth on its performance. VGGNet-16 consist of 13 convolutional layers each
equipped with filters of size 3 x 3, and 3 fully-connected layers. One of the advantage
of VGGNet is that the use of smaller sized filters in the convolutional layer resulted in
effective field increment and parameter reduction in the network. A more deeper version
of the VGG16 is the VGG19 which has 16 convolutional layers and 3 fully-connected
layers.

Figure 1. VGGNet Architecture
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3.2. Residual Network (ResNet)

One major problem in training deeper networks is the vanishing gradient and degra-
dation [21, 22]. As neural networks are trained through back propagation with gradient
descent, when there are many layers, repeated multiplication make the gradient to be-
come smaller and smaller until it disappears which results in performance saturation and
degradation with each additional layer. ResNet architecture [23] developed by Microsoft
research team in 2015 came with a solution to this problem. This architecture uses a
residual networks that are easier to optimize, making a shortcut connection by skipping
one or more convolution layers, taking the input of the previous layers and adding it to
the result of the next skipped layers generating input for the remaining layers [9]. ResNet
architectures gain more better accuracy by increasing the depth, thus producing better
results compare to other shallower networks. ResNet50 is 50 layers deep and other ResNet
variants have even more deeper layers such as 101 and 152.

Figure 2. A Building Block of the ResNet Architecture

3.3. MobileNets

The MobileNets are developed by Google researchers [19] based on a streamlined ar-
chitecture that uses the idea of depth wise separable convolutions in order to build a light
weight DCNN. This light weight network provide an efficient models that can be used
for mobile and other embedded vision applications. The depth wise separable convolu-
tion filters in MobileNets consist of depth wise convolution filters which perform a single
convolution on each of the input channel, and a point wise convolution filters which com-
bine the output of the depth wise convolution filters linearly with a 1 × 1 convolutions.
Two parameters namely, a width multiplier and a resolution multiplier are introduced
in the MobileNet to efficiently trade-off between latency and accuracy. The width and
resolution parameters are responsible for controlling the input width of a layer and the
resolution of the input image respectively. The depth wise separable convolution step and
the architecture of the MobileNet are shown in Figures 3 and 4 respectively.
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Figure 3. Depth wise separable convolution step

Figure 4. The MobileNet Architecture

3.4. EfficientNets

Since the introduction of ResNets, scaling up DCNNs proved to result in better accu-
racy. In ResNets [9], using the idea of residual blocks, the authors showed the possibility
of going deeper and deeper by scaling the depth of the network. However, this process
of scaling in ResNet was focusing only on the depth. Zagoruyko and Komodakis [24]
proposed scaling convolution neural networks using the width. It is observed that net-
work accuracy improves by increasing the depth, but every fraction of an increase lead to
doubling the number of layers. This makes the training of deeper networks to have a di-
minishing feature reuse problem, which slow their training [24]. As a results, the authors
in [24] proposed scaling up the ResNet model by increasing the width and reducing the
depth. These types of scaling indicated that focus is given to only one factor. Tan and
Le [20] observed that balancing the network depth, width and resolution can lead to bet-
ter performance. Hence, they proposed a new scaling method which uniformly scales all
the dimensions using a compound coefficient. Based on this, they design a new network
using neural architecture search and scaled it up which give rise to the family of the Ef-
ficientNets (B0-B7). The baseline architecture of this family is the EfficientNetB0 which
is a mobile size architecture that uses inverted residual blocks (MBConv) introduced in
MobileNetV2 [25]. These blocks also use squeeze and excitation block along with swish
activation function.
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Figure 5. EfficientNetB0 Network

3.5. Data Collection

The dataset consist of satellite images collected via google earth from the territory
of Ukrain and its border with Russia between July and September, 2014. The positive
(craters) and negative (non-craters) samples are 2,405 each, making the total amount of
the dataset to be 4,810. The non-craters are also satellite images consisting of objects such
as potholes, decayed grasses and stumps that can be confused as craters easily by human
observer. Samples of craters and non-craters are given in Figure 6 and 7 respectively.

Figure 6. Crater samples from the dataset

Figure 7. Non-crater samples from the dataset
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3.6. Data Augmentation

Due to the limited amount of crater dataset, data augmentation was utilised, thereby
artificially increasing the dataset. Augmentation was leveraged in order to decrease over
fitting and hence increase the models ability to generalise. Data augmentation is an
essential deep learning technique that proved to reduce over fitting by increasing the
diversity of the dataset. In our experiment, data augmentation techniques implemented
include but not limited to random horizontal and vertical flipping, zooming, and rotations
(through -10 to 10 degrees).

4. Experiments and Results

In this section, experiments and results obtained during evaluation are presented. It
is worth mentioning that the experiments are implemented using Keras application pro-
gramming interface on Google Colaboratory utilizing 12 GB NVIDIA Tesla K80 GPU.
As mentioned earlier, Our dataset consists of 4,810 satellite images of craters and non-
craters. This dataset is randomly split into 80% for training and the remaining 20% is
used for testing.

Since our dataset is small in size, training a deep neural network from scratch will
likely lead to overfitting. Thus, transfer learning was employed. Five sets of experiments
are conducted via utilizing the weights of five pretrained models, the VGG16, VGG19,
ResNet50, MobileNet and EfficientNetB0. As an initial step, the last fully connected
layer of each of these models was discarded, then two dense layers separated by a ReLu
activation function were appended to the networks. Afterwards, softmax activation func-
tion was used to output the classification predictions. During training, only these custom
layers are trained. Hence parameters of subsequent layers are frozen, thus they are not
updated using gradient descent. The optimization algorithm of choice was Adam, due to
its proven efficiency. Table 1 shows the summary of the results obtained as well as the
average time taken after fine tuning each of the pretrained models. Each of the models
is trained for 20 epochs with batch size of 64.

Table 1. Accuracy and Average Time Taken by the Fine Tuned Models

Fine Tuned Models Accuracy(%) Average Time(secs)

VGG16 99.79 32.25
VGG19 99.48 40.25
MobileNet 98.13 7.00
ResNet50 100 54.9
EfficentNetB0 100 6.10

From Table 1, it can be observed that all the fine tuned models achieved impressive
classification accuracy in discriminating craters from the non-crater samples in an aver-
age of some seconds. ResNet50 and EfficientNetB0 achieved excellent results, recording
100% classification accuracy as opposed to the other three models with lesser accuracy.
Although VGG19 takes longer training time than its variant as it is deeper, its accuracy
is not as that of the VGG16. This maybe as a result of the small size of our training
data. MobileNet has advantage of training time, however, not as accurate as the rest of
the models. This is not surprising as one of the advantages of the network is to trade
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off between latency and accuracy. Thus, despite being a very light model with fewer
parameters, it trains at lesser time and the accuracy is just about 1% less compare to
the VGG networks which have much more millions of parameters. In all, EfficientNetB0
happened to perform better with least training time and excellent classification accuracy
than the rest of the models which may be due to the scaling method employed in the
network which made it not only lighter but also efficient. In Figure 8 below, the graphical
results of the models showing both accuracy and average time is presented.

Figure 8. Models Accuracy and Average Time Taken

In order to visualize and see how all the fine tuned pretrained models did in making
prediction of craters and non-craters on the validation data, we plot confusion matrices as
shown in Figure 9, the confusion matrices show the respective accuracy of each of the five
fine tuned models in predicting craters and non-craters using the 20% validation data.
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Figure 9. Confusion Matrices showing the Accuracy of each of the fine
tuned models on Validation Data: a) VGG16 confusion matrix b) VGG19
confusion matrix c) MobileNet confusion matrix d) ResNet50 confusion
matrix e) EfficientNetB0 confusion matrix

From the above plots, the blue cells in the diagonal show the number of accurately
predicted validation data. While the other white cells represent the incorrectly classified
samples. In total, our validation data consists 962 craters and non-craters, and from
the confusion matrix in Figure 9 a), it is clearly observed that with VGG16, the model
predicted 960 craters and non-craters accurately. Only two samples are incorrectly pre-
dicted. In b), VGG19 predicted 957 correctly and reported 5 misclassifications. Figure 4
c) shows the prediction by MobileNet which has slighly more misclassifications compare
to the rest of the models. Finally, in Figure 4 d) and e), excellent prediction is obtained
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by ResNet50 and EfficientNetB0. Using these two as base models, all the 962 validation
samples are correctly classified into their respective classes. Hence, for better accuracy,
both of these networks can be utilized, however, the EfficientNetB0 has the advantage of
fast training than the ResNet50.

In addition, precision, recall and F1-score are also calculated from the confusion matri-
ces in order to further evaluate the performance of our approach. Precision simply refers
to the proportion of true positives (craters predicted as craters) in all the samples that
have been predicted to be craters. On the other hand, recall also known as sensitivity is
the proportion of the identified positives (craters) from the samples that are positively
craters. F1 Score calculates the weighted average of Precision and Recall. The computed
metrics are shown in table 2 below.

Table 2. Precision, Recall and F1-Score

CNN Models Precision (%) Recall (%) F1-Score (%)

VGG16 99.78 99.78 99.78
VGG19 99.13 99.78 99.45

MobileNet 98.24 99.78 99.45
ResNet50 100 100 100

EfficientNetB0 100 100 100

In general, the proposed approach of using state of the art DCNNs achieved impressive
accuracy in classifying craters from other environmental potholes despite it being a chal-
lenging problem to a human observer. All the fine tuned models performed very well on
our crater dataset. However, the fine-tuned ResNet50 and EfficientNetB0 slightly outper-
formed the other three. Also, high precision, recall and F1-score are obtained from each
of the fine tuned models. The results obtained in this work have shown that the man-
ual crater classification can be automated using DCNNs and with the proposed transfer
learning approach, the models are trained very fast and high accuracy is achieved. Thus,
the approach can serve as an alternative to the manual crater analysis for faster and
better accuracy.

5. Conclusions

In this paper, we employed the use of different pretrained deep learning models for
the automation of artillery crater classification. Our proposed approach have achieved
promising results in classifying artillery craters from other environmental potholes. Crater
classification as the first step to computation of trajectories for tracing the direction of an
unknown attack, we foresee this as an alternative to the error-prone and tedious manual
crater classification methods. We are optimistic that this work will play a vital role
in human right and other military investigations. For future research, our plan is on
crater detection with eventual plan to compute the crater trajectory in order to trace the
direction of unknown artillery projectiles attacks.
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