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Abstract A Mathematical analysis of linear and nonlinear models for monitoring diabetic populations

with minor and major complications are considered in this work. The equilibrium point of the linear

system is shown to be globally asymptotically stable (GAS) using direct Lyapunov method. For the

nonlinear model, three positive equilibrium points were obtained and analyzed and only one of the

equilibrium points is globally asymptotically stable (GAS), shown using the direct Lyapunov method.

Some numerical simulations are carried out to demonstrate the analytical results. It is found that the

prevalence/incidence of diabetes is on the rise. Our results are effective in monitoring diabetic populations

with minor and major complications and the mathematical methods used in the analysis can be applied

in different work. The models can be used to monitor global diabetic populations over time.

MSC: 37N30; 34A08; 54H25

Keywords: Diabetes; Model; Complication; Global stability

Submission date: 27.04.2021 / Acceptance date: 23.07.2021

*Corresponding author. Published by The Mathematical Association of Thailand.



Mathematical Models for Monitoring Diabetic Population ... 1005

1. Introduction

Diabetes is a disorder of metabolism caused by total (or relative) absence of insulin
which manifests clinically as an elevated blood glucose. The disorder is usually due to
a combination of hereditary and environmental causes [40], resulting in abnormally high
blood sugar levels known as hyperglycemia. No one is certain as to what starts the
processes that cause diabetes [32]. But scientists believed that genes and environmental
factors interacts to cause diabetes in most cases [32].
The prevalence of the disease is steadily increasing everywhere, most markedly in the
world’s middle-income countries. Unfortunately, effective policies to create supportive
environment for diabetic patients are not obtainable in most society. Pursuing such poli-
cies is important. This is because when diabetes is uncontrolled, it has a dire consequences
for health and well-being of the society [13].
Initially, diabetes was considered as a disease with less harm to the society. But in the last
few years there has been an alarming increase in the number of people diagnosed with the
disease. Report released by World Health Organization (WHO) in 2003 [37] showed that
194 million people were diabetic globally. This represents a global prevalence exceeding
three percent of the world’s population. The recent report [38] put the estimated number
of people with diabetes at 422 million (representing number of diabetic patients as of
2014). Comparing with 108 million and 194 million in 1980 and 2003 respectively, one
can see that the prevalence of the disease has multiplied four times from 1980. Out of this
number 1 person die every 6 seconds, totaling approximately 5.3 million deaths annually
[41]. The ten countries estimated to have the highest number of diabetes in 2000 and
2030 are listed in Figure 1 below as presented in [39].

Figure 1. Top ten countries to have highest number of diabetes in 2000
and 2030 [39]

Copyright c⃝ 2021 by TJM. All rights reserved.
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Generally, two forms of diabetes are considered: type 1 diabetes, also known as Insulin
Dependence Diabetes Mellitus (IDDM), typically occurs in children and young adults and
it represents (10-15) % of the diabetic population, and type 2 diabetes formally known as
Non Insulin Dependence Diabetes Mellitus (NIDDM), represents the major part ( 85-90
) % [19]. However, there is third type called gestational diabetes which affects pregnant
women and it goes away the moment pregnancy is over.
Complications of diabetes are broadly classified into two; minor (acute) and major (chronic)
complications [1]. Minor complications of the disease are very serious and have strong
health implication. They are usually dangerous complications and are always medical
emergency. They include; hyperglycemia hyperosmolar state, diabetic coma, respiratory
infections and periodontal disease. On the other hand, major complications are those
complications of disease that continues for a long time and are not easily cured.
From the above statements, it is clear that diabetes aid in developing different kind of
diseases. Thus, monitoring the size of the diabetic population is important. Different
strategies can be adopted provided they yield the desired results. Our interest is to show
that investment in primary health care is necessary and to convince policy makers that
bold decisions must be taken for a sustainable development which ensures better quality
of life and well-being for the present and future generations of human [13].

2. Model Formulation

Suppose that D = D(t),C1 = C1(t) and C2 = C2(t) (t > 0) represents the numbers
of diabetic patients without complications, with minor complications and with major
complications respectively, and let N = N(t)=D(t)+C1(t)+C2(t) denote the size of the
population of diabetic patients at time t. Let I=I(t) denote the incidence of diabetes.

 D     C1 

    C2 

I 

µD δ1C1 µC

υC2 

δ2C2 µC2 

ηC1 

λ1D 

γ1C1 

λ2D 

γ2C2 

Figure 2. Schematic representation of the model

A person may develop the disease without complications and develop complications with
time or die naturally. A diabetic patient with minor complications may die naturally, die
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as a result of minor complications, develop major complications or have his/her complica-
tions cured. A diabetic patient with major complications may die naturally, as a result of
the complications, have his/her blood normalized through some control measures and be-
come diabetic patient without complications. On the basis of this, we have the following
dynamics; the diagram above shows I=I(t) cases that are diagnosed in a time interval of
length t and are assumed to have no complications upon diagnosis. In this same time in-
terval, the number of diabetic patients without complications D=D(t) is seen to increase
by the amount γ1C1 (those who recovered from minor complications) and γ2C2 (patients
who recovered from major complications), and to decrease by µD (patients without com-
plications who die naturally),λ1D (patients who develop minor complications) and λ2D
(patients who develop major complications). During this same time interval, the number
of diabetic patients with minor complications, C1=C1(t) is increased by λ1D (patients
who develop minor complications) and decrease by µC1 (patients with minor complica-
tions who die naturally),δ1C1 (patients who die as a result of the minor complications)
and ηC1 (patients with minor complications who develop major complications). On the
other hand, the number of diabetic patients with major complications increases by λ2D
(patients who develop major complications) and ηC1 (patients with minor complications
who develop major complications) and decreases by µC2, δ2C2, νC2, and γ2C2; patients
with major complications who die naturally, patients who die as a result of major com-
plications, patients who are severely disabled and are removed and patients who achieve
glucose regulation respectively.
These rates of change are formalized by the ordinary differential equations:

dD

dt
= −(λ1 + λ2 + µ)D + γ1C1 + γ2C2 + I,

dC1

dt
= λ1D − (δ1 + η + γ1 + µ)C1,

dC2

dt
= λ2D + ηC1 − (δ2 + γ2 + µ+ ν)C2.

And since N=D+C1+C2, the initial value problems (IVP) in term of C1, C2 and N are

dC1

dt
= −(ξ + λ1)C1 − λ1C2 + λ1N,

dC2

dt
= (η + λ1)C1 − (θ + λ2)C2 + λ2N,

dN

dt
= −δ1C1 − ΛC2 − µN + I,

(2.1)

C1(0)=C10, C2(0) = C20, N(0) = N0, ξ = δ1 + γ1 + η + µ, θ=δ2 + γ2 + µ+ ν, Λ=δ2 + ν,
and C10, C20, N0 are the initial values of C1, C2 and N respectively. The models are
extensions of the models of diabetes considered in [10, 13] by subdividing the compartment
for diabetic population with complications into two based on the classification of diabetic
complications mentioned in [1].

3. Basic qualitative properties of the model

Since the model (2.1) describes human population it is necessary to show that all the
state variables C1, C2, N are nonnegative for all t ≥ 0. Solution with positive initial



1008 Thai J. Math. Vol. 19 (2021) /G. U. Modu et al.

Table 1. Description of Variables for the Model (2.1)

Variable Description

D(t) : number of diabetic patients without complications,
C1(t) : number of diabetic patients with minor complications,
C2(t) : number of diabetic patients with major complications,
N(t) : total population of diabetic patients,
t : time as a continuous variable.

Table 2. Parameters for the Model (2.1)

Parameter Description

µ : natural death,
λ1 : probability of developing minor complications,
λ2 : probability of developing major complications,
η : rate of developing major complications from

minor complications,
γ1 : rate of recovery from minor complications,
γ2 : rate of recovery from major complications,
δ1 : death induced by minor complications,
δ2 : death induced by major complications,
ν : rate of which diabetic patient with major

complications become severely disabled,
I : incidence of diabetes.

data remains positive for all t ≥ 0 and are bounded. Based on biological consideration
therefore, the model (2.1) will be studied in the region

Ω =

{
(C1, C2, N) ∈ ℜ3

+ : C1 ≥ 0, C2 ≥ 0, N ≤ I

µ

}
.

3.1. Positivity and boundedness of solutions

Lemma 3.1. The region Ω is positively-invariant for the model (2.1) with non-negative
initial conditions in R3

+.

Proof. The system (2.1) is Lipschitz continuous in Ω, from the standard Theorem in [24],
there exists a unique solution to (2.1). We use the method of contradiction as in [6, 26]
to show that Ω is positively-invariant.
Under the initial conditions, assume that there exists a first time t1 such that

C1(t1) = 0, dC1(t1)
dt < 0, C2(t1) > 0, N(t1) > 0 for 0 < t < t1,

or there exists a t2 such that
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C2(t2) = 0, dC2(t2)
dt < 0, C1(t2) > 0, N(t2) > 0 for 0 < t < t2.

In the first case (t1):
dC1(t1)

dt
= −λ1C1 + λ1N,

= λ1(N − C1),

> 0,

which is a contradiction. Meaning C1(t) > 0.

In the second case (t2):
dC2(t2)

dt
= (η − λ2)C1 + λ2N,

= λ2N + ηC1 − λ2C1,

> 0,

which is a contradiction. Meaning C2(t) > 0.
Thus, in any case C1, C2 remain positive. Also, since N(t) ≥ C1(t) + C2(t) and

dN

dt
= −δ1C1 − ηC2 − µN + I,

≤ I − µN,
⇒ dN

dt
+ µN ≤ I. (3.1)

That is to say dN
dt ≤ 0 if N ≥ I

µ . Thus, N ≤ I
µ (1 − e−µt) + N(0)e−µt. In particular,

N ≤ I
µ . Thus, the region Ω is positively-invariant. Further, if N(0) > I

µ then either the

solution enters Ω in finite time, or N → I
µ asymptotically. Hence the region Ω attracts

all solutions in R3
+.

4. Analysis of the models

The model is considered in two cases: linear and nonlinear.

4.1. Analysis of the linear model

In the linear model (2.1), the probabilities of developing minor and major complica-
tions, λ1 and λ2 will respectively be estimated to have constant values [13]:

λ1 =
C10

N0
, λ2 =

C20

N0
. (4.1)

4.2. Local stability analysis of the equilibrium point of the linear

model

The linear model (2.1) has unique equilibrium point given by:

El =

(
λ1θI

∗

λ1A1 + λ2A2 +A3
,

(λ1η + λ2ξ)I
∗

λ1A1 + λ2A2 +A3
,
[λ1(η + θ) + (λ2 + θ)ξ]I∗

λ1A1 + λ2A2 +A3

)
,

(4.2)

A1 = η(µ+ Λ) + θ(δ1 + µ), A2 = ξ(µ+ Λ), A3 = µθξ

Lemma 4.1. The unique equilibrium point El of the model (2.1) is locally asymptotically
stable (LAS).

Proof. The proof of Lemma 4.1 is given in Appendix A.1.
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4.3. Global Stability analysis of the equilibrium point in the linear

model

Having established that the equilibrium point in the linear case is locally asymptotically
stable, we prove the global stability of this equilibrium point. to do this we employ the use
of Lyapunov functional approach as in [7]. Let us introduce new variables u1 = C1 −C∗

1 ,
u2 = C2 − C∗

2 , u3 = N −N∗ and ϕ1 = I − I∗, ui = ui(t), i = 1, 2, 3 ϕ1 = ϕ1(t).
Note that

−(ξ + λ1)C
∗
1 − λ1C

∗
2 + λ1N

∗ = 0,

(η − λ2)C
∗
1 − (θ + λ2)C

∗
2 + λ2N

∗ = 0,

−δ1C
∗
1 − ΛC∗

2 − µN∗ + I∗ = 0.

With this change of variables, system (2.1) becomes

du1

dt
= −(ξ + λ1)u1 − λ1u2 + λu3,

du2

dt
= (η − λ2)u1 − (θ + λ2)u2 + λ2u3,

du3

dt
= −δ1u1 − Λu2 − µu3 + ϕ1,

(4.3)

Theorem 4.2. Suppose that (C∗
1 , C

∗
2 , N

∗) is below or above (C1, C2, N) along the solution
curves, the unique equilibrium point El is globally asymptotically stable in the region Ω if
the following inequalities hold: η < λ2 and Λ > (1 + λ2).

Proof. The proof of Theorem 4.2 is based on the proof given in [7] and is given in Appendix
A.2.

4.4. Analysis of the nonlinear model

In this case, we assumed that the probability of developing minor and major compli-
cations, λ1 and λ2 respectively to be [13]:

λ1 = α
C1

N
, λ2 = α

C2

N
, α ∈ (0, 1] .

Thus,by substituting λ1 = αC1

N and λ2 = αC2

N in the linear system (2.1), it becomes
nonlinear and is written thus:

dC1

dt
= (α− ξ)C1 − α

C1C2

N
− α

C2
1

N
,

dC2

dt
= ηC1 + (α− θ)C2 − α

C1C2

N
− α

C2
2

N
,

dN

dt
= −δC1 − ΛC2 − µN + I.

(4.4)

It should be noted that the feasibility region is the same as the one in the linear model,
that is Ω.
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4.5. Local stability analysis of the equilibrium points in the nonlin-

ear case

The nonlinear model (4.4) has three positive equilibrium points as follow:

EP1 = (C∗
1 , C

∗
2 , N

∗),

= (0, 0,
I∗

µ
),

EP2 = (C∗∗
1 , C∗∗

2 , N∗∗),

=

(
0,

w1I
∗

αµ+ w1Λ
,

αI∗

αµ+ w1Λ

)
,

EP3 = (C∗∗∗
1 , C∗∗∗

2 , N∗∗∗), =

(
w2w3I

∗

Φ
,
ηw2I

∗

Φ
,
α(η + w3)I

∗

Φ

)
,

w1 = α− θ, w2 = α− ξ, w3 = θ − ξ, Φ = w2(δ1w3 + Λη) + αµ(η + w3).
To analyze the stability of the fixed points, we linearize the nonlinear system by taking a
small perturbation about the equilibrium points.
The linearized version of the nonlinear system at the generic equilibrium point x = xf

therefore may consequently be written in the form: V ′ = JV, V (0) = V0, V = V (t), V =
(V1, V2, V3)

T , J = (αij)3×3, αij =
∂ui

∂xj
x=xf

x = (x1, x2, x3)
T , x1 = C1, x2 = C2, x3 = N, xf = (x1f , x2f , x3f )

T ,

x1f = C1f , x2f = C2f , x3f = Nf , i, j = 1, 2, 3,′ = d
dt .

Thus, the Jacobian matrix at (C1, C2, N) = (C1f , C2f , Nf ) is given by

J =


w2 − 2α

C1f

Nf
− α

C2f

Nf
−α

C1f

Nf
α

C2
1f

N2
f
+ α

C1fC2f

N2
f

η − α
C2f

Nf
w1 − 2α

C2f

Nf
− α

C1f

Nf
α

C2
2f

N2
f
+ α

C1fC2f

N2
f

−δ1 −Λ −µ

 (4.5)

4.6. local stability analysis of the equilibrium point EP1

By the way of the Jacobian matrix (4.5), the Jacobian matrix associated to the equi-
librium point EP1 of the system (4.4) is given as follows (J∗):

J∗ =

 w2 0 0
η w1 0

−δ1 −Λ −µ

 .

The characteristic polynomial associated to the Jacobian matrix at (4.5)EP1:

p1(χ) = χ3 − (w1 + w2 − µ)χ2 + [w1w2 − µ(w1 + w2)]χ+ µw1w2,

χ denote the eigenvalues of the Jacobian matrix J∗. Thus, the zeros of the polynomial
are:

χ1 = w1, χ2 = w2, χ3 = −µ,

and since for a equilibrium point to be locally asymptotically stable all the roots of
the characteristic polynomial must have negative real parts, the equilibrium point EP1
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is unstable since w1, w2 > 0. However, the equilibrium point EP1 is stable whenever
α < θ, ξ.

4.7. local stability analysis of the equilibrium point EP2

Here also, by the way of the Jacobian matrix (4.5) associated to the system (4.4), we
obtain the Jacobian matrix at the equilibrium point EP2 as follows (J∗∗):

J∗∗ =

 w3 0 0
η − w1 −w1 w2

1

−δ1 −Λ −µ

 .

The characteristic polynomial associated to EP2:

p2(χ) = χ3 − (w3 −w1 − µ)χ2 + [w1(w1Λ+ µ)−w3(µ+w1)]χ−w1w3(w1Λ+ µ),

and the roots of this polynomial are:

χ1 = w3, χ2 =
−(µ+ w1) +

√
∆

2
, χ3 =

−(µ+ w1)−
√
∆

2
,

∆ = (µ− w1)
2 − 4Λw2

1, and since w1 is positive, the fixed point EP2 is unstable.

4.8. local stability analysis of the fixed point EP3

Lemma 4.3. The equilibrium point EP3 of the nonlinear case (4.4) is locally asymptot-
ically stable (LAS)

Proof. The proof of Lemma 4.3 is given in Appendix A.3.

4.9. Global stability analysis of the equilibrium points EP3

The goal of this section is to establish sufficient condition on the global asymptotic
stability of the equilibrium point EP3 to the nonlinear system. We employ the use of
Lyapunov functional.

Theorem 4.4. Suppose that α = 1, the fixed point EP3 of the nonlinear system (4.4) is
globally asymptotically stable if the following inequalities are satisfied: δ1 > η,
τ1 − τ2 > 0, φ3 − φ4 > 0.

Proof. The proof of this Theorem 4.4 is given in Appendix A.4 by considering a quadratic
Lyapunov function.

5. Numerical Simulation

This section gives a demonstration of the analytical results in the previous sections.
The parameter values are given in table 3. These parameter values were obtained from the
source(s) indicated in each case. The global incidence of diabetes used in the simulations
is I = 17000000. This incidence, is the average of incidences for three years(2012-2014)[38]
[16]. It should also be noted that the death as a result of minor complications of diabetes
is slightly higher than that of major complications [38]. Parameter values that we were
not able to obtain in the diabetes literature were assumed in the simulations.

C1(0) = 500000, C2(0) = 600000, N(0) = 1500000 were used as initial conditions.
The probabilities of developing minor and major complications were estimated to be
λ1 = 0.33, λ2 = 0.40, (in the linear case) using their definitions given in 4.1, while θ, ξ
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and Λ were obtained to be 0.10729142, 0.09379427 and 0.05500572 respectively.

With these values of the parameters, the equilibrium points are obtained as follow:
Linear Case: (143270000, 191880000, 375880000)
Nonlinear Case:
EP1 = (0, 0, 1190000000),
EP2 = (0, 239410000, 268180000),
EP3 = (94140000, 209250000, 334800000) The profiles for C1(t), C2(t) and N(t) in both

Table 3. Parameter values used in the numerical simulations

Parameter Value Source

δ1 0.007508574 Estimated from [29]
δ2 0.005005716 Estimated from [29]
η 0.03 Assumed
γ1 0.042 Adopted from [13]
γ2 0.038 Adopted from [13]
µ 0.0142857 [26]
ν 0.05 Adopted from[13]

cases are shown in Figures 2(A) - 2(C) respectively. It can be seen from the figures that
the fixed point in both cases was reached by time t = 100years. It also shows that there
is an agreement between the analytical results and the numerical results.
A situation where there is no recovery from the complications of the disease ( that is
γ1 = 0, γ2 = 0) is also experimented (see Figures 3(A) - 3(C)). The equilibrium point in
this case are:
Linear case: (145530000, 194820000, 363230000)
Nonlinear case:
EP2 = (0, 241630000, 259620000), EP3 = (119120000, 204230000, 340970000).
Note the equilibrium point EP1 was not included because it does not contain the recovery
rates, so there will be no changes in that regard.
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(a) Profile of C1(t) (b) Profile of C2(t)

(c) Profile of N(t)

Figure 3. Profiles of C1(t), C2(t), N(t) for both linear and the nonlin-
ear cases
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(a) Profile of C1(t) when γ1 = γ2 = 0 (b) Profile of C2(t) when γ1 = γ2 = 0

(c) Profile of N(t) when γ1 = γ2 = 0

Figure 4. Profiles of C1(t), C2(t), N(t) for both linear and the nonlin-
ear cases
when γ1 = γ2 = 0
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6. Conclusions

This modified models (linear and the nonlinear) is an extension of Boutayeb et al model
considered in [13] and [10]. This extension was done by subdividing the compartment of
diabetic population with complications into those with minor complications and those
with major complications. The extended model shows no any sign of divergence as time
increases.

In the linear model, a unique equilibrium point was obtained and is found to be glob-
ally asymptotically stable unconditionally by the use of direct Lyapunov function. The
nonlinear has has three positive equilibrium points: EP1, EP2 and EP3. EP1 and EP2
were found to be unstable. EP3 is found to be globally asymptotically stable, which is
equivalent to the endemic equilibrium point in infectious diseases.

It is seen clearly that the absence of the complications of the disease in the population is
not guaranteed. However, the central work of the dissertation is to stress the importance
of controlling the incidence of the disease and its various complications. It is hitherto im-
portant that a better strategy must be put in place to curtail the menace of the disease.
The overall results obtained is that the models can monitor diabetic population globally
without any condition as to the choice of time of monitoring.

In conclusion, we see that our models have given us insight into the various complications
of diabetes. This gives a clear signal that health decision makers must invest heavily in
health sector so that social and economic costs of uncontrolled diabetes in our societies
will be minimal and productivity will be high. it has also given us the opportunity to
show different mathematical methods to deal with difficult system.

Acknowledgments

The third author was supported by the Petchra Pra Jom Klao Ph.D. Research Schol-
arship from the King Mongkuts University of Technology Thonburi (Grant No. 13/2561).
The authors are grateful to the handling editor and reviewers for their supportive com-
ments and suggestions, which have improved the manuscript’s quality. These works were
done while the third author visits Cankaya University, Ankara, Turkey.

Further study

Bifurcation analysis of the nonlinear model can be investigated for more insight into
the features or profiles of the model. Also, the effect of treatment of the complications of
the disease can be investigated.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of
this paper.



Mathematical Models for Monitoring Diabetic Population ... 1017

A. Appendix

A.1. Proof of Lemma 4.1

The characteristic polynomial associated to the system (2.1) is given by

∴ p(χ) = χ3 + (λ1 + λ2 +B1)χ
2 + (λ1B2 + λ2B3 +B4)χ+ λ1A1 + λ2A2 +A3,(A.1)

B1 = µ+ ξ + θ, B2 = δ1 + µ+ η + θ, B3 = µ+ Λ+ ξ, B4 = ξ(µ+ θ) + µθ,
For the system’s fixed point (4.2) to be stable, all the zeros of the characteristic equation
(eigenvalues) (A.1) must be negative. We apply Routh stability criterion to achieve that.
For convenience, we restate the criterion.

According to the Routh stability criterion, the necessary and sufficient conditions of
asymptotic stability are that all the sign of the first column of the Routh table (as below)
have the same sign. That is given the characteristic equation:

n∑
i=0

biχ
i = 0,

where bi, i = 0, 1, 2, ..., n (bi = 0, when n < i) are the coefficients of the characteristic
equation and forming the Routh table as follows:

χn bn bn−2 bn−4 ...
χn−1 bn−1 bn−3 bn−5 ...
. c1 c2 c3 ...
. d1 d2 d3 ...
. ... ... ... ...

c1 = bn−1bn−2−bnbn−3

bn−1
, c2 = bn−1bn−4−bnbn−5

bn−1
, ...,

d1 = c1bn−3−bn−1c2
c1

, d2 = c1bn−5−bn−1c3
c1

, ...,
if bn, bn−1, c1, d1 have the same sign, then the fixed point to the system is stable.

Thus, the Routh table for the system is as follows:

χ3 1 λ1B2 + λ2B3 +B4 0
χ2 λ1 + λ2 +B1 λ1A1 + λ2A2 +A3 0
χ1 c1 0 0
χ0 b0 0 0

A1 = η(µ+ Λ) + θ(δ1 + µ), A2 = ξ(µ+ Λ), A3 = µθξ
Since all the sign of the entries in the first column of the table are positive, then all the
roots (eigenvalues) of the characteristic equation (A.1) are negative.
Hence, the fixed point(4.2) of the system (2.1) is asymptotically stable.

A.2. Proof of Theorem 4.2

Consider the Lyapunov function

V (u) =
1

2
k(u1 + u2)

2 +
1

2
(u2

2 + u2
3), u = (u1, u2, u3), (A.2)

where k is a positive constant to be determined later in the course of calculations, with
Lyapunov derivative along the solution curves:
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V ′ = k(u1 + u2)(u
′
1 + u′

2) + u2u
′
2 + u3u

′
3,

′ =
d

dt
= k(u1 + u2)[−(ξ + λ1)u1 − λ1u2 + λu3 + (η − λ2)u1 − (θ + λ2)u2 + λ2u3]

+ u2[(η − λ2)u1 − (θ + λ2)u2 + λ2u3] + u3[−δ1u1 − Λu2 − µu3 + ϕ1],

= k(u1 + u2)[(η − ξ − λ1 − λ2)u1 − (θ + λ1 + λ2)u2 + (λ1 + λ2)u3]

+ (η − λ2)u1u2 − (θ + λ2)u
2
2 + λ2u2u3 − δ1u1u3 − Λu2u3 − µu2

3 + ϕ1u3,

= k(η − ξ − λ1 − λ2)u
2
1 − [k(θ + λ1 + λ2) + θ + λ2]u

2
2 − µu2

3 + [k(η − ξ − θ − 2λ1

− 2λ2) + η − λ2]u1u2 + [k(λ1 + λ2)− δ1]u1u3 + [k(λ1 + λ2) + λ2 − Λ]u2u3 + ϕ1u3,

= g1u
2
1 − g2u

2
2 − µu2

3 + g3u1u2 + g4u1u3 + g5u2u3 + ϕ1u3,

g1 = k(η − ξ − λ1 − λ2), g2 = k(θ + λ1 + λ2) + θ + λ2,
g3 = k(η − ξ − θ − 2λ1 − 2λ2) + η − λ2, g4 = [k(λ1 + λ2)− δ1],
g5 = k(λ1 + λ2) + λ2 − Λ
Now,

V ′ = g1u
2
1 − g2u

2
2 − µu2

3 + g3u1u2 + g4u1u3 + g5u2u3 + ϕ1u3,

≤ g1u
2
1 − g2u

2
2 − µu2

3 + g3u1u2 + g4u1u3 + g5u2u3 + u2u3,

= g1u
2
1 − g2u

2
2 − µu2

3 + g3u1u2 + [g4u1 + (g5 + 1)u2]u3.

Clearly g4 < g5 + 1.
Let g5 + 1 = 0, this implies that

k(λ1 + λ2) + λ2 − Λ + 1 = 0,

k(λ1 + λ2) = Λ− (1 + λ2),

⇒ k =
Λ− (1 + λ2)

(λ1 + λ2)
, provided Λ > 1 + λ2.

Substituting for k in g1, g2, g3, g4, we have

g1 =
Λ− (1 + λ2)

(λ1 + λ2)
(η − ξ − λ1 − λ2),

< 0,

g2 =
[Λ− (1 + λ2)](θ + λ1 + λ2)

(λ1 + λ2)
+ θ + λ2,

> 0,

g3 =
Λ− (1 + λ2)(η − ξ − θ − 2λ1 − 2λ2)

(λ1 + λ2)
+ η − λ2),

< 0, provided η < λ2,

g4 < 0, since g5 + 1 = 0.

Thus, we have

V ′ ≤ g1u
2
1 − g2u

2
2 − µu2

3 + g3u1u2 + [g4u1 + (g5 + 1)u2]u3,

= g1u
2
1 − g2u

2
2 − µu2

3 + g3u1u2 + g4u1u3.
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Since, at any time, t the equilibrium point (C∗
1 , C

∗
2 , N

∗) is either below or above (C1, C2, N)
along the solution curves, then: either C1 −C∗

1 > 0, C2 −C∗
2 > 0, N −N∗ > 0 at a time

or C1 − C∗
1 < 0, C2 − C∗

2 < 0, N −N∗ < 0. Whichever the case may be, u1u2 and u1u3

remain positive. And since g1 < 0, g2 > 0, µ > 0, g3 < 0, g4 < 0, therefore V ′ < 0.

Thus, V ′ = 0, if and only if u1 = u2 = u3 = 0.This indicates that the largest invari-
ant set in {(u1, u2, u3) ∈ Ω : V ′ = 0} is the origin. Therefore, by LaSalle’s invariance
principle[28], El is globally asymptotically stable.

A.3. Proof of Lemma 4.3

The equilibrium point EP3:

(C∗∗∗
1 , C∗∗∗

2 , N∗∗∗)T =

(
w2w3I

∗

Φ
,
ηw2I

∗

Φ
,
α(η + w3)I

∗

Φ

)T

Φ = w2(δ1w3 + Λη) + αµ(η + w3).
The Jacobian matrix associated to the equilibrium point EP3 is:

J∗∗∗ =

 −w2w3

η+w3
−w2w3

η+w3

w2
2w3

α(η+w3)
η(η−w1)
η+w3

−w2
3−η(w2+w3)

η+w3

ηw2
2

α(η+w3)

−δ1 −Λ −µ

 .

The characteristic polynomial associated to this equilibrium point is given by:

∴ P3(χ) = χ3 + (µ+ w2 + w3)χ
2 +

[
µ(w2 + w3) + w2w3 +

w2
2(δ1w3 + ηΛ)

α(η + w3)

]
χ

+

[
µw2w3 +

w2
2w3(δ1w3 + ηΛ)

α(η + w3)

]
,

Applying Routh stability criterion as in the previous appendix, again the Routh table
when n = 3 is as follows:

here, b3 = 1, b2 = µ+ w2 + w3, b1 = µ(w2 + w3) + w2w3 +
w2

2(δ1w3 + ηΛ)

α(η + w3)
,

b0 = µw2w3 +
w2

2w3(δ1w3 + ηΛ)

α(η + w3)

c1 =
b2b1 − b3b0

b2

=
(µ+ w2 + w3)

[
µ(w2 + w3) + w2w3 +

w2
2(δ1w3+ηΛ)
α(η+w3)

]
− (1)

[
µw2w3 +

w2
2w3(δ1w3+ηΛ)

α(η+w3)

]
µ+ w2 + w3

,

=
µ(µ+ w2 + w3)(w2 + w3) + w2

2w3 + w2w
2
3 +

w2
2(µ+w2)(δ1w3+ηΛ)

α(η+w3)

µ+ w2 + w3
,

> 0,

c2 = 0, d1 = b0, d2 = 0.
Therefore the Routh table for the system at this equilibrium point is as follows

χn 1 µ(w2 + w3) + w2w3 +
w2

2(δ1w3+ηΛ)
α(η+w3)

0

χn−1 µ+ w2 + w3 µw2w3 +
w2

2w3(δ1w3+ηΛ)
α(η+w3)

0

. c1 0 0

. b0 0 0
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It can be seen that all the elements in the first column of the Routh table are positive.
Hence, the equilibrium point EP3 is locally asymptotically stable.

This result shows that the disease establishes itself in a community within certain
period of time, but can be controlled at certain level if proper measures are put in place.

A.4. Proof of Theorem 4.4

Consider the Lyapunov function:

V =
1

2
(C1−C∗∗∗

1 +N−N∗∗∗)2+
k1
2
(C2−C∗∗∗

2 +N−N∗∗∗)2+
k2
2
(N−N∗∗∗)2, (A.3)

V = V (C1, C2, N), k1, k2 are positive constants to be determined later.
The derivative of V along the solution curves is:

V ′ = (C1 − C∗∗∗
1 +N −N∗∗∗)(C ′

1 +N ′) + k1(C2 − C∗∗∗
2 +N −N∗∗∗)(C ′

2 +N ′)

+ k2(N −N∗∗∗)N ′,

= (C1 − C∗∗∗
1 )(C ′

1 +N ′) + k1(C2 − C∗∗∗
2 )(C ′

2 +N ′) + (N −N∗∗∗)[C ′
1 +N ′

+ k1(C
′
2 +N ′) + k2N

′],

= (C ′
1 +N ′)C1 − (C ′

1 +N ′)C∗∗∗
1 + k1(C

′
2 +N ′)C2 − k1(C

′
2 +N ′)C∗

2 + [C ′
1 +N ′

+ k1(C
′
2 +N ′) + k2N

′]N − [C ′
1 +N ′ + k1(C

′
2 +N ′) + k2N

′]N∗∗∗,

= −θ1C
∗∗∗
1 − θ2C

∗∗∗
2 − θ3N

∗∗∗ + θ1C1 + θ2C2 + θ3N,

θ1 = (C ′
1 +N ′), θ2 = k1(C

′
2 +N ′), θ3 = C ′

1 +N ′ + k1(C
′
2 +N ′) + k2N

′,
This implies,

V ′ = −θ1C
∗∗∗
1 − θ2C

∗∗∗
2 − θ3N

∗∗∗ + θ1C1 + θ2C2 + θ3N,

= −(α− δ1 − ξ)C∗∗∗
1 C1 + ΛC∗∗∗

1 C2 + µC∗∗∗
1 N + α

(C1 + C2)C
∗∗∗
1 C1

N
− C∗∗∗

1 I

− k1(η − δ1)C
∗∗∗
2 C1 − k1(α− θ − Λ)C∗∗∗

2 C2 + k1µC
∗∗∗
2 N + k1α

(C1 + C2)C
∗∗∗
2 C2

N
− k1C

∗
2 I − [k1(η − δ) + (α− δ1 − ξ)− k2δ2]N

∗∗∗C1 − [k1(α− Λ− θ)− k2Λ− Λ]N∗∗∗C2

+ µ(k1 + k2 + 1)N∗∗∗N − (k1 +K2 + 1)N∗∗∗I + k1α
(C1 + C2)N

∗∗∗C2

N

+ α
(C1 + C2)N

∗∗∗C1

N
+ (α− δ1 − ξ)C2

1 − ΛC1C2 − µC1N − α
(C1 + C2)C

2
1

N
+ IC1

+ k1(η − δ1)C1C2 + k1(α− θ − Λ)C2
2 − k1µC2N − k1α

(C1 + C2)C
2
2

N
+ k1IC2

+ [k1(η − δ) + (α− δ1 − ξ)− k2δ2]C1N + [k1(α− Λ− θ)− k2Λ− Λ]C2N

− µ(k1 + k2 + 1)N2 + (k1 + k2 + 1)IN − k1α(C1 + C2)C2

− α(C1 + C2)C1,
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This implies,

V ′ = [−(α− δ1 − ξ)C∗∗∗
1 − k1(η − δ1)C

∗∗∗
2 − k1(η − δ1)N

∗∗∗ − (α− δ1 − ξ)N∗∗∗

+ k2ΛN
∗∗∗]C1 + [ΛC∗∗∗

1 − k1(α− Λ− θ)C∗∗∗
2 − k1(α− Λ− θ)N∗∗∗ + ΛN∗∗∗

+ k2ΛN
∗∗∗]C2 + µ[C∗∗∗

1 + C∗∗∗
2 + (k1 + k2 + 1)N∗∗∗]N − [C∗∗∗

1 + C∗∗∗
2

+ (k1 + k2 + 1)N∗∗∗]I + [k1(η − δ1)− Λ]C1C2 + [k1(η − δ1)

+ (α− δ1 − ξ − µ− k2δ1]C1N + [k1(α− Λ− θ)− k1µ− k2Λ− Λ]C2N

+ ((α− δ1 − ξ)C2
1 + k1(α− Λ− θ)C2

2 − µ(k1 + k2 + 1)N2 + (k1 + k2 + 1)IN −Q1 +Q2

− k1α(C1 + C2)C2 − α(C1 + C2)C1 + (C1 + k1C2)I,

(A.4)

Q1 = α
(C1+C2)C

2
1

N + k1α
(C1+C2)C

2
2

N

Q2 = k1α
(C1+C2)C

∗∗∗
1 C2

N + k1α
(C1+C2)N

∗∗∗C2

N + α
(C1+C2)C

∗∗∗
1 C1

N + α (C1+C2)N
∗∗∗C1

N ,
Using the fact that if

a, b > 0 : a =
p

q
, p < q, b, p, q ∈ N, then ab < b. (A.5)

We have:

Q2 = k1α
(C1 + C2)C

∗∗∗
1 C2

N
+ k1α

(C1 + C2)N
∗∗∗C2

N
+ α

(C1 + C2)C
∗∗∗
1 C1

N

+ α
(C1 + C2)N

∗∗∗C1

N
,

≤ k1αC
∗∗∗
2 C2 + k1αN

∗∗∗C2 + αC∗∗∗
1 C1 + αN∗∗∗C1,∴ Q2 ≤ k1αC

∗∗∗
2 C2 + k1αN

∗∗∗C2 + αC∗∗∗
1 C1 + αN∗∗∗C1 (A.6)

Also, the last three terms −k1α(C1 +C2)C2 −α(C1 +C2)C1 +(C1 + k1C2)I,in (A.4) can
be simplified thus;

−k1α(C1 + C2)C2 − α(C1 + C2)C1 + (C1 + k1C2)I = (k1C1 + C2)[I − α(C1 + C2)], (A.7)

Again, using the fact in (A.5), the term before −Q1 simplifies thus;

(k1 + k2 + 1)IN = k1IN + k2IN + IN,

≤ (k1 + k2 + 1)C1N,
∴ (k1 + k2 + 1)IN ≤ (k1 + k2 + 1)C1N, since I < C1, (A.8)

Using (A.6),(A.7) and (A.8) in (A.4) we have

V ′ = [−(α− δ1 − ξ)C∗∗∗
1 − k1(η − δ1)C

∗∗∗
2 − k1(η − δ1)N

∗∗∗ − (α− δ1 − ξ)N∗∗∗

+ k2ΛN
∗∗∗]C1 + [ΛC∗∗∗

1 − k1(α− Λ− θ)C∗∗∗
2 − k1(α− Λ− θ)N∗∗∗ + ΛN∗∗∗

+ k2ΛN
∗∗∗]C2 + µ[C∗∗∗

1 + C∗∗∗
2 + (k1 + k2 + 1)N∗∗∗]N − [C∗∗∗

1 + C∗∗∗
2

+ (k1 + k2 + 1)N∗∗∗]I + [k1(η − δ1)− Λ]C1C2 + [k1(η − δ1)

+ (α− δ1 − ξ − µ− k2δ1]C1N + [k1(α− Λ− θ)− k1µ− k2Λ− Λ]C2N

+ ((α− δ1 − ξ)C2
1 + k1(α− Λ− θ)C2

2 − µ(k1 + k2 + 1)N2 + (k1 + k2 + 1)IN

− Q1 +Q2 − k1α(C1 + C2)C2 − α(C1 + C2)C1 + (C1 + k1C2)I,
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≤ [−(α− δ1 − ξ)C∗∗∗
1 − k1(η − δ1)C

∗∗∗
2 − k1(η − δ1)N

∗∗∗ − (α− δ1 − ξ)N∗∗∗

+ k2ΛN
∗∗∗]C1 + [ΛC∗∗∗

1 − k1(α− Λ− θ)C∗∗∗
2 − k1(α− Λ− θ)N∗∗∗ + ΛN∗∗∗ + k2ΛN

∗∗∗]C2

+ µ[C∗∗∗
1 + C∗∗∗

2 + (k1 + k2 + 1)N∗∗∗]N − [C∗∗∗
1 + C∗∗∗

2 + (k1 + k2 + 1)N∗∗∗]I

+ [k1(η − δ1)− Λ]C1C2 + [k1(η − δ1) + (α− δ1 − ξ − µ− k2δ1]C1N

+ [k1(α− Λ− θ)− k1µ− k2Λ− Λ]C2N + ((α− δ1 − ξ)C2
1

+ k1(α− Λ− θ)C2
2 − µ(k1 + k2 + 1)N2 + (k1 + k2 + 1)C1N −Q1 + k1αC

∗∗∗
2 C2

+ k1αN
∗∗∗C2 + αC∗∗∗

1 C1 + αN∗∗∗C1 + (k1C1 + C2)[I − α(C1 + C2)],

Simplifying and collecting terms, we have
V ′

≤ [(δ1 + ξ)C∗∗∗
1 − k1(η − δ1)C

∗∗∗
2 − k1(η − δ1)N

∗∗∗ + (δ1 + ξ)N∗∗∗ + k2ΛN
∗∗∗]C1

+ [ΛC∗∗∗
1 + k1(Λ + θ)C∗∗∗

2 + k1(Λ + θ)N∗∗∗ + ΛN∗∗∗ + k2ΛN
∗∗∗]C2

+ µ[C∗∗∗
1 + C∗∗∗

2 + (k1 + k2 + 1)N∗∗∗]N − [C∗∗∗
1 + C∗∗∗

2 + (k1 + k2 + 1)N∗∗∗]I

+ [k1(η − δ1)− Λ]C1C2 + [k1(η − δ1) + (α− δ1 − ξ − µ− k2δ1]C1N

+ [k1(α− Λ− θ)− k1µ− k2Λ− Λ]C2N + ((α− δ1 − ξ)C2
1

+ k1(α− Λ− θ)C2
2 − µ(k1 + k2 + 1)N2 + (k1 + k2 + 1)C1N −Q1

+ (k1C1 + C2)[I − α(C1 + C2)],

= [k1(δ1 − η)(C∗∗∗
2 +N∗∗∗) + (δ1 + ξ)(C∗∗∗

1 +N∗∗∗) + k2ΛN
∗∗∗]C1

+ [k1(Λ + θ)(C∗∗∗
2 +N∗∗∗) + Λ(C∗∗∗

1 +N∗∗∗) + k2ΛN
∗∗∗]C2

+ [C∗∗∗
1 + C∗∗∗

2 + (k1 + k2 + 1)N∗∗∗](µN − I) + [k1(η − δ1)− Λ]C1C2

+ [k1 + k2 + 1 + k1(η − δ1) + α− δ1 − ξ − µ− k2δ1]C1N

+ [k1(α− Λ− µ− θ)− k2Λ− Λ]C2N + ((α− δ1 − ξ)C2
1 + k1(α− Λ− θ)C2

2

− µ(k1 + k2 + 1)N2 −Q1 + (k1C1 + C2)[I − α(C1 + C2)].

This implies,

V ′ ≤ α1C1 + α2C2 + [C∗∗∗
1 + C∗∗∗

2 + (k1 + k2 + 1)N∗∗∗](µN − I) + α3C1C2 + α4C1N

+ α5C2N + α6C
2
1 + α7C

2
2 − µ(k1 + k2 + 1)N2 −Q1 + (k1C1 + C2)[I − α(C1 + C2)],

(A.9)

α1 = k1(δ1 − η)(C∗∗∗
2 +N∗∗∗) + (δ1 + ξ)(C∗∗∗

1 +N∗∗∗) + k2ΛN
∗∗∗ > 0,

α2 = k1(Λ + θ)(C∗∗∗
2 +N∗∗∗) + Λ(C∗∗∗

1 +N∗∗∗) + k2ΛN
∗∗∗ > 0,

α3 = k1(η − δ1)− Λ,
α4 = k1 + k2 + 1 + k1(η − δ1) + α− δ1 − ξ − µ− k2δ1,
α5 = k1(α− Λ− µ− θ)− k2Λ− Λ,
α6 = α− δ1 − ξ,
α7 = α− Λ− θ,
using the same fact (A.5), we have

α1C1 ≤ α1C1N, α2C2 ≤ αC2N, (A.10)
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Thus, V ′

≤ α1C1 + α2C2 + [C∗∗∗
1 + C∗∗∗

2 + (k1 + k2 + 1)N∗∗∗](µN − I) + α3C1C2 + α4C1N

+ α5C2N + α6C
2
1 + α7C

2
2 − µ(k1 + k2 + 1)N2 −Q1 + (k1C1 + C2)[I − α(C1 + C2)],

≤ α1C1N + α2C2N + [C∗∗∗
1 + C∗∗∗

2 + (k1 + k2 + 1)N∗∗∗](µN − I) + α3C1C2 + α4C1N

+ α5C2N + α6C
2
1 + α7C

2
2 − µ(k1 + k2 + 1)N2 −Q1 + (k1C1 + C2)[I − α(C1 + C2)],

= (α1 + α4)C1N + (α2 + α5)C2N + [C∗
1 + C∗

2 + (k1 + k2 + 1)N∗](µN − I) + α3C1C2

+ α6C
2
1 + α7C

2
2 − µ(k1 + k2 + 1)N2 −Q1 + (k1C1 + C2)[I − α(C1 + C2)].

(A.11)

It is easy to see that,
α1 + α4 > α3, α6, α7,
α2 + α5 > α3, α6, α7

Let α1 + α4 = 0, α2 + α5 = 0.
And since α1 + α4 = 0, α2 + α5 = 0, then α3 < 0, α6 < 0, α7 < 0
This implies

α1 + α4 = k1(δ1 − η)(C∗∗∗
2 +N∗∗∗) + (δ1 + ξ)(C∗∗∗

1 +N∗∗∗) + k2ΛN
∗∗∗

+ k1 + k2 + 1 + k1(η − δ1) + α− δ1 − ξ − µ− k2δ1,

= k1[(δ1 − η)(C∗∗∗
2 +N∗∗∗) + 1 + η − δ1] + k2(ΛN

∗∗∗ + 1− δ1)

+ (δ1 + ξ)(C∗∗∗
1 +N∗∗∗) + α+ 1

= 0,

This implies;

k1[(δ1−η)(C∗∗∗
2 +N∗∗∗)+1+η−δ1]+k2(ΛN

∗∗∗−δ1)+(δ1+ξ)(C∗∗∗
1 +N∗∗∗)+α+1 = 0

(A.12)

Also,

α2 + α5 = k1(Λ + θ)(C∗∗∗
2 +N∗∗∗) + Λ(C∗∗∗

1 +N∗∗∗) + k2ΛN
∗∗∗

+ k1(α− Λ− µ− θ)− k2Λ− Λ,

= k1[(Λ + θ)(C∗∗∗
2 +N∗∗∗) + α− Λ− µ− θ] + k2(ΛN

∗∗∗ − Λ) + Λ(C∗∗∗
1

+ N∗∗∗ − 1),

= 0,
k1[(Λ+θ)(C∗∗∗

2 +N∗∗∗)+α−Λ−µ−θ]+k2(ΛN
∗∗∗−Λ)+Λ(C∗∗∗

1 +N∗∗∗−1) = 0

(A.13)

we solve the above two equations (A.12) and (A.13) for k1 and k2.
This implies,

(σ1 − σ2)k1 + (ΛN∗∗∗ − δ1)k2 + σ3 − σ4 = 0,

(π1 − π2)k1 + Λ(N∗∗∗ − 1) + π3 − Λ = 0,=⇒ (σ1 − σ2)k1 + (ΛN∗ − δ1)k2 = σ4 − σ3,

(π1 − π2)k1 + Λ(N∗∗∗ − 1)k2 = Λ− π3,

σ1 = δ1(C
∗∗∗
2 +N∗∗∗) + 1 + η,

σ2 = η(C∗∗∗
2 +N∗∗∗) + δ1

σ3 = (δ1 + ξ)(C∗∗∗
1 +N∗∗∗) + α+ 1

σ4 = δ1 + µ+ ξ
π1 = (Λ + θ)(C∗∗∗

2 +N∗∗∗) + α,
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π2 = Λ+ µ+ θ,
π3 = Λ(C∗∗∗

1 +N∗∗∗)
Using the row echelon method, we form the augmented matrix as follows:(

σ1 − σ2 ΛN∗∗∗ − δ1 σ4 − σ3

π1 − π2 Λ(N∗∗∗ − 1) Λ− π3

)
,

r1 →
[

1

(σ1 − σ2)

]
r1, r2 → r2,

=⇒
(

1 ΛN∗∗∗−δ1
σ1−σ2

σ4−σ3

σ1−σ2

π1 − π2 Λ(N∗∗∗ − 1) Λ− π3

)
,

r1 → r1, r2 → −(π1 + π2)r1 + r2,

=⇒

(
1 ΛN∗∗∗−δ1

σ1−σ2

σ4−σ3

σ1−σ2

0 φ1−φ2

σ1−σ2

φ3−φ4

σ1−σ2

)
,

φ1 = ΛN∗∗∗(σ1 + σ2) + δ1π1 + σ2

φ2 = ΛN∗∗∗(σ2 + π1) + δ1π2 + σ1

φ3 = Λσ1 + σ2π3 + σ3π1 + σ4π2

φ4 = Λσ2 + σ1π3 + σ4π1 + σ3π2

r1 → r1, r2 →
(
σ1 − σ2

φ1 − φ2

)
r2, σ1 − σ2 ̸= 0, φ1 − φ2 ̸= 0,(

1 ΛN∗∗∗−δ1
σ1−σ2

σ4−σ3

σ1−σ2

0 1 φ3−φ4

φ1−φ2

)
ref !

,

=⇒ k1 +

(
ΛN∗∗∗ − δ1
σ1 − σ2

)
k2 =

σ4 − σ3

σ1 − σ2
, (A.14)

k2 =
φ3 − φ4

φ1 − φ2
, (A.15)

List of basic variables: k1, k2
List of nonbasics: ϕ
Verdict: There is unique solution since there is no degenerate equation in (A.14) and
(A.15).
Making the basic variables subject in their equations

=⇒ k1 =
σ4 − σ3

σ1 − σ2
−
(
ΛN∗∗∗ − δ1
σ1 − σ2

)
k2, (A.16)

k2 =
φ3 − φ4

φ1 − φ2
, (A.17)

Applying backward substitution on (A.16) and (A.17),

∴ k2 =
φ3 − φ4

φ1 − φ2
,

k1 =
σ4 − σ3

σ1 − σ2
−
(
ΛN∗∗∗ − δ1
σ1 − σ2

)
φ3 − φ4

φ1 − φ2
,

=
(σ4 − σ3)(φ1 − φ2)− (ΛN∗∗∗ − δ1)(φ3 − φ4)

(σ1 − σ2)(φ2 − φ2)
,

=
φ1σ4 + φ2σ3 + ΛN∗∗∗φ1 + δ1φ3 − (φ2σ4 + φ1σ3 + ΛN∗∗∗φ3 + δ1φ4)

φ1σ1 + φ2σ2 − (φ1σ2 + φ2σ1)
,∴ k1 =

τ1 − τ2
τ3 − τ4

,

τ1 = φ1σ4 + φ2σ3 + φ4ΛN
∗∗∗ + δ1φ3,

τ2 = φ2σ4 + φ1σ3 + φ3ΛN
∗∗∗ + δ1φ4,
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τ3 = φ1σ1 + φ2σ2,
τ4 = φ1σ2 + φ2σ1,

∴ k1 =
τ1 − τ2
τ3 − τ4

, k2 =
φ3 − φ4

φ1 − φ2
,

We have seen that τ3 − τ4 > 0, φ1 − φ2 > 0 (whenever δ1 > η)
Therefore, k1 > 0, k2 > 0 provided τ1 − τ2 > 0 and φ3 − φ4 > 0. This implies,

V ′ ≤ (α1 + α4)C1N + (α2 + α5)C2N + [C∗∗∗
1 + C∗∗∗

2 + (k1 + k2 + 1)N∗∗∗](µN − I)

+ α3C1C2 + α6C
2
1 + α7C

2
2 − µ(k1 + k2 + 1)N2 −Q1 + (k1C1 + C2)[I − α(C1 + C2)],

= [C∗∗∗
1 + C∗∗∗

2 + (k1 + k2 + 1)N∗∗∗](µN − I) + α3C1C2 + α6C
2
1 + α7C

2
2

− µ(k1 + k2 + 1)N2 −Q1 + (k1C1 + C2)[I − α(C1 + C2)],

Since α1 + α4, α2 + α5 > α3, α6, α7 and α1 + α4 = 0, α2 + α5 = 0, implies that
α3 < 0, α6 < 0, α7 < 0. Also, I < α(C1 + C2), (α = 1) and µN ≤ I.
∴ V ′ < 0.

Thus, V ′ = 0 only if C1 = C∗∗∗
1 , C2 = C∗∗∗

2 and N = N∗∗∗. This indicates that the

largest invariant set in {(C1, C2, N) ∈ Ω : V
′
= 0} is the singleton FP3. Therefore by

LaSalle’s invariance principle [28], FP3 is globally asymptotically stable in Ω.
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