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Abstract In this paper, we study and investigate the following implicit Caputo fractional derivative

and nonlocal fractional integral conditions of the from:

CDq

0+
u(t) = f(t, u(t),c Dq

0+
u(t)), t ∈ [0, T ]

u(0) = η, u(T ) =RL Ip
0+

u(κ), κ ∈ (0, T )

where 1 < q ≤ 2, 0 < p ≤ 1, η ∈ R, cDq

0+
u(t) is the Caputo fractional derivative of order q, RLI

p

0+
is

the Riemann-Liouville fractional integral of order p and f : [0, T ] × R × R → R is continuous function

by using Krasnoselskii’s fixed point theorem and Boyd-Wong non-linear contraction. Also, we study the

existence and uniqueness of this problem. An example is established to support our main results.
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1. Introduction

The fractional differential equations have an important role in numerous fields of study
carried out by mathematicians, physicists and engineers. They have used it basically
to developed the mathematical modeling, many physical applications and engineering
disciplines such as viscoelasticity, control, porous media, phenomena in eletromagnetics
etc. (See [1–3]). The major differences between fractional order differential operator
and classical calculus is it’s nonlocal behavior, that is the feature future state based on
the fractional differential operator depends on its current and past states. More details
on the fundamental concepts of fractional calculus, fractional differential equations and
fractional integral equations can be found in books like A. A. Kilbas, H. M Srivastava and
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J. J. Trujillo [1], K. S Miller and B. Ross [2], and J. Banas and K. Goebel [4]. Fractional
integro-differential equations involving the Caputo-Fabrizio derivative have been studied
by many researchers from differential points of view. (see, for example, [5–8] and the
references therein) have been published. Qualitative theory of differential equations have
significant application, and the existence of solutions and of positive solutions of fractional
differential equations, which respect the initial and boundary value, have also received
considerable attention. In order to study such type of problems different kind of techniques
such as fixed point theorems [9–11], fixed point index [11, 12], upper and lower solutions
method [13], coincidence theory [14], etc are in vogue. For instance, in [15, 16], the
authors investigate the existence of solutions of initial value problems.

CDα
0+u(t) = f(t, u(t),C Dβ

0+u(t)), t ∈ (0, 1],

u(k)(0) = ηk, k = 0, 1, ..., n− 1,

where n − 1 < β < α < n, (n ∈ N), are the real number CDα
0+ ,

CDβ
0+ are the Caputo

fractional derivatives of order α, β and f ∈ C([0, 1]× R).

In [17], the authors investigated the existence and uniqueness of solutions of the non-
local fractional integral condition.

RLD
q
0+x(t) = f(t, x(t)), t ∈ [0, T ],

x(0) = 0, x(T ) =

n∑
i=1

αiHI
pi

0+x(ηi),

where 1 < q ≤ 2, RLD
q
0+ is the Riemann-Liouville fractional derivative of order q, HI

pi

0+

is Hadamard fractional integral of order pi > 0, ηi ∈ (0, T ), f : [0, T ] × R → R, and

αi ∈ R, i = 1, 2, · · · , n are real constants such that

n∑
i=1

αiη
q−1
i

(q − 1)pi
̸= T q−1.

In [18], the authors study and investigate the following Caputo fractional derivative and
Riemann-Liouville integral boundary value problems:

CDq
0+u(t) = f(t, u(t)), t ∈ [0, T ],

u(k)(0) = ξk, u(T ) =

m∑
i=1

βiRLI
pi

0+u(ηi),

where n − 1 < q < n, n ≥ 2, m, n ∈ N, ξk, βi ∈ R, k = 0, 1, . . . , n − 2, i = 1, 2, . . . ,m
and CDq

0+ is the Caputo fractional derivatives, f : [0, T ]× C([0, T ], E) → E, where E be
Banach space RLI

pi

0+ is Riemann-Liouville fractional integral of order pi > 0, ηi ∈ (0, T )

and

m∑
i=1

βiη
pi+n−1
i

Γ(n)

Γ(n+ pi)
̸= Tn−1.

Inspired by the above papers in [15–18], the objective of this paper is to derive the
existence and uniqueness solution of implicit Caputo fractional derivative and nonlocal
fractional integral conditions:

{
CDq

0+u(t) = f(t, u(t),cDq
0+u(t)), t ∈ [0, T ]

u(0) = η, u(T ) =RL I
p
0+u(κ), κ ∈ (0, T )

(1.1)
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where 1 < q ≤ 2, 0 < p ≤ 1, η ∈ R, CDq
0+u(t) is the Caputo fractional derivative of order

q, RLI
p
0+ is the Riemann-Liouville fractional integral of order p and f : [0, T ]×R×R → R

is continuous function.
Very recently, some existence results for an implicit fractional differential equation on

compact intervals were investigated [19–27].
Our goal in this work is to give some existence and uniqueness results for implicit

fractional differential equations by using the fixed point theorems of Krasnoselskii fixed-
point theorem and Boyd-Wong non-linear contraction.

The current paper is organized as follows: Section 1 contains the introduction; in Sec-
tion 2, some basic definitions of fractional differential equations are introduced. In Section
3, based on Krasnoselskii fixed point theorem and Boyd-Wong non-linear contraction to-
gether the main result is formulated and proved. Finally, a conclusion is presented in
Section 4.

2. Preliminaries

We need the following lemmas that will be used to prove our main results.

Definition 2.1. [28] The Riemann-Liouville fractional integral of order q > 0 with the
lower limit zero for a function f : (0,∞) → R is defined by

RLI
q
0+f(t) =

1

Γ(q)

∫ t

0

(t− s)q−1f(s)ds,

where Γ(·) denotes the Gamma function defined by

Γ(q) =

∫ ∞

0

e−ssq−1ds.

Definition 2.2. [29] The Caputo fractional derivative of order q > 0 of a function
f : (0,∞) → R is defined by(

CD
q

0+f
)
(t) =

1

Γ(n− q)

∫ t

0

(t− s)n−q−1f (n)(s)ds,

where n is the smallest integer greater than or equal to q.

Lemma 2.3. [28] Let n− 1 < q < n. If f ∈ Cn([a, b]), then

RLI
q
0+(

cDq
0+x)(t) = x(t) + c0 + c1t+ c2t

2 + · · ·+ cn−1t
n−1,

where ci ∈ R, i = 1, 2, . . . , n, n is the smallest integer greater than or equal to q.

Proposition 2.4. [28] If q, ρ > 0 then

(1) If f(t) = k ̸= 0, k is a constant, then CDq
0+k = 0 and RLD

q
0+k = t−qk

Γ(1−q) .

(2) RLD
q
0+t

q−1 = 0.

(3) For ρ > 1, we have RLI
q
0+t

ρ = Γ(ρ+1)
Γ(q+ρ+1) t

q+ρ.

(4) For ρ > −1 + q, we have RLD
q
0+t

ρ = Γ(ρ+1)
Γ(1+ρ−q) t

ρ−q.

(5) For ρ > 0, we have CDq
0+t

ρ = Γ(ρ+1)
Γ(1+ρ−q) t

ρ−q.

Lemma 2.5. [30] For q, ρ, b > 0 and f(t) ∈ L1(0, b) we have

(1) RLI
q
0+RLI

ρ
0+f(t) = RLI

q+ρ
0+ f(t).

(2) RLI
q
0+RLI

ρ
0+f(t) = RLI

ρ
0+RLI

q
0+f(t).
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(3) RLI
q
0+(f(t) + g(t)) = RLI

q
0+f(t) + RLI

q
0+g(t).

Lemma 2.6. Let 1 < q < 2, Assume h(t) ∈ C[0, 1], then the following equation{
CDq

0+u(t) = h(t), t ∈ [0, T ]

u(0) = η, u(T ) =RL I
p
0+u(κ),

(2.1)

where 1 < q ≤ 2, 0 < p ≤ 1, η ∈ R, CDq
0+u(t) is the Caputo fractional derivative of order

q, RLI
p
0+ is the Riemann-Liouville fractional integral of order p and f : [0, T ]×R×R → R

is continuous function, has a unique solution

u(t) =RL I
q
0+h(t)+η+

tΓ(p+ 2)

TΓ(p+ 2)− κp+1

{
RLI

q+p
0+ h(κ)−RL I

q
0+h(T )+η

(
κp

Γ(p+ 1)
−1

)}
Proof. We may apply Lemma 2.3 to reduce equation (2.1) to an equivalent integral equa-
tion.

u(t) =RL I
q
0+h(t) + c0 + c1t

By u(0) = η, we can get c0 = η,

u(t) =RL I
q
0+h(t) + η + c1t,

and second condition, we have

RLI
p
0+u(t) =RL I

q+p
0+ +

ηtp

Γ(p+ 1)
+ c1RLI

p
0+t,

and

RLI
p
0+u(κ) =RL I

q+p
0+ h(κ) +

ηκp

Γ(p+ 1)
+

c1κ
p+1

Γ(p+ 2)

u(T ) =RL I
q
0+h(T ) + η + C1T.

So;

c1 =
Γ(P + 2)

TΓ(p+ 2)− κp+1

{
RLI

q+p
0+ h(κ)−RL I

q
0+h(T ) + η

(
κp

Γ(p+ 1)
− 1

)}
Hence,

u(t) =RL I
q
0+h(t)+η+

tΓ(p+ 2)

TΓ(p+ 2)− κp+1

{
RLI

q+p
0+ h(κ)−RL I

q
0+h(T )+η

(
κp

Γ(p+ 1)
−1

)}

Theorem 2.7. [31] (Contraction Mapping Principle)
Let E be a Banach space, D ⊂ E be closed and A : D → D a contraction mapping (i.e.
∥Ax − Ay∥≤ k∥x − y∥ for some k ∈ (0, 1)) and for all x, y ∈ D. Then A has a unique
fixed point.

Theorem 2.8. [31] (Krasnoselskii’s Fixed Point Theorem)
Let M be closed, bounded, convex and non-empty subset of Banach space E. Let A1, A2

be the operators such that

(1) A1x+A2y ∈M whenever x, y ∈M ,
(2) A1 is a compact and continuous,
(3) A2 is a contraction mapping.

Then there exists z ∈M such that z = A1z +A2z.
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Definition 2.9. [31] Let E be a Banach space and let A : E → E be a mapping. A is
said to be a non-linear contraction if there exists a continuous non-decreasing function
Ψ : R+ → R+ such that Ψ(0) = 0 and Ψ(ϵ) < ϵ for all ϵ > 0 with the property:

∥Ax−Ay∥≤ Ψ(∥x− y∥), ∀x, y ∈ E.

Theorem 2.10. [31] (Boyd and Wong fixed point theorem)
Let E be a Banach space and let A : E → E be a nonlinear contraction. Then A has a
unique fixed point in E.

3. Main Results

Define the operator A : [0, T ]× E × E → E

Au(t) = RLI
q
0+f(t, u(t),Ku(t)) + η +

tΓ(p+ 2)

TΓ(p+ 2)− κp+1

{
RLI

q+p
0+ f(κ, u(κ),Ku(κ))

−RLI
q
0+f(T, u(T ),Ku(T )) + η

(
κp

Γ(p+ 1)
− 1

)}
then the equation (4.1) has a solution if and only if the operator A has a fixed point.

3.1. Existance Result via Krasnoselskii’s fixed point theorem

Theorem 3.1. Let f : [0, T ] × R × R → R be a function such that f ∈ C[0, T ] for any
u ∈ C[0, T ] and there exist positive constants M,N > 0, (0 < N < 1) such that

|f(t, u, v)− f(t, u∗, v∗)| ≤M |u− u∗|+N |v − v∗| (3.1)

for u, v, u∗, v∗ ∈ R and t ∈ [0, T ]. Suppose that there exist continuous functions φ1, φ2, φ3 :
[0, T ] → R+ with

φ1 = sup
t∈[0,T ]

φ1(t) < 1,

φ2 = sup
t∈[0,T ]

φ2(t) < 1,

φ3 = sup
t∈[0,T ]

φ3(t) < 1,

with
|f(t, u, v)| ≤ φ1(t) + φ2(t)|u|+ φ3(t)|v|,

for all t ∈ [0, T ] and u, v ∈ R. If TMΓ(p+2))
(TΓ(p+2)−κp+1)(1−N)

{
κq+p

Γ(q+p+1) +
T q

Γ(q+1)

}
< 1 then the

boundary value problem (4.1) has at least one solution.

Proof. Let

A1u(t) = RLI
q
0+f(t, u(t),Ku(t)),

A2u(t) = η +
Γ(p+ 2)

TΓ(p+ 2)− κp+1

{
RLI

q+p
0+ f(κ, u(κ),Kv(κ))

−RLI
q
0+f(T, u(T ),Ku(T )) + η

(
κp

Γ(p+ 1)
− 1

)}
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For any u, v ∈ Br = {u ∈ E : ∥u∥ ≤ r}, we get

|(A1u)(t) + (A2v)(t)| ≤ sup
t∈[0,T ]

{
RLI

q
0+ |f(s, u(s),Ku(s))|(t) + |η|

+
tΓ(p+ 2)

|TΓ(p+ 2)− κp+1|

{
RLI

q+p
0+ |f(s, v(s),Kv(s))|(κ)

+RLI
q
0+ |f(s, v(s),Kv(s))|(T ) +

∣∣∣∣∣η
(

κp

Γ(p+ 1)
− 1

)∣∣∣∣∣
}}

|(A1u)(t) + (A2v)(t)| ≤ tq

Γ(q + 1)
(φ1 + φ2r) + η

+
tΓ(p+ 2)

|TΓ(p+ 2)− κp+1|

{
tq+p

Γ(q + p+ 1)
(φ1 + φ2r)

+
tq

Γ(q + 1)
(φ1 + φ2r) + η

(
κp

Γ(p+ 1)
− 1

)

≤ T q

Γ(q + 1)
(φ1 + φ2r) + η

+
TΓ(p+ 2)

|TΓ(p+ 2)− κp+1|

{
T q+p

Γ(q + p+ 1)
(φ1 + φ2r)

+
T q

Γ(q + 1)
(φ1 + φ2r) + η

(
κp

Γ(p+ 1)
− 1

)

|(A1u)(t) + (A2v)(t)| ≤ r.

Setting:

α := φ1

(
T q

Γ(q + 1)
+

T q+1Γ(p+ 2)

|TΓ(p+ 2)− κp+1|Γ(q + 1)
+

T p+q+1Γ(p+ 2)

|TΓ(p+ 2)− κn+1|Γ(q + p+ 1)

)
,

β := η

(
1 +

TΓ(q + 2)

|TΓ(p+ 2)− κp+1|

(
κp

Γ(q + 1)
− 1

))
,

γ := 1− φ2

(
T q

Γ(q + 1)
+

T q+1Γ(p+ 2)

|TΓ(p+ 2)− κp+1|Γ(q + 1)
+

T p+q+1Γ(p+ 2)

|TΓ(p+ 2)− κn+1|Γ(q + p+ 1)

)
,

we obtain that

r ≥ α+ β

γ
.

This implies that A1u+A2v ∈ Br. In order to prove that A1 is a compact and continuous.
The operator A1 is continuous by the continuity of f . Since for u ∈ E, we have

∥A1u∥ ≤ (φ1 + φ2r)T
q

Γ(q + 1)
,
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then the operator A1 is uniformly bounded on Br. We next show that the operator A1 is
compact. We define sup(t,u,v)∈[0,T ]×Br×Br

|f(t, u, v)| = φ < ∞ and for all 0 < τ1 < τ2 <
T , we get

|A1u(τ2)−A1u(τ1)| =
1

Γ(q)

∣∣∣∣∣
∫ τ1

0

[(τ2 − s)q−1 − (τ1 − s)q−1]f(s, u(s),Ku(s))ds

+

∫ τ2

0

[(τ2 − s)q−1f(s, u(s),Ku(s))ds

∣∣∣∣∣
≤ φ(τ q2 − τ q1 )

Γ(q + 1)
.

A consequence of these inequalities is that {A1u : u ∈ Br} is a uniformly bounded and
equicontinuous set in E. Thus by the Arzela-Ascoli Theorem, the operator A1 is compact
on Br. Next step we show that A2 is a contraction we take u, v ∈ E, and get

|(A2u)(t)− (A2v)(t)|

≤ tΓ(p+ 2)

TΓ(p+ 2)− κp+1

{
RLI

q+p
0+ |f(s, u(s),Ku(s)− f(s, v(s),Kv(s))|(κ)

+RLI
q
0+ |f(s, u(s),Ku(s)− f(s, v(s),Kv(s))|(T )

≤ tΓ(p+ 2)

TΓ(p+ 2)− κp+1

{
RLI

q+p
0+ (M |u− v|+N |Ku−Kv|)(κ)

+RLI
q
0+(M |u− v|+N |Ku−Kv|)(T )

}

≤ tΓ(p+ 2)

TΓ(p+ 2)− κp+1

{
RLI

q+p
0+ (M |u− v|+ NM |u− v|

1−N
)(κ)

+RLI
q
0+

(
M |u− v|+ NM |u− v|

1−N

)
(T )

}

≤ TΓ(p+ 2)

TΓ(p+ 2)− κp+1

{
M∥u− v∥
1−N

· κp+q

Γ(q + p+ 1)
+
M∥u− v∥
1−N

· T q

Γ(q + 1)

}

≤ TMΓ(p+ 2)

TΓ(p+ 2)− κp+1(1−N)

{
κq+p

Γ(q + p+ 1)
+

T q

Γ(q + 1)

}
∥u− v∥.

This implies that ∥A2u−A2v∥ ≤ k∥u− v∥ where

k :=
TMΓ(p+ 2)

TΓ(p+ 2)− κp+1(1−N)

{
κq+p

Γ(q + p+ 1)
+

T q

Γ(q + 1)

}
< 1.

Hence, A2 is a contraction. A combination of this property of the operator A1 with the
inclusion property A1(Br) + A2(Br) ⊂ Br implies, by Krasnoselskii’s theorem, that the
problem (4.1) has at least one solution on [0, T ].
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3.2. Existence and Uniqueness Results via Boyd and Wong Fixed Point

Theorem

Theorem 3.2. Let f : [0, T ] × R × R → R be a continuous function satisfying the
assumption:

|f(t, u,Ku)− f(t, v,Kv)| ≤ β(t)|u− v|
B + |u− v|

, for t ∈ [0, T ], u, v > 0

where β(t) : [0, T ] → R+ is continuous and B is the constant definded by

B :=RL I
q
0+β(t) +

TΓ(p+ 2)

|TΓ(p+ 2)− κp+1|

{
RLI

q+p
0+ β(κ) +RL I

q
0+β(T )

}
̸= 0.

Then the problem (4.1) has a unique solution on [0, T ].

Proof. Consider a non-decreasing function σ : R+ → R+ definded by σ(ε) = Bε
B+ε for all

ε > 0 such that σ(0) = 0, and σ(ε) < ε for all ε > 0. For all u, v ∈ C([0, T ]) and for each
t ∈ [0, T ] yields

|Au(t)−Av(t)|
≤ RLI

q
0+ |f(s, u(s),Ku(s))− f(s, v(s),Kv(s))|(t)

+
tΓ(p+ 2)

|TΓ(p+ 2)− κp+1|

{
RLI

q+p
0+ |f(s, u(s),Ku(s))− f(s, v(s),Kv(s))|(κ)

+RLI
q
0+ |f(s, u(s),Ku(s))− f(s, v(s),Kv(s))|(T )

}

≤ RLI
q
0+
β(t)|u− v|
B + |u− v|

+
TΓ(p+ 2)

|TΓ(p+ 2)− κp+1|

{
RLI

q+p
0+

β(κ)|u− v|
B + |u− v|

+RLI
q+p
0+

β(T )|u− v|
B + |u− v|

}

≤ σ(∥u− v∥)
B

[
RLI

q
0+β(t) +

tΓ(p+ 2)

|TΓ(p+ 2)− κp+1|

{
RLI

q+p
0+ β(κ) + RLI

q
0+β(T )

}]
≤ σ(∥u− v∥).

This implies that ∥Au − Av∥ ≤ σ(∥u − v∥). Therefore A is a non-linear contraction.
Hence, by theorem (Boyd and Wong). The operator A has a unique fixed point, which is
the unique solution of the problem (4.1).

Example 3.3. Consider the following fractional boundary value problems
CD

7
5

0+u(t) =
sin2 t

999+9t

(
|u(t)|

1+|u(t)|

)
+ cos2 t

999+et

( |CD
7
5
0+

u(t)|

1+|CD
7
5
0+

u(t)|

)
+ 1

2 , t ∈ [0, π],

u(0) = π, u(π) =RL I
1
3

0+u(
π
2 ).

(3.2)

By comparing problem (4.1) and (3.2), we obtain the following parameters: q = 7/5, p =

1/3, η = π, κ = π/2, f(t, u(t),C D
7
5

0+u(t)) =
sin2 t

999+9t

(
|u(t)|

1+|u(t)|

)
+ cos2 t

999+et

( |CD
7
5
0+

u(t)|

1+|CD
7
5
0+

u(t)|

)
+ 1

2 .
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As,
∣∣∣f(t, u, v)− f(t, u∗, v∗)

∣∣∣ ≤ 1
1,000

∣∣∣u− u∗
∣∣∣+ 1

1,000

∣∣∣v − v∗
∣∣∣ with M = N = 1/1, 000 and

f(t, u(t),C D
7
5

0+u(t)) ≤ 1
2 + 1

1,000

∣∣∣u(t)∣∣∣ + 1
1,000

∣∣∣v(t)∣∣∣. Therefore the condition of Theorem

3.1 is satisfied with TMΓ(p+2))
(TΓ(p+2)−κp+1)(1−N)

{
κq+p

Γ(q+p+1) +
T q

Γ(q+1)

}
≈ 0.0049 < 1. Hence, the

problem (3.2) has at least one solution on [0, π], if we choose β(t) = 0.002. Then, we find
B ≈ 0.0202, clealy clealy,

∣∣∣f(t, u(t),C D 7
5

0+u(t))− f(t, v(t),C D
7
5

0+v(t))
∣∣∣ ≤ 1

1, 000

( ∣∣∣u− v
∣∣∣

1 + |u− v
∣∣∣

+

∣∣∣CD 7
5

0+u(t)−
CD

7
5

0+v(t)
∣∣∣

1 +
∣∣∣CD 7

5

0+u(t)− CD
7
5

0+v(t)
∣∣∣
)

≤ 1

1, 000

( ∣∣∣u− v
∣∣∣

1 + |u− v
∣∣∣ +

1
999

∣∣∣u− v
∣∣∣

1 + 1
999 |u− v

∣∣∣
)

≤ 1

1, 000

( ∣∣∣u− v
∣∣∣

1 + |u− v
∣∣∣ +

∣∣∣u− v
∣∣∣

999 + |u− v
∣∣∣
)

≤ 1

500

( |u− v|
0.0202 + |u− v|

)
.

Hence, by Theorem 3.2, problem (3.2) has a unique solution on (0, π).

4. conclusion

In conclusion, we extend the existence and uniqueness solution of implicit Caputo
fractional derivative and nonlocal fractional integral conditions:

{
CDq

0+u(t) = f(t, u(t),cDq
0+u(t)), t ∈ [0, T ]

u(0) = η, u(T ) =RL I
p
0+u(κ), κ ∈ (0, T )

where 1 < q ≤ 2, 0 < p ≤ 1, η ∈ R, CDq
0+u(t) is the Caputo fractional derivative of order

q, RLI
p
0+ is the Riemann-Liouville fractional integral of order p and f : [0, T ]×R×R → R

is continuous function. By using Krasnoselskii’s fixed point theorem and Boyd-Wong non-
linear contraction, we obtain the existence and uniqueness of this problem. An example
is established to support our main results.
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