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Abstract The main aim of this paper is to study the numerical solution of variational inequalities in-

volving quasimonotone operators in infinite-dimensional real Hilbert spaces. We prove that the iterative

sequence generated by the proposed algorithm for the solution of quasimonotone variational inequalities

converges weakly to the solution. The main advantage of the proposed iterative scheme is that it employs

an inertial scheme and a monotone stepsize rule based on operator knowledge rather than a Lipschitz

constant or another line search method. Numerical results show that the proposed algorithm is effective

for solving quasimonotone variational inequalities.?
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1. Introduction

Our main concern here is to study the iterative methods to estimate the solution of
the variational inequality problem (shortly, VIP) involving quasimonotone operators in
any real Hilbert space. In order to prove the weak convergence, it is considered that the
following conditions have been satisfied:

(G1) The solution set of problem (VIP) is denoted by V I(C,G) is nonempty;
(G2) An operator G : H → H is said to be quasimonotone if⟨

G(y1), y2 − y1
⟩
> 0 =⇒

⟨
G(y2), y2 − y1

⟩
≥ 0, ∀ y1, y2 ∈ C; (QM)
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(G3) An operator G : H → H is said to be Lipschitz continuous with constant L > 0
such that

∥G(y1)− G(y2)∥ ≤ L∥y1 − y2∥, ∀ y1, y2 ∈ C; (LC)

(G4) An operator G : H → H is sequentially weakly continuous if {G(xn)} weakly
converges to G(x) for any sequence {xn} weakly converges to x.

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Let
G : H → H be an operator. The problem (VIP) for G on C is defined in the following way
[21]:

Find x∗ ∈ C such that
⟨
G(x∗), y − x∗⟩ ≥ 0, ∀ y ∈ C (VIP)

It is well-known that the problem (VIP) is an important problem in the field of nonlin-
ear analysis. It is an important mathematical model that unifies many key concepts in ap-
plied mathematics, such as a nonlinear system of equations, optimization problems, com-
plementarity problems, network equilibrium problems and finance (see [6, 9–13, 16, 22]).
As a result, this notion has numerous applications in engineering, mathematical program-
ming, network economics, transportation analysis, game theory, and computer science.

The regularized and projection methods are two important methods for determining a
numerical solution to variational inequalities. It is worth noting that the first approach is
most commonly used to solve variational inequalities accompanied by the class of mono-
tone operators. In this method, the regularized subproblem is strongly monotone, and its
unique solution is found to be more convenient than the initial problem. In this study, we
studied the projection methods that are well known for their simpler numerical computa-
tion. The first well-proved projection method is the gradient projection method to solve
variational inequalities, after which, several other projection methods have been estab-
lished, including the well-known extragradient method [14] the subgradient extragradient
method [3, 4] and others [5, 7, 15, 24, 33–36, 38] and others in [1, 8, 19, 20, 25–32, 37]. The
methods mentioned above are used to study numerically variational inequalities involving
monotone, strongly monotone, or inverse monotone. Furthermore, a common feature of
these methods is that, when constructing approximation solutions and determining their
convergence, fixed or variable stepsize is used depending on the Lipschitz constants of
the operators. Because these parameters may be undefined or difficult to approximate in
some situations, this can limit implementations.

The primary objective of this study is to examine quasimonotone variational inequal-
ities in infinite-dimensional Hilbert spaces. We introduce an inertial-type method that
can be used to improve the convergence rate of the iterative sequence in this context.
Inertial methods have previously been established as a result of the oscillator equation
with damping and conservative force restoration. This second-order dynamical system
is called a heavy friction ball, which was originally studied by Polyak in [18]. The main
feature of the inertial-type method is that it reuses the previous two iterations for the
next iteration. We show that the iterative sequence generated by the subgradient extra-
gradient algorithm for solving quasimonotone variational inequalities weakly converges to
a solution.

The paper is organized in the following manner. In Sect. 2, some preliminary results
were presented. Sect. 3 provides a new algorithm and its convergence analysis. Finally,
Sect. 4 presents some numerical results to point out the practical efficiency of the proposed
method.
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2. Preliminaries

For all x, y ∈ H, we have

∥x+ y∥2 = ∥x∥2 + 2⟨x, y⟩+ ∥y∥2.

A metric projection PC(y1) of y1 ∈ H is defined by

PC(y1) = argmin{∥y1 − y2∥ : y2 ∈ C}.

Lemma 2.1. [2] For any y1, y2 ∈ H and ℓ ∈ R. Then

(i) ∥ℓy1 + (1− ℓ)y2∥2 = ℓ∥y1∥2 + (1− ℓ)∥y2∥2 − ℓ(1− ℓ)∥y1 − y2∥2;
(ii) ∥y1 + y2∥2 ≤ ∥y1∥2 + 2⟨y2, y1 + y2⟩.

Lemma 2.2. [17] Let C be a nonempty closed convex subset of H and {xn} be a sequence
in H such that

(i) for each x ∈ C, limn→∞ ∥xn − x∥ exists;
(ii) each sequentially weak cluster point of {xn} belongs to C.

Then, {xn} converges weakly to a point in C.

Lemma 2.3. [23] Let {an} and {tn} be two sequences of nonnegative real numbers sat-
isfying the inequality

an+1 ≤ an + tn, ∀n ∈ N.
If

∑
tn < +∞, then limn→∞ an exists.

3. Main Results

In this section, we present a new inertial method to solve quasimonotone variational
inequalities in real Hilbert spaces and prove a weak convergence result for the proposed
method. The main algorithm has been presented as follows.

Remark 3.1. It is clear from the expression (3.1) such that

+∞∑
n=1

ϑn∥xn − xn−1∥ ≤
+∞∑
n=1

θ̂n∥xn − xn−1∥ < +∞, (3.3)

which implies that

lim
n→+∞

θ̂n∥xn − xn−1∥ = 0. (3.4)

Lemma 3.2. A sequence {λn} is generated by (3.1) is monotonically decreasing and
convergent to λ > 0.

Proof. It is given that G is Lipschitz-continuous with constant L > 0. Let G(wn) ̸= G(yn)
such that

µ∥wn − yn∥
∥G(wn)− G(yn)∥

≥ µ∥wn − yn∥
L∥wn − yn∥

≥ µ

L
. (3.5)

Thus, above expression implies that limn→∞ λn = λ.
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Algorithm 1 (Inertial Monotonic Explicit Subgradient Extragradient Method)

Step 0: Let x0, x1 ∈ C, µ ∈ (0, 1), θ ∈ [0, 1), λ1 > 0 and choose a sequence {ϵn} ⊂
[0,+∞) such that

+∞∑
n=1

ϵn < +∞.

Step 1: Compute
wn = xn + θn(xn − xn−1)

where θn such that

0 ≤ θn ≤ θ̂n and θ̂n =

{
min

{
θ, ϵn

∥xn−xn−1∥

}
if xn ̸= xn−1,

θ otherwise.
(3.1)

Step 2: Compute
yn = PC(wn − λnG(wn)).

If wn = yn, then STOP. Otherwise, go to Step 3.
Step 3: Firstly construct a half-space

Hn = {z ∈ H : ⟨wn − λnG(wn)− yn, z − yn⟩ ≤ 0}
and compute

xn+1 = PHn
(wn − λnG(yn)).

Step 4: Compute

λn+1 =

{
min

{
λn,

µ∥wn−yn∥
∥G(wn)−G(yn)∥

}
if G(wn) ̸= G(yn),

λn otherwise.
(3.2)

Set n := n+ 1 and go back to Step 1.

Lemma 3.3. Let G : H → H be an operator satisfies the condition (G1)–(G4). For each
x∗ ∈ V I(C,G), we have

∥xn+1−x∗∥2 ≤ ∥wn−x∗∥2−
(
1− µλn

λn+1

)
∥wn− yn∥2−

(
1− µλn

λn+1

)
∥xn+1− yn∥2.

Proof. Consider that∥∥xn+1 − x∗∥∥2 =
∥∥PHn

[wn − λnG(yn)]− x∗∥∥2
=

∥∥PHn [wn − λnG(yn)] + [wn − λnG(yn)]− [wn − λnG(yn)]− x∗∥∥2
=

∥∥[wn − λnG(yn)]− x∗∥∥2 + ∥∥PHn
[wn − λnG(yn)]− [wn − λnG(yn)]

∥∥2
+ 2

⟨
PHn

[wn − λnG(yn)]− [wn − λnG(yn)], [wn − λnG(yn)]− x∗⟩.
(3.6)

It is given that x∗ ∈ V I(C,G) ⊂ C ⊂ Hn such that∥∥PHn [wn − λnG(yn)]− [wn − λnG(yn)]
∥∥2

+
⟨
PHn [wn − λnG(yn)]− [wn − λnG(yn)], [wn − λnG(yn)]− x∗⟩

=
⟨
[wn − λnG(yn)]− PHn

[wn − λnG(yn)], x∗ − PHn
[wn − λnG(yn)]

⟩
≤ 0. (3.7)
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Thus, above expression implies that⟨
PHn

[wn − λnG(yn)]− [wn − λnG(yn)], [wn − λnG(yn)]− x∗⟩
≤ −

∥∥PHn [wn − λnG(yn)]− [wn − λnG(yn)]
∥∥2. (3.8)

Combining expressions (3.6) and (3.8), we obtain

∥xn+1 − x∗∥2 ≤
∥∥wn − λnG(yn)− x∗∥∥2 − ∥∥PHn

[wn − λnG(yn)]− [wn − λnG(yn)]
∥∥2

≤ ∥wn − x∗∥2 − ∥wn − xn+1∥2 + 2λn

⟨
G(yn), x∗ − xn+1

⟩
. (3.9)

Since x∗ is the solution of problem (VIP), we have

⟨G(x∗), y − x∗⟩ ≥ 0, ∀ y ∈ C.
Due to an operator G on C, we obtain

⟨G(y), y − x∗⟩ ≥ 0, ∀ y ∈ C.
By substituting y = yn ∈ C, we obtain

⟨G(yn), yn − x∗⟩ ≥ 0.

Thus, we have⟨
G(yn), x∗−xn+1

⟩
=

⟨
G(yn), x∗−yn

⟩
+
⟨
G(yn), yn−xn+1

⟩
≤

⟨
G(yn), yn−xn+1

⟩
.

(3.10)

Combining expressions (3.9) and (3.10), we have

∥xn+1 − x∗∥2 ≤ ∥wn − x∗∥2 − ∥wn − xn+1∥2 + 2λn

⟨
G(yn), yn − xn+1

⟩
≤ ∥wn − x∗∥2 − ∥wn − yn + yn − xn+1∥2 + 2λn

⟨
G(yn), yn − xn+1

⟩
≤ ∥wn − x∗∥2 − ∥wn − yn∥2 − ∥yn − xn+1∥2 + 2

⟨
wn − λnG(yn)− yn, xn+1 − yn

⟩
.

(3.11)

Note that xn+1 = PHn
[wn − λnG(yn)] and by the definition of λn+1, we have

2
⟨
wn − λnG(yn)− yn, xn+1 − yn

⟩
= 2

⟨
wn − λnG(wn)− yn, xn+1 − yn

⟩
+ 2λn

⟨
G(wn)− G(yn), xn+1 − yn

⟩
≤ λn

λn+1
2λn+1∥G(wn)− G(yn)∥∥xn+1 − yn∥

≤ µλn

λn+1
∥wn − yn∥2 +

µλn

λn+1
∥xn+1 − yn∥2. (3.12)

Combining expressions (3.11) and (3.12), we obtain

∥xn+1 − x∗∥2

≤ ∥wn − x∗∥2 − ∥wn − yn∥2 − ∥yn − xn+1∥2 +
λn

λn+1

[
µ∥wn − yn∥2 + µ∥xn+1 − yn∥2

]
≤ ∥wn − x∗∥2 −

(
1− µλn

λn+1

)
∥wn − yn∥2 −

(
1− µλn

λn+1

)
∥xn+1 − yn∥2. (3.13)

Theorem 3.4. Let G : H → H be an operator satisfies the conditions (G1)–(G4). Then,
the sequence {xn} generated by the Algorithm 1 weakly converges to x∗ ∈ V I(C,G).
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Proof. Since λn → λ and there exists a fixed number ϵ ∈ (0, 1− µ) such that

lim
n→∞

(
1− µλn

λn+1

)
= 1− µ > ϵ > 0.

Then, there exists a finite number M1 ∈ N such that(
1− µλn

λn+1

)
> ϵ > 0, ∀n ≥ M1. (3.14)

From expression (3.13), we obtain

∥xn+1 − x∗∥2 ≤ ∥wn − x∗∥2, ∀n ≥ M1. (3.15)

The above expression for all n ≥ M1, we obtain

∥xn+1 − x∗∥ ≤ ∥xn + θn(xn − xn−1)− x∗∥
≤ ∥xn − x∗∥+ θn∥xn − xn−1∥. (3.16)

By using Lemma 2.3 with the expressions (3.4) and (3.16) implies that

lim
n→∞

∥xn − x∗∥ = l, for some finite l ≥ 0. (3.17)

By using the definition of wn in Algorithm 1, we have

∥wn − x∗∥2 = ∥xn + θn(xn − xn−1)− x∗∥2

= ∥(1 + θn)(xn − x∗)− θn(xn−1 − x∗)∥2

= (1 + θn)∥xn − x∗∥2 − θn∥xn−1 − x∗∥2 + θn(1 + θn)∥xn − xn−1∥2

≤ (1 + θn)∥xn − x∗∥2 − θn∥xn−1 − x∗∥2 + 2θn∥xn − xn−1∥2. (3.18)

The above expression with (3.17) and (3.4) implies that

lim
n→∞

∥wn − x∗∥ = l. (3.19)

From Lemma 3.3 and the expression (3.18), we have

∥xn+1 − x∗∥2

≤ (1 + θn)∥xn − x∗∥2 − θn∥xn−1 − x∗∥2 + 2θn∥xn − xn−1∥2

−
(
1− µλn

λn+1

)
∥wn − yn∥2 −

(
1− µλn

λn+1

)
∥xn+1 − yn∥2, (3.20)

which further implies that(
1− µλn

λn+1

)
∥wn − yn∥2 +

(
1− µλn

λn+1

)
∥xn+1 − yn∥2

≤ ∥xn − x∗∥2 − ∥xn+1 − x∗∥2 + θn
(
∥xn − x∗∥2 − ∥xn−1 − x∗∥2

)
+ 2ϑn∥xn − xn−1∥2.

(3.21)

By taking the limit as n → +∞ in expression (3.21), we obtain

lim
n→∞

∥wn − yn∥ = lim
n→∞

∥yn − xn+1∥ = 0. (3.22)

Thus, expressions (3.19) and (3.22) gives that

lim
n→∞

∥yn − x∗∥ = l. (3.23)

This implies that, the sequences {xn}, {wn} and {yn} are bounded. Now, we show that
the sequence {xn} converges weakly to x∗ ∈ V I(C,G). Indeed, since {xn} is bounded,
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we assume that there exists a subsequence {xnk
} of {xn} such that xnk

⇀ x̂. Since
∥xn − wn∥ → 0, we have wnk

⇀ x̂. Since {wnk
} weakly convergent to x̂ and due to

limk→∞ ∥wnk
− ynk

∥ = 0 and sequence {ynk
} weakly convergent to x̂. Next, we prove

that x̂ ∈ V I(C,G). Indeed, we have

ynk
= PC [wnk

− λnk
G(wnk

)]

that is equivalent to

⟨wnk
− λnk

G(wnk
)− ynk

, y − ynk
⟩ ≤ 0, ∀ y ∈ C. (3.24)

The above inequality implies that

⟨wnk
− ynk

, y − ynk
⟩ ≤ λnk

⟨G(wnk
), y − ynk

⟩, ∀ y ∈ C. (3.25)

Thus, we obtain

1

λnk

⟨wnk
−ynk

, y−ynk
⟩+⟨G(wnk

), ynk
−wnk

⟩ ≤ ⟨G(wnk
), y−wnk

⟩, ∀ y ∈ C. (3.26)

Since min
{

µ
L , λ1

}
≤ λ ≤ λ1 and {wnk

} is a bounded sequence. By the use of limk→∞ ∥wnk
−

ynk
∥ = 0 and k → ∞ in expression (3.26), we obtain

lim inf
k→∞

⟨G(wnk
), y − wnk

⟩ ≥ 0, ∀ y ∈ C. (3.27)

Moreover, we have

⟨G(ynk
), y − ynk

⟩
= ⟨G(ynk

)− G(wnk
), y − wnk

⟩+ ⟨G(wnk
), y − wnk

⟩+ ⟨G(ynk
), wnk

− ynk
⟩.

(3.28)

Since limk→∞ ∥wnk
− ynk

∥ = 0 and G is L-Lipschitz continuity on H implies that

lim
k→∞

∥G(wnk
)− G(ynk

)∥ = 0, (3.29)

which together with expressions (3.28) and (3.29), we obtain

lim inf
k→∞

⟨G(ynk
), y − ynk

⟩ ≥ 0, ∀ y ∈ C. (3.30)

To prove further, let us take a positive sequence {ϵk} that is convergent to zero and
decreasing. For each {ϵk}, we denote by mk the smallest positive integer such that

⟨G(wni
), y − wni

⟩+ ϵk > 0, ∀ i ≥ mk, (3.31)

where the existence of mk follows from expression (3.30). Since {ϵk} is decreasing, it is
easy to see that the sequence {mk} is increasing.

Case I: If there exists a subsequence {wnmkj
} of wnmk

such that G(wnmkj
) = 0 (∀j). Let

j → ∞, we obtain

⟨G(x̂), y − x̂⟩ = lim
j→∞

⟨G(wnmkj
), y − x̂⟩ = 0. (3.32)

Thus, x̂ ∈ C and imply that x̂ ∈ V I(C,G).

Case II: If there exits N0 ∈ N such that for all nmk
≥ N0, G(wnmk

) ̸= 0. Consider that

Υnmk
=

G(wnmk
)

∥G(wnmk
)∥2

, ∀nmk
≥ N0. (3.33)
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Due to the above definition, we obtain

⟨G(wnmk
),Υnmk

⟩ = 1, ∀nmk
≥ N0. (3.34)

Moreover, expressions (3.31) and (3.34), for all nmk
≥ N0, we have

⟨G(wnmk
), y + ϵkΥnmk

− wnmk
⟩ > 0. (3.35)

Since G is quasimonotone, then

⟨G(y + ϵkΥnmk
), y + ϵkΥnmk

− wnmk
⟩ > 0. (3.36)

For all nmk
≥ N0, we have

⟨G(y), y−wnmk
⟩ ≥ ⟨G(y)−G(y+ϵkΥnmk

), y+ϵkΥnmk
−wnmk

⟩−ϵk⟨G(y),Υnmk
⟩.

(3.37)

Due to {wnk
} weakly converges to x̂ ∈ C through G is sequentially weakly continuous on

the set C, we get {G(wnk
)} weakly converges to G(x̂). Suppose that G(x̂) ̸= 0, we have

∥G(x̂)∥ ≤ lim inf
k→∞

∥G(wnk
)∥. (3.38)

Since {wnmk
} ⊂ {wnk

} and limk→∞ ϵk = 0, we have

0 ≤ lim
k→∞

∥ϵkΥnmk
∥ = lim

k→∞

ϵk
∥G(wnmk

)∥
≤ 0

∥G(x̂)∥
= 0. (3.39)

Next, consider k → +∞ in expression (3.37), we obtain

⟨G(y), y − x̂⟩ ≥ 0, ∀ y ∈ C. (3.40)

Let x ∈ C be an arbitrary element and for 0 < λ ≤ 1, let:

x̂λ = λ x+ (1− λ)x̂. (27)

Then x̂λ ∈ C and from expression (3.40) we have:

λ
⟨
G(x̂λ), x− x̂

⟩
≥ 0. (28)

Hence: ⟨
G(x̂λ), x− x̂

⟩
≥ 0. (29)

Let λ → 0. Then x̂λ → x̂ along a line segment. By the continuity of an operator, G(x̂λ)
converges to G(x̂) as λ → 0. It follows from expression (29) that:⟨

G(x̂), x− x̂
⟩
≥ 0. (30)

Thus, we infer that x̂ ∈ V I(C,G). Therefore, we proved that:

(1) For every x∗ ∈ V I(C,G), then limn→∞ ∥xn − x∗∥ exists;
(2) Every sequential weak cluster point of the sequence {xn} is in V I(C,G).

By Lemma 2.2, the sequence {xn} converges weakly to x∗ ∈ V I(C,G).
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4. Numerical Illustrations

The numerical results for the proposed method are described in this section. All
computations are done in MATLAB R2018b and run on an HP i? 5 Core(TM)i5-6200
8.00 GB (7.78 GB usable) RAM laptop.

Example 4.1. Let H = l2 be a real Hilbert space with sequences of real numbers satis-
fying the following condition

∥x1∥2 + ∥x2∥2 + · · ·+ ∥xn∥2 + · · · < +∞. (4.1)

Assume that G : C → C is defined by

G(x) = (5− ∥x∥)x, ∀x ∈ H,

where C = {x ∈ H : ∥x∥ ≤ 3}. It is easy to see that G is weakly sequentially continuous
on H and V I(C,G) = {0}. For any x, y ∈ H, we have∥∥G(x)− G(y)

∥∥ =
∥∥(5− ∥x∥)x− (5− ∥y∥)y

∥∥
=

∥∥5(x− y)− ∥x∥(x− y)− (∥x∥ − ∥y∥)y
∥∥

≤ 5∥x− y∥+ ∥x∥∥x− y∥+
∣∣∥x∥ − ∥y∥

∣∣∥y∥
≤ 5∥x− y∥+ 3∥x− y∥+ 3∥x− y∥
≤ 11∥x− y∥. (4.2)

Hence G is L-Lipschitz continuous with L = 11. For any x, y ∈ H let
⟨
G(x), y − x

⟩
> 0

such that

(5− ∥x∥)
⟨
x, y − x

⟩
> 0.

Since ∥x∥ ≤ 3 implies that ⟨
x, y − x

⟩
> 0.

Thus, we have⟨
G(y), y − x

⟩
= (5− ∥y∥)

⟨
y, y − x

⟩
≥ (5− ∥y∥)

⟨
y, y − x

⟩
− (5− ∥y∥)

⟨
x, y − x

⟩
≥ 2∥x− y∥2 ≥ 0. (4.3)

Thus, we shown that G is quasimonotone on C. A projection on the set C is computed
explicitly as follows:

PC(x) =


x if ∥x∥ ≤ 3,

3x
∥x∥ , otherwise.

The control conditions have been taken as follows: (Algorithm 1):

λ1 = 0.22, µ = 0.44, θ = 0.50, ϵn =
1

(n+ 1)2
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Table 1. Numerical results values for Example 4.1.

Number of Iterations Execution Time in Seconds
x0 = x1 Algorithm 1 Algorithm 1
(1, 1, · · · , 11000, 0, 0, · · · ) 27 2.5648640000000
(1, 2, · · · , 1000, 0, 0, · · · ) 38 3.5784638000000
(5, 5, · · · , 510000, 0, 0, · · · ) 36 2.9547363930000
(10, 10, · · · , 1010000, 0, 0, · · · ) 44 4.1464846400000
(100, 100, · · · , 10010000, 0, 0, · · · ) 69 6.5639463000000

Conclusion

We formulated an explicit extragradient-type method to find a numerical solution to
the quasimonotone variational inequalities problem in real Hilbert spaces. This method
is considered to be a variant of the two-step gradient method. The proposed algorithm
generates a weakly convergent iterative sequence. A numerical example is provided to
evaluate the numerical solution of quasimonotone variational inequalities.
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