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1. Introduction

Let H1, H2 be two real Hilbert space and C, Q be two nonempty closed convex subsets
ofH1,H2, respectively. LetA : H1 → H2 be a bounded linear operator. Let f : C×C → R
and F : Q×Q → R be two bifunctions with f(x, x) = 0 for all x ∈ C and F (y, y) = 0 for
all y ∈ Q. The split equilibrium problem (SEP) [34] is stated as follows:{

Find x∗ ∈ C such that f(x∗, y) ≥ 0, ∀y ∈ C,

and u∗ = Ax∗ ∈ Q solves F (u∗, u) ≥ 0, ∀u ∈ Q.
(1.1)

Obviously, if F = 0 and Q = H2, then SEP (1.1) becomes the following equilibrium
problem (EP) [7].

Find x∗ ∈ C such that f (x∗, y) ≥ 0 , ∀y ∈ C . (1.2)

The solution set of EP (1.2) for the bifunction f on C is denoted by EP(f, C). A mentioned
archetypal model in Section 2 of [31] is the split inverse problem (SIP), where there are a
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bounded linear operator A from a space H1 to another space H2 and two inverse problems
IP1 and IP2 installed in H1 and H2, respectively. The SIP is stated as follows:{

Find x∗ ∈ C that solves IP1 such that

the point y∗ = Ax∗ ∈ H2 that solves IP2.
(1.3)

Many models of inverse problems in this framework can be solved by setting different
inverse problems for IP1 and IP2. Two most notable examples are the split convex
feasibility problem (SCFP) and the split optimization problem (SOP) in which IP1 and
IP2 are two convex feasibility problems (CFP) or two constrained optimization problems
(COP), see [3, 25].

It is also well known that EP (1.2) is a generalization of many mathematical mod-
els [7] involving variational inequality problem (VIP), constrained optimization problem
(COP), convex feasibility problem (CFP) and fixed point problems (FPP). The EP is
very important in the field of applied mathematics. Moreover, in recent years, the prob-
lem of finding a common solution to equilibrium problems (CSEP) has been widely and
intensively studied by many authors, see in [8] and the reference therein.

We see that the problem of finding a common solution of EP1 and EP2 is on a same
feasible set K and on a same space Rn. As a generalization, when the feasible sets of
EP1 and EP2 are different in a same space, or in more general, EP1 and EP2 are in
two different spaces which originates from the model of SIP (1.3), i.e., a split equilibrium
problem should enable us to split equilibrium solutions between two different subsets of
spaces in which the image of a solution point of one problem, under a given bounded
linear operator, is a solution point of another problem.

Moreover, the multi-objective split optimization problem (MSOP) has been considered
by some authors in recent years, for examples, in [3, 25] and the references therein. This
problem is stated as follows:{

Find x∗ ∈ C ⊂ H1 that solves min{gi(x) : x ∈ C}, i = 1, ..., N such that

u∗ = Ax∗ ⊂ Q ⊂ H2 solves min{hi(u) : u ∈ Q}, j = 1, ...,M,

(1.4)

where gi, hj are convex objective functions on C and Q, respectively. If the functions
gi and hj are differentiable for all i, j then MSOP (1.4) can be solved by many differ-
ent methods or reformulated equivalently to the multiple set SVIP ([31], Section 6.1) for
derivative operators ∇gi and ∇hj . However, if gi and hj are only convex and not differen-
tiable for some i, j then, by setting fi(x, y) = gi(y)− gi(x) and Fj(u, v) = hj(v)− hj(u),
MSOP (1.4) is equivalent to the SEP considered in this paper.

The interest is to cover many situations and some practical models are promosing in the
future, for examples, decomposition methods for PDEs [9], game theory and equilibrium
models [8] and intensity-dodulated radiation therapy [33]. Recently, SEP (1.1) and its
special cases have been recieved a lot of attention by many authors and some methods for
solving them can be found, for instance, in [1–3, 12–16, 18, 19, 21, 28, 30, 32, 34]. Almost
proposed methods for SEPs based on the proximal method [11] which consists of solving
a regularized equilibrium problem, i.e., at current iteration given xk the next iterate xk+1

solves the following problem

find x ∈ C such that f(x, y) +
1

rk
⟨y − x, x− xk⟩ ≥ 0, ∀y ∈ C, (1.5)
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or xk+1 = T f
rk
(xk) where T f

rk
is the resolvent of the bifunction f and rk > 0, see [22].

In 2012, He [34] used the proximal method and proposed the following algorithm
fi(u

i
k, y) +

1
rk
⟨y − ui

k, u
i
k − xk⟩ ≥ 0, ∀y ∈ C, i = 1, ..., N,

τk =
u1
k+...+uN

k

N ,

F (wk, z) +
1
rk
⟨z − wk, wk − τk⟩ ≥ 0, ∀z ∈ Q,

xk+1 = PC(τk + µA∗(wk −Aτk)),

for finding an element Ω = {p ∈ ∩N
i=1EP (fi, C) : Ap ∈ EP (F,Q)}. Under the assumption

of the monotonicity of fi : C × C → R, F : Q × Q → R and suitable conditions on the
parameters rk, µ, the author proved that {ui

k}, {xk} converge weakly to some point in Ω
Very recently, for finding a common solution of a system of equilibrium problems for

pseudomonotone and Lipschitz-type continuous bifunctions {fi}Ni=1 the authors in [5] have
proposed the following parallel hybrid extragradient algorithm

yik = argmin{λfi(xk, y) +
1
2∥xk − y∥2 : y ∈ C},

zik = argmin{λfi(yik, y) + 1
2∥xk − y∥2 : y ∈ C},

z̄k = argmax{∥zik − xk∥ : i = 1, ..., N},
Ck = {v ∈ C : ∥z̄k − v∥ ≤ |xk − v∥},
Qk = {v ∈ C : ⟨x0 − xk, v − xk⟩ ≤ 0},
xk+1 = PCk

∩
Qk

x0, k ≥ 0.

It has been proved that {xk}, {yik}, {zik} converge strongly to the projection of the

starting point x0 onto the solution set F :=
∩N

i=1 EP (fi, C) under certain conditions on
the parameter λ. The advantages of the extragradient method are that it is used for
the class of pseudomonotone bifunctions and two optimization programs are solved at
each iteration which seems to be numerically easier than non-linear inequality (1.5) in the
proximal method, see for instance [24, 26, 27] and the references therein.

In 2016, Hieua [6] introduced parallel extradient-proximal methods for solving split
equilibrium problems. The algorithms combine the extragradient method, the proximal
method and the shrinking projection method. The strong convergence theorems for it-
erative sequences generated by the algorithm established under widely used assumptions
for equilibrium bifunctions. They also were presented an application to split variational
inequality problems. The algorithm is generated as follows:

Algorithm 1.1. Choose x0 ∈ C, C0 = C the control parameters λ, rk, µ satisfy the
following conditions

0 < λ < min

{
1

2c1
,

1

2c2

}
, rn ≥ d > 0, 0 < µ <

2

∥A∥2
.

Step 1. Solve 2N strongly convex optimization programs in parallel{
yik = argmin{λfi(xk, y) +

1
2∥y − xk∥2 : y ∈ C}, i = 1, ..., N,

zik = argmin{λfi(yik, y) + 1
2∥y − xk∥2 : y ∈ C}, i = 1, ..., N.

Step 2. Find among zik the furthest element from xk, i.e.,

z̄k = argmax{∥zik − xk∥ : i = 1, ..., N}.
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Step 3. Solve M regularized equilibrium programs in parallel

wj
k = TFj

rk
(Az̄k), j = 1, ...,M.

Step 4. Find among wj
k the furthest element from Az̄k, i.e.,

w̄k = argmax{∥wj
k −Az̄k∥ : j = 1, ...,M}.

Step 5. Compute

tk = PC(z̄k + µA∗(w̄k −Az̄k)).

Step 6. Set Ck+1 = {v ∈ Ck : ∥tk − v∥ ≤ ∥z̄k − v∥ ≤ ∥xk − v∥}. Compute

xk+1 = PCk+1
(x0).

Set k = k + 1 and go back Step 1.

Motivated and inspired by the recent works [16, 18, 19, 25, 31] and the results above,
we consider SIP (1.3) in Hilbert spaces H1 and H2 in which IP1 and IP2 are common split
equilibrium problems. We propose two different parallel extragradient-proximal methods
for split equilibrium problems for a finite family of bifunctions {fi}Ni=1 : C × C → R in
H1 and a system of bifunctions {Fi}Mj=1 : Q × Q → R in H2. We use the extragradient
method for pseudomonotone equilibrium problems in H1 and the proximal method with
CQ algorithm for monotone equilibrium problems in H2 to obtain the strong convergence
algorithm.

2. Preliminaries and lemmas

This section contains some definition and basic results that will be used in our sub-
sequent analysis. We next recall some properties of the projection [10] for more details.
For any point u ∈ H there exists a unique point PCu ∈ C such that

∥ u− PCu ∥≤∥ u− y ∥ for all y ∈ C.

PC is called the metric projection of H onto C. We know that PC is a nonexpansive
mapping of H onto C. It is also known that PC satisfies

⟨x− y, PCx− PCy⟩ ≥∥ PCx− PCy ∥2 for all x, y ∈ H. (2.1)

In particular, we get from (2.1) that

⟨x− y, x− PCy⟩ ≥∥ x− PCy ∥2 for all x ∈ C, y ∈ H.

Furthermore, PCx is characterized by the properties

PCx ∈ C and ⟨x− PCx, PCx− y⟩ ≥ 0 for all y ∈ C.

For solving SEP (1.1), we set the following conditions for the bifunctions f : C×C → R
and F : Q×Q → R. Firstly, for establishing a weakly convergence algorithm, we assume
that f satisfies the following condition.

Condition 2.1. A1. f is pseudomonotone on C and f(x, x) = 0 for all x ∈ C.
A2. f is Lipschitz-type continuous on C with the constants c1, c2.
A3. f(·, y) is weakly sequencially upper semicontinuous on C with every fixed y ∈ C, i.e.,
lim sup
k→∞

f(xk, y) ≤ f(x, y) for each sequence {xk} ⊂ C converging weakly to x.

A4. f(x, ·) is convex and subdifferentiable on C for every fixed x ∈ C.
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Next, for obtaining a strongly convergence algorithm, we replace the assumption (A3)
in Condition 2.1 by the weaker one (A3a) below, i.e., the bifunction f satisfies the following
condition.

Condition 2.2. The assumptions (A1), (A2), (A4) in Condition 2.1 hold, and
(A3a), f(·, y) is sequencially upper semicontinuous on C with every fixed y ∈ C, i.e.,

lim sup
k→∞

f(xk, y) ≤ f(x, y),

for each sequence {xk} ⊂ C converging strongly to x.

Throughout this paper, the bifunction F satisfies the following condition.

Condition 2.3. B1. F is monotone on C and F (x, x) = 0 for all x ∈ C.
B2. For all x, y, z ∈ C,

lim sup
k→0+

F (tz + (1− t)x, y) ≤ F (x, y).

B3. For all x ∈ C, F (x, ·) is convex and lower semicontinuous.

The following results concern with the monotone bifunction F .

Lemma 2.4 ([22], Lemma 2.12). Let C be a nonempty, closed and convex subset of a
Hilbert space H, F be a bifunction from C × C to R satisfying Condition 2.3 and let
r > 0, x ∈ H. Then, there exists z ∈ C such that

F (z, y) +
1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C.

Lemma 2.5 ([22], Lemma 2.12). Let C be a nonempty, closed and convex subset of a
Hilbert space H,F be a bifunction from C×C to R satisfying Condition 2.3. For all r > 0
and x ∈ H, define the mapping

TF
r x = {z ∈ C : F (z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C}.

Then the followings hold:
C1. TF

r is single-valued;
C2. TF

r is a firmly nonexpansive, i.e., for all x, y ∈ H,

∥TF
r x− TF

r y∥2 ≤ ⟨TF
r x− TF

r y, x− y⟩;
C3. Fix(TF

r ) =EP(F,C), where Fix(TF
r ) is the fixed point set of TF

r ;
C4. EP(F,C) is closed and convex.

Lemma 2.6 ([34], Lemma 2.5). For r, s > 0 and x, y ∈ H. Under the assumptions of
Lemma 2.5, then

∥TF
r (x)− TF

r (y)∥2 ≤ ∥x− y∥+ | s− r |
s

∥TF
r (y)− y∥.

The metric projection PC : H → C is defined by PCx = argminy∈C{∥y − x∥}. It is
well-known that PC has the following characteristic properties, see [17] for more details.

Lemma 2.7. [29] Let PC : H → C be the metric projection from H onto C. Then
(i) For all x ∈ C, y ∈ H,

∥x− PCy∥2 + ∥PCy − y∥2 ≤ ∥x− y∥2.
(ii) z = PCx if and only if ⟨x− z, z − y⟩ ≥ 0, ∀y ∈ C.
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Any Hilbert space satisfies Opial’s condition [35], i.e., if {xk} ⊂ H converges weakly
to x then

lim inf
k→∞

∥xk − x∥ < lim inf
k→∞

∥xk − y∥, ∀y ∈ H, y ̸= x.

Lemma 2.8 ([23], Lemma 3.1). Suppose that x∗ ∈ EP (f, C) and {xk}, {yk}, {zk} are
the sequences generated by Algorithm 1. Then

(i) λ(f(xk, y)− f(xk, yk)) ≥ ⟨yk − xk, yk − y⟩, ∀y ∈ C.
(ii) ∥zk − x∗∥2 ≤ ∥xk − x∗∥2 − (1− 2λc1)∥yk − xk∥2 − (1− 2λc2)∥yk − zk∥2.

Lemma 2.9. [20] Let C be a nonempty, closed and convex subset of a real Hilbert space H
and PCx : H → C be the metric projection from H onto C. Then the following inequality
holds:

∥y − PCx∥2 + ∥x− PCx∥2 ≤ ∥x− y∥2, ∀x ∈ H, ∀y ∈ C.

Lemma 2.10. [4] Let H be a real Hilbert space and let {ui}mi=1 ⊆ H. For αi ∈ (0, 1), i =

1, 2, ...,m such that

m∑
i=1

αi = 1, the following identity holds:

∥
m∑
i=1

αiui∥2 =

m∑
i=1

αi∥ui∥2 −
∑

1≤i<j≤m

αiαj∥ui − uj∥2.

3. Main Results

In this section, we present two different hybrid algorithms for common split equilibrium
problems and prove their strongly convergence theorems. Assume that all bifunctions
fi : C × C → R satisfy the Lipschitz-type continuous condition with same constants
c1, c2, where c1 = max{ci1 : i = 1, ..., N} and c2 = max{ci2 : i = 1, ..., N} such that ci1, ci2
are two constants of Lipschitz-type continuous fi. We denote the solution set of SEP for
{fi}Ni=1 and {Fj}Mj=1 by

Ω = {g∗ ∈ ∩N
i=1EP (fi, C) : Ag∗ ∈ ∩M

j=1EP (Fj , Q)}.
It is easy to show that if fi satisfies Condition 2.1 or Condition 2.2 then the solution set
EP(fi, C) is closed and convex, see for instance [26]. Moreover, from Lemma 2.5 (C4),
under Condition 2.3 the set of solutions EP(Fj , Q) is also closed and convex. Since the
operator A is linear and bounded, Ω is closed and convex. In this paper, we assume that
Ω is nonempty. We start with the following algorithm.

Algorithm 3.1. Choose x0 ∈ C,Q, C0 = C and Q0 = C the control parameters λ, rk, η
satisfy the following conditions

0 < λ < min

{
1

2c1
,

1

2c2

}
, rk ≥ d > 0, 0 < η <

2

∥A∥2
.

Step 1. Solve 2N strongly convex optimization programs in parallel{
hi
k = argmin{λfi(gk, h) + 1

2∥h− gk∥2 : h ∈ C}, i = 1, ..., N,

ui
k = argmin{λfi(hi

k, h) +
1
2∥h− hi

k∥2 : h ∈ C}, i = 1, ..., N.

Step 2. Find among ui
k the furthest element from gk, i.e.,

ūk = argmax{∥ui
k − gk∥ : i = 1, ..., N}.
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Step 3. Solve M regularized equilibrium programs in parallel

wj
k = TFj

rk
(Aūk), j = 1, ...,M.

Step 4. Find among wj
k the furthest element from Aūk, i.e.,

w̄k = argmax{∥wj
k −Aūk∥ : j = 1, ...,M}.

Step 5. Compute

sk = PC(ūk + ηA∗(w̄k −Aūk)).

Step 6. Set Ck = {v ∈ H1 : ∥sk − v∥ ≤ ∥ūk − v∥ ≤ ∥gk − v∥} and Qk = {v ∈ Qk−1 :
⟨g1 − gk, gk − u⟩ ≥ 0. Compute

gk+1 = PCk∩Qk
(g0).

Set k = k + 1 and go back Step 1.

Theorem 3.2. Let C, Q be two nonempty closed convex subsets of two real Hilbert
spaces H1 and H2, respectively. Let {fi}Ni=1 : C ×C → R be a finite family of bifunctions
satisfying Condition 2.2 and {Fj}Mj=1 : Q × Q → R be a finite family of bifunctions
satisfying Condition 2.3. Let A : H1 → H2 be a bounded linear operator with the adjoint
A∗. In addition the solution set Ω is nonempty. Then, the sequences {gk}, {hi

k}, {ui
k}, i =

1, ..., N generated by Algorithm 3.1 converge strongly to Aw ∈ ∩M
j=1EP (Fj , Q).

Proof. We split the proof into five steps.
Claim 1. Show that {xk} is well-defined.

C1
k = {v ∈ H1 : ∥sk − v∥ ≤ ∥ūk − v∥}, C2

k = {v ∈ H1 : ∥ūk − v∥ ≤ ∥gk − v∥},
then

Ck = C1
k ∩ C2

k .

Note that C1
k , C2

k are either the halfspaces or the whole space H for all k ≥ 0.
Hence, they are closed and convex. Obviously, Ck is closed and convex.
Next, we show that Ω ⊂ Ck for all k ≥ 0. From Lemma 2.8 (ii) and the hypothsis of λ,
we have

∥ui
k − g∗∥ ≤ ∥gk − g∗∥ ∀g∗ ∈ Ω.

Thus,

∥ūk − g∗∥ ≤ ∥gk − g∗∥. (3.1)

Thus, from the definition of sk and the nonexpansive of the projection,

∥sk − g∗∥2 = ∥PC(ūk + ηA∗(w̄k −Aūk))− PCg
∗∥2

≤ ∥ūk − g∗ + ηA∗(w̄k −Aūk)∥2

= ∥ūk − g∗∥2 + η2∥A∗(w̄k −Aūk)∥2 + 2η⟨ūk − g∗, A∗(w̄k −Aūk)⟩
≤ ∥ūk − g∗∥2 + η2∥A∗∥2∥w̄k −Aūk∥2 + 2η⟨A(ūk − g∗), w̄k −Aūk⟩
≤ ∥ūk − g∗∥2 + η2∥A∗∥2∥w̄k −Aūk∥2 − 2η∥w̄k −Aūk∥2

≤ ∥ūk − g∗∥2 − η(2− η∥A∗∥2)∥w̄k −Aūk∥2

≤ ∥ūk − g∗∥2. (3.2)

From (3.1) and (3.2),

∥sk − g∗∥ ≤ ∥ūk − g∗∥ ≤ ∥gk − g∗∥, ∀g∗ ∈ Ω.
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Thus, by the definition of Ck and the induction, Ω ⊂ Ck for all k ≥ 0. For k = 1, we have
g1 = g ∈ C and Q1 = C, hence Ω ⊆ C1∩Q1. Suppose that gk is given and Ω ⊆ Ck∩Qk for
some k ≥ 1. There exists a unique element gk+1 ∈ Ck ∩Qk such that gk+1 ∈ PCk∩Qk

(g1),
there holds ⟨gk+1 − u, g1 − gk+1⟩ ≥ 0 for each u ∈ Ck ∩Qk we get Ω ⊆ Qk+1. Therefore,
we get Ω ⊆ Ck+1 ∩Qk+1. This gives {gk} is well defined and Ω ⊆ Ck ∩Qk

Claim 2. Show that lim
k→∞

∥gk − g1∥ exists, since Ω is nonempty closed convex subset

of C, there exists a unique element u ∈ Ω such that u = PΩ(g1). From gk+1 = PQk
(g1),

we have

∥gk − g1∥ ≤ ∥u− g1∥, (3.3)

for every u ∈ Qk−1. Since u ∈ Ω ⊆ Ck ∩Qk, we obtain

∥gk − g1∥ ≤ ∥gk+1 − g1∥, (3.4)

for each k ∈ N. It follows from (3.3) and (3.4) that thesequence {gk} is bounded and
nondecreasing. There, lim

k→∞
∥gk − g1∥ exists.

Claim 3. Show that gk → w ∈ C as k → ∞. For l > k by the definition of Qk, we see
that gl = PQl

(g1) ∈ Qk. From Lemma 2.9, we have

∥gl − gk∥2 ≤ ∥gl − g1∥2 − ∥gk − g1∥2.

From Claim 2, we obtain that {gk} is a Cauchy sequence. Hence, there exists w ∈ C such
that gk → w as k → ∞. In particular, we have

lim
k→∞

∥gk+1 − gk∥ = 0. (3.5)

Claim 4. Show that hi
k → w as k → ∞ for all i = 1, ..., N. From the definition of Ck

and gk+1 ∈ Ck, we have

∥sk − gk+1∥ ≤ ∥ūk − gk+1∥ ≤ ∥gk − gk+1∥.

Thus, from the triangle inequality, one has

∥sk − gk∥ ≤ ∥sk − gk+1∥+ ∥gk+1 − gk∥ ≤ 2∥gk − gk+1∥,
∥ūk − gk∥ ≤ ∥ūk − gk+1∥+ ∥gk+1 − gk∥ ≤ 2∥gk − gk+1∥,
∥ūk − sk∥ ≤ ∥ūk − gk∥+ ∥gk − sk∥ ≤ 4∥gk − gk+1∥.

Three last inequalities togeter with the relation (3.5) imply that

lim
k→∞

∥sk − gk∥ = lim
k→∞

∥ūk − sk∥ = lim
k→∞

∥ūk − gk∥ = 0. (3.6)

Hence, from the definition of ūk, we also obtain

lim
k→∞

∥ui
k − gk∥ = 0, ∀i = 1, .., N. (3.7)

Since {gk} is a Cauchy sequence, gk → w and

lim
k→∞

sk = lim
k→∞

ūk = lim
k→∞

ui
k = w, ∀i = 1, .., N,

and so

lim
k→∞

Aūk = Aw. (3.8)
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From the relation (3.2) and the triangle inequality, we obtain

η(2− η∥A∗∥2)∥w̄k −Aūk∥2 ≤ ∥ūk − g∗∥2 − ∥sk − g∗∥2

= (∥ūk − g∗∥ − ∥sk − g∗∥)(∥ūk − g∗∥+ ∥sk − g∗∥)
≤ ∥ūk − sk∥(∥ūk − g∗∥+ ∥sk − g∗∥).

Thus, from η(2− η∥A∗∥2) > 0, the boundedness of {sk}, {ūk} and (3.6) we obtain

lim
k→∞

∥w̄k −Aūk∥ = 0.

From the defination of w̄k, we get

lim
k→∞

∥wj
k −Aūk∥ = 0, ∀j = 1, ..,M, (3.9)

which follows from (3.8) that

lim
k→∞

wj
k = Aw, ∀j = 1, ..,M. (3.10)

From Lemma 2.8 (ii) and the triangle inequality, we have

(1− 2λc1)∥hi
k − gk∥2 ≤ ∥gk − g∗∥2 − ∥ui

k − g∗∥2

= (∥gk − g∗∥ − ∥ui
k − g∗∥)(∥gk − g∗∥+ ∥ui

k − g∗∥)
≤ ∥gk − ui

k∥(∥gk − g∗∥+ ∥ui
k − g∗∥).

Thus, from the hypothesis of λ, the boundedness of {gk}, {ui
k} and (3.7) we obtain

lim
k→∞

∥hi
k − gk∥ = 0.

Therefore, hi
k → w as k → ∞ for all i = 1, ..., N.

Claim 5. w ∈ Ω and w = u : PΩ(g0). The proof of Claim 3. By using Claim 2, we
also obtain w ∈ ∩N

i=1EP (fi, C). Moreover, from Lemma 2.6 for some r > 0 we have

∥TFj
r (Aw)−Aw∥ ≤ ∥TFj

r (Aw)− TFj
rk

(Aūk) + ∥TFj
rk

(Aūk)−Aūk∥+ ∥Aūk −Aw∥

≤ ∥Aw −Aūk∥+
rk − r

rk
∥TFj

rk
(Aūk)−Aūk∥+ ∥TFj

rk
(Aūk)−Aūk∥

+ ∥Aūk −Aw∥

= 2∥Aw −Aūk∥+
rk − r

rk
∥wj

k −Aūk∥+ ∥wj
k −Aūk∥ → 0,

which is followed from the relations (3.8), (3.9), (3.10) and rk ≥ d > 0. Thus, T
Fj
r (Aw) = 0

or Aw is a fixed point of T
Fj
r . From Lemma 2.5, we obtain Aw ∈ ∩M

j=1EP (Fj , Q). Thus,
w ∈ Ω. Finally, from (3.3), ∥gk − g1∥ ≤ ∥u − g1∥ where u = PΩ(x1). Taking k → ∞ in
this inequality, one has ∥w − g1∥ ≤ ∥u − g1∥. From the definition of u, w = u. Theorem
3.2 is proved.

Algorithm 3.3. Choose g0 ∈ C,Q, C0 = C and Q0 = C the control parameters λ, rk, η
satisfy the following conditions

0 < λ < min

{
1

2c1
,

1

2c2

}
, rk ≥ d > 0, 0 < η <

2

∥A∥2
.

Step 1. Solve 2N strongly convex optimization programs in parallel{
hi
k = argmin{λfi(gk, h) + 1

2∥h− gk∥2 : h ∈ C}, i = 1, ..., N,

ui
k = argmin{λfi(hi

k, h) +
1
2∥h− gk∥2 : h ∈ C}, i = 1, ..., N.
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Step 2. Find among ui
k the furthest element from gk, i.e.,

ūk = α0
kgk +

N∑
i=1

αi
ku

i
k , where

N∑
i=0

αi
k = 1 , ∀k ∈ N.

Step 3. Solve M regularized equilibrium programs in parallel

wj
k = TFj

rk
(Aūk), j = 1, ...,M.

Step 4. Find among wj
k the furthest element from Aūk, i.e.,

w̄k = β0
kAūk +

M∑
i=1

βi
kw

j
k , where

M∑
i=0

βi
k = 1 , ∀k ∈ N.

Step 5. Compute

sk = PC(ūk + ηA∗(w̄k −Aūk)).

Step 6. Set Ck = {v ∈ H1 : ∥sk − v∥ ≤ ∥ūk − v∥ ≤ ∥gk − v∥} and Qk = {v ∈ Qk−1 :
⟨g1 − gk, gk − u⟩ ≥ 0. Compute

gk+1 = PCk∩Qk
(g0).

Set k = k + 1 and go back Step 1.

Theorem 3.4. Let C, Q be two nonempty closed convex subsets of two real Hilbert
spaces H1 and H2, respectively. Let {fi}Ni=1 : C ×C → R be a finite family of bifunctions
satisfying Condition 2.2 and {Fj}Mj=1 : Q × Q → R be a finite family of bifunctions
satisfying Condition 2.3. Let A : H1 → H2 be a bounded linear operator with the adjoint
A∗. In addition the solution set Ω is nonempty. Assume that the following conditions
hold:
(i) lim inf

k→∞
α0
kα

i
k > 0

(ii) lim inf
k→∞

β0
kβ

i
k > 0.

Then, the sequences {gk}, {hi
k}, {ui

k}, i = 1, ..., N generated by Algorithm 3.3 converge
strongly to Aw ∈ ∩M

j=1EP (Fj , Q).

Proof. We split the proof into five steps.
Claim 1. Show that {gk} is well-defined.

C1
k = {v ∈ H1 : ∥sk − v∥ ≤ ∥ūk − v∥}, C2

k = {v ∈ H1 : ∥ūk − v∥ ≤ ∥gk − v∥},

then

Ck = C1
k ∩ C2

k .

Note that C1
k , C2

k are either the halfspaces or the whole space H for all k ≥ 0. Hence,
they are closed and convex. Obviously, Ck is closed and convex. Next, we show that
Ω ⊂ Ck for all k ≥ 0. From Lemma 2.8 (ii) and the hypothsis of λ, we have

∥ui
k − g∗∥ ≤ ∥gk − g∗∥for all g∗ ∈ Ω.

Thus,

∥ūk − g∗∥ ≤ ∥gk − g∗∥. (3.11)
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Thus, from the definition of sk and the nonexpansive of the projection,

∥sk − g∗∥2 = ∥PC(ūk + ηA∗(w̄k −Aūk))− PCg
∗∥2

≤ ∥ūk − g∗ + ηA∗(w̄k −Aūk)∥2

= ∥ūk − g∗∥2 + η2∥A∗(w̄k −Aūk)∥2 + 2η⟨ūk − g∗, A∗(w̄k −Aūk)⟩
≤ ∥ūk − g∗∥2 + η2∥A∗∥2∥w̄k −Aūk∥2 + 2η⟨A(ūk − g∗), w̄k −Aūk⟩
≤ ∥ūk − g∗∥2 + η2∥A∗∥2∥w̄k −Aūk∥2 − 2η∥w̄k −Aūk∥2

≤ ∥ūk − g∗∥2 − η(2− η∥A∗∥2)∥w̄k −Aūk∥2

≤ ∥ūk − g∗∥2. (3.12)

From (3.11) and (3.12),

∥sk − g∗∥ ≤ ∥ūk − g∗∥ ≤ ∥gk − g∗∥, ∀g∗ ∈ Ω.

Thus, by the definition of Ck and the induction, Ω ⊂ Ck for all k ≥ 0. For k = 1, we have
g1 = g ∈ C and Q1 = C, hence Ω ⊆ C1∩Q1. Suppose that gk is given and Ω ⊆ Ck∩Qk for
some k ≥ 1. There exists a unique element gk+1 ∈ Ck ∩Qk such that gk+1 ∈ PCk∩Qk

(g1)
there holds ⟨gk+1 − u, g1 − gk+1⟩ ≥ 0 for each u ∈ Ck ∩Qk we get Ω ⊆ Qk+1. Therefore,
we get Ω ⊆ Ck+1 ∩Qk+1. This gives {gk} is well defined and Ω ⊆ Ck ∩Qk

Claim 2. Show that lim
k→∞

∥gk − g1∥ exists, since Ω is nonempty closed convex subset

of C there exists a unique element u ∈ Ω such that u = PΩ(g1). From gk+1 = PQk
(g1),

we have

∥gk − g1∥ ≤ ∥u− g1∥, (3.13)

for every u ∈ Qk−1. Since u ∈ Ω ⊆ Ck ∩Qk, we obtain

∥gk − g1∥ ≤ ∥gk+1 − g1∥, (3.14)

for each k ∈ N. It follows from (3.13) and (3.14) that thesequence {gk} is bounded and
nondecreasing. There, lim

k→∞
∥gk − g1∥ exists.

Claim 3. Show that gk → w ∈ C as k → ∞. For l > k by the definition of Qk, we see
that gl = PQl

(g1) ∈ Qk. From Lemma 2.9, we have

∥gl − gk∥2 ≤ ∥gl − g1∥2 − ∥gk − g1∥2.
From Claim 2, we obtain that {gk} is a Cauchy sequence. Hence, there exists w ∈ C such
that gk → w as k → ∞. In particular, we have

lim
k→∞

∥gk+1 − gk∥ = 0. (3.15)

Claim 4. Show that hi
k → w as k → ∞ for all i = 1, ..., N. From the definition of Ck

and gk+1 ∈ Ck, we have

∥sk − gk+1∥ ≤ ∥ūk − gk+1∥ ≤ ∥gk − gk+1∥.
Thus, from the triangle inequality, one has

∥sk − gk∥ ≤ ∥sk − gk+1∥+ ∥gk+1 − gk∥ ≤ 2∥gk − gk+1∥,
∥ūk − gk∥ ≤ ∥ūk − gk+1∥+ ∥gk+1 − gk∥ ≤ 2∥gk − gk+1∥,
∥ūk − sk∥ ≤ ∥ūk − gk∥+ ∥gk − sk∥ ≤ 4∥gk − gk+1∥.

Three last inequalities togeter with the relation (3.15) imply that

lim
k→∞

∥sk − gk∥ = lim
k→∞

∥ūk − sk∥ = lim
k→∞

∥ūk − gk∥ = 0. (3.16)
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Hence, from Lemma 2.10 for g∗ ∈ Ω we have

∥ūk − g∗∥2 = ∥α0
kgk +

N∑
i=1

αi
ku

i
k − g∗∥2

≤ α0
k∥gk − g∗∥2 +

N∑
i=1

αi
k∥ui

k − g∗∥2 −
N∑
i=1

α0
kα

i
k∥ui

k − gk∥2

≤ α0
k∥gk − g∗∥2 +

N∑
i=1

αi
k∥gk − g∗∥2 −

N∑
i=1

α0
kα

i
k∥ui

k − gk∥2

= ∥gk − g∗∥2 −
N∑
i=1

α0
kα

i
k∥ui

k − gk∥2.

It follows that
N∑
i=1

α0
kα

i
k∥ui

k − gk∥2 ≤ ∥gk − g∗∥2 − ∥ūk − g∗∥2.

By the condition lim inf
k→∞

α0
kα

i
k > 0, ∀i = 1, ..., N and (3.16), we obtain

lim
k→∞

∥ui
k − gk∥ = 0, ∀i = 1, .., N. (3.17)

Since {gk} is a Cauchy sequence, gk → w and

lim
k→∞

sk = lim
k→∞

ūk = lim
k→∞

ui
k = w, ∀i = 1, .., N,

and so

lim
k→∞

Aūk = Aw. (3.18)

Hence, from Lemma 2.10 for g∗ ∈ Ω we have

∥w̄k − g ∗ ∥2 = ∥β0
kAūk +

N∑
i=1

βi
kw

j
k − g∗∥2

≤ β0
k∥Aūk − g∗∥2 +

N∑
i=1

βi
k∥w

j
k − g∗∥2 −

N∑
i=1

β0
kβ

i
k∥w

j
k −Aūk∥2

≤ β0
k∥Aūk − g∗∥2 +

N∑
i=1

βi
k∥Aūk − g∗∥2 −

N∑
i=1

β0
kβ

i
k∥w

j
k −Aūk∥2

= ∥Aūk − g∗∥2 −
N∑
i=1

β0
kβ

i
k∥w

j
k −Aūk∥2.

It follows that
N∑
i=1

β0
kβ

j
k∥w

j
k −Aūk∥2 ≤ ∥Aūk − g∗∥2 − ∥w̄k − g∗∥2.

By the condition lim inf
k→∞

β0
kβ

j
k > 0, ∀j = 1, ..., N and (3.18), we obtain

lim
k→∞

∥wj
k −Aūk∥ = 0, ∀j = 1, .., N. (3.19)
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We get which follows from (3.18) that

lim
k→∞

wj
k = Aw, ∀j = 1, ..,M. (3.20)

From Lemma 2.8 (ii) and the triangle inequality, we have

(1− 2λc1)∥hi
k − gk∥2 ≤ ∥gk − g∗∥2 − ∥ui

k − g∗∥2

= (∥gk − g∗∥ − ∥ui
k − g∗∥)(∥gk − g∗∥+ ∥ui

k − g∗∥)
≤ ∥gk − ui

k∥(∥gk − g∗∥+ ∥ui
k − g∗∥).

Thus, from the hypothesis of λ, the boundedness of {gk}, {ui
k} and (3.17) we obtain

lim
k→∞

∥hi
k − gk∥ = 0.

Therefore, hi
k → w as k → ∞ for all i = 1, ..., N.

Claim 5. w ∈ Ω and w = u : PΩ(g0). The proof of Claim 3. By using Claim 2, we
also obtain w ∈ ∩N

i=1EP (fi, C). Moreover, from Lemma 2.6 for some r > 0 we have

∥TFj
r (Aw)−Aw∥ ≤ ∥TFj

r (Aw)− TFj
rk

(Aūk) + ∥TFj
rk

(Aūk)−Aūk∥+ ∥Aūk −Aw∥

≤ ∥Aw −Aūk∥+
rk − r

rk
∥TFj

rk
(Aūk)−Aūk∥+ ∥TFj

rk
(Aūk)−Aūk∥

+ ∥Aūk −Aw∥

= 2∥Aw −Aūk∥+
rk − r

rk
∥wj

k −Aūk∥+ ∥wj
k −Aūk∥ → 0,

which is followed from the relations (3.18), (3.19), (3.20) and rk ≥ d > 0. Thus, T
Fj
r (Aw) =

0 or Aw is a fixed point of T
Fj
r . From Lemma 2.5, we obtain Aw ∈ ∩M

j=1EP (Fj , Q). Thus,
w ∈ Ω. Finally, from (3.13), ∥gk − g1∥ ≤ ∥u − g1∥ where u = PΩ(g1). Taking k → ∞ in
this inequality, one has ∥w − g1∥ ≤ ∥u − g1∥. From the definition of u, w = u. Theorem
3.4 is proved.
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