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Abstract Iterative methods for solving nonlinear least-squares problems are of great interest because

of their unique structures and wide range of applications. This paper exploits the unique structure

and proposes a quasi-Newton diagonal-based approximation for solving this class of problems. Under

some appropriate conditions, the search direction satisfies the sufficiently descent condition, and the new

method is shown to be globally convergent. The numerical efficiency of the new method is tested on some

standard benchmark test problems. Subsequently, the new method is implemented to solve 2 dimensional

robotic motion control problem.
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1. Introduction

In this paper, we are concerned with iterative methods for solving the following non-
linear least squares (NLS) problem

min
x∈Rn

f(x), f(x) =
1

2
∥F (x)∥2, (1.1)
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where F (x) = (F1(x), F2(x), . . . , Fm(x))T and each residual Fi : Rn → R, i = 1, 2, . . . ,m,
is assumed to be twice continuously differentiable. The problem (1.1) is a special class
of general unconstrained optimization problems. Let the Jacobian of the vector-valued
function F : Rn → Rm (m ≥ n) be denoted by J(x) at x ∈ Rn. The gradient ∇f(x)
and Hessian ∇2f(x) of problem (1.1) are respectively denoted by g(x) and H(x) and are
given by

g(x) :=

m∑
i=1

Fi(x)∇Fi(x) = J(x)TF (x), (1.2)

H(x) := U(x) + V (x), (1.3)

where U(x) = J(x)TJ(x), V (x) :=
∑m

i=1 Fi(x)∇2Fi(x), the real-valued function Fi rep-
resents the ith component of the vector-valued function F and ∇2Fi(x) is its Hessian.

NLS problems have been of great interest to many researchers due to the special struc-
ture of their gradient and Hessian. A number of iterative methods for solving them have
been developed and can be categorized into two, namely: (i) general unconstrained op-
timization methods that includes Newton’s method and quasi-Newton methods; and (ii)
special methods: these methods utilize the special structure of the problem, example
of which includes Gauss-Newton method, Levenberg-Marquardt method and structured
quasi-Newton methods (see, [1–5]). Detail of these methods can be found in the following
surveys [6, 7]. On the other hand, the study of efficient method for NLS problems is
important due to its appearance in many applications such as robotic motion control,
data fitting, optimal control, parameter estimation, experimental design, data assimila-
tion, and imaging problems (see, [8–22]). For example, the values for the parameters that
best match the model of a given data set can be determined by minimizing the sum of
the squares of the residuals.

It is a known fact that the nice structures of the gradient and Hessian of problem (1.1)
are usually utilized to come up with efficient methods. For instance, based on a modified
secant equation and the formula given in (1.2) and (1.3), Kobayashi et al. [23] proposed
a class of conjugate gradient-like structured methods for solving problems in the form of
(1.1). Also, Dehghani and Mahdavi-Amiri [24] proposed another conjugate gradient-like
method for solving problem (1.1). They incorporated a modified secant equation into the
method so as to get as much information of the Hessian of problem (1.1) as possible. For
more on recently developed matrix-free structured methods, the interested reader may
refer to the following references [25–27].

Motivated by the success of the work presented in [25], Mohammad and Santos [28]
proposed a diagonal Hessian approximation method for solving problem (1.1). The entries
of the diagonal matrix are calculated using some structured vectors derived in such a
way that the secant condition is approximately satisfied. Their method works well and
is shown to be numerically efficient. However, the authors commented on the need to
further investigate better approximations of the Hessian matrix that utilize the special
structure of problem (1.1). In this paper, we present a new method for solving problem
(1.1) based on a structured diagonal matrix that approximate the Hessian of the objective
function. Furthermore, we incorporate some diagonal correction matrix into the formula
for calculating the entries of the diagonal matrix. We highlight some contributions of the
propose method below:
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• In building the structured diagonal matrix approximation of our method, we
incorporated some diagonal correction matrix which will be updated as the iter-
ation process progresses. By this, we expect our diagonal matrix to contain more
information of the objective function than the one proposed in [28].
• Our proposed method generates descent directions and is globally convergent.
• We implement the algorithm of the new method without the need to explicitly
compute any matrix throughout the iteration process.
• We present numerical experiments to demonstrate the efficiency of the new
method.
• We successfully apply the new method to solve 2D robotic motion control
problem.

We organized the remainder of this paper as follows. We present the proposed method
and its algorithm in the next section and discuss the convergence analysis in Section
3. We give numerical experiments and subsequently apply the algorithm to the robotic
motion control problem in Section 4. Throughout this article, we denote the Euclidean
norm of vectors and the induced 2-norm of matrices by ∥ · ∥.

2. Proposed method

An important concept of a structured quasi-Newton method for nonlinear least squares
is the structure principle [29]. Now, let k = 1, . . . , n, and suppose that at certain iteration,
say k − 1, the first term of the Hessian, (1.3), is given

U(xk−1) =

m∑
i=1

∇Fi(xk−1)∇Fi(xk−1)
T . (2.1)

Setting sk−1 = xk − xk−1 and applying Taylor’s expansion on F (xk−1), we have

Fi(xk−1) = Fi(xk)−∇Fi(xk)
T sk−1 + o(∥sk−1∥), (2.2)

where Fi(x) is the ith component of the vector-valued F (x) and o : [0,+∞) → R such

that lim
e→0

o(e)
e = 0.

Truncating the last term of (2.2) and then multiply it by ∇Fi(xk) from the left, we have

∇Fi(xk)[Fi(xk)− Fi(xk−1)] ≈ ∇Fi(xk)∇Fi(xk)
T sk−1. (2.3)

Summing both sides of (2.3) for i = 1, . . . ,m, we have

m∑
i=1

∇Fi(xk)[Fi(xk)− Fi(xk−1)] ≈
m∑
i=1

∇Fi(xk)∇Fi(xk)
T sk−1. (2.4)

This means that the updating matrix U(xk) of (2.1) satisfies

U(xk)sk−1 ≈ ŷk−1, where ŷk−1 = JT
k (F (xk)− F (xk−1)), Jk = J(xk). (2.5)

On the other hand, to approximate the second term V (x) of (1.3) at iteration k, we also
apply the Taylor expansion on ∇Fi(xk) and the result is

∇2Fi(xk)sk−1 = ∇Fi(xk)−∇Fi(xk−1) + o(∥sk−1∥), (2.6)

where for each i = 1, . . . ,m, we have o : [0,+∞) → Rn satisfying lim
e→0

oi(e)
e = 0.

Again, truncating the last term of (2.6) and then multiply it with Fi(xk) on the left yields
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Fi(xk)∇2Fi(xk)sk−1 ≈ Fi(xk)[∇Fi(xk)−∇Fi(xk−1)]. (2.7)

Also, summing both sides of (2.7), for i = 1, . . . ,m, gives

m∑
i=1

Fi(xk)∇2Fi(xk)sk−1 ≈
m∑
i=1

Fi(xk)[∇Fi(xk)−∇Fi(xk−1)]. (2.8)

This gives

V (xk)sk−1 ≈ yk−1, where yk−1 = (Jk − Jk−1)
TFk. (2.9)

Let Dk = D(xk), Uk = U(xk) and Vk = V (xk). Suppose that the sum of the two square
matrices U(xk) and V (xk) is approximated with a diagonal matrix Dk ≈ Uk + Vk, such
that the weak secant is satisfied, i.e.,

sTk−1Dksk−1 = sTk−1yk−1, (2.10)

where

yk−1 = ŷk−1 + yk−1 = JT
k (F (xk)− F (xk−1)) + (Jk − Jk−1)

TFk. (2.11)

Now, let D0 = I, where I is an identity matrix, such that the diagonal matrix Dk can be
updated as

Dk = Dk−1 +Ωk−1, k ≥ 1, (2.12)

where Ωk−1 is a diagonal matrix. Observe that Ωk−1 is the deviation between Dk−1 and
Dk. The diagonal matrix Ωk−1 is a correction matrix of Dk−1 such that Dk satisfies weak
secant equation [30]. The update Dk will be constructed from Dk−1 in such a way that a
constrained minimization problem involving ∥Dk−Dk−1∥ and the trace of (Dk−1+Ωk−1)
is solved. The reason for integrating the trace of (Dk−1 + Ωk−1) into the optimization
problem is to obtain a correction matrix Ωk−1 which clusters the eigenvalues of Dk such
that its condition number improves, subject to the constraint condition sTk−1Dksk−1 =

sTk−1yk−1, with yk−1 given as in (2.11). The formula for calculating the entries of the
diagonal correction matrix Ωk−1 is given in the following Lemma. The proof of the
Lemma can be obtained in [31].

Lemma 2.1. Let Dk−1 be a diagonal matrix, with diagonal entries dik−1, i = 1, 2, . . . , n.

Then the diagonal matrix Ωk−1, with entries ωi
k−1, in the following constrained minimiza-

tion problem

min
Ω

1

2
∥Ωk−1∥2F + tr(Dk−1 +Ωk−1), (2.13)

s.t sTk−1(Dk−1 +Ωk−1)sk−1 = rk−1, (2.14)

satisfies

ωi
k−1 =

(sTk−1sk−1 − sTk−1Dk−1sk−1 + rk−1)(s
i
k−1)

2∑n
i=1(s

i
k−1)

4
− 1, (2.15)

where rk−1 = sTk−1yk−1 and yk−1 is given by (2.11). Also tr(·) and ∥ · ∥F represent trace
of a matrix and Frobenius norm of matrix, respectively.
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Let D0 = diag(h10, h
2
0, . . . , h

n
0 ), where for each i = 1, . . . , n, hi0 = 1. Using the Lemma

2.1, the entries of the diagonal matrix (2.12) are calculated as follows

hik = hik−1 + ωi
k−1, k ≥ 1, (2.16)

where ωi
k−1 is computed using (2.15).

2.1. Safeguarding strategy

To make sure that the diagonal matrix Dk is positive definite, in what follows, we
present a safeguarding strategy to ensure each diagonal entry is strictly positive. This
can be done by simply safeguarding the diagonal entries hik−1 + ωi

k−1 from assuming
negative values or zero. Now, let ℓ > 0 and 0 << u << +∞, we redefine the entries of
the diagonal matrix Dk as follows

hik = min
{
max{hik−1 + ωi

k−1, ℓ}, u
}
, (2.17)

with ωi
k−1 given in (2.15) and hi0 = 1, for each i. The main aim for introducing the

parameter u is to prevent the diagonal entries from assuming extremely large values.

2.2. Algorithm of the proposed method

In this subsection, we present the algorithm of the proposed method. Let dk and gk be
the search direction and the gradient of f at xk, i.e. ∇f(xk), respectively. Let x0 ∈ Rn

be an initial guess, then the next point is calculated via

xk+1 = xk + αkdk, k = 0, 1, 2, . . . . (2.18)

The search direction, dk in (2.18) is obtained by solving the linear systems

Dkdk = −gk,

Dk =

{
I, if k = 0,

diag(h1k, h
2
k, . . . , h

n
k ), if k ≥ 1,

(2.19)

where hik, i = 1, 2, . . . , n, are computed using (2.17). We adopt the non-monotone line
search of Zhang and Hager [32] to compute the step length αk. If the search direction dk
is descent, then the step length αk > 0 in (2.18) should satisfy the following inequality

f(xk + αkdk) ≤ Pk + θαkg
T
k dk, (2.20)

where 
P0 = f(x0),

Pk+1 = ηkQkPk+f(xk+1)
Qk+1

,

Q0 = 1,

Qk+1 = ηkQk + 1,

(2.21)

and θ ∈ (0, 1), ηk ∈ [0, 1]. We quickly note the following:
Remark 2.2.

(i) The scalar Pk+1 in (2.21) is a convex combination of Pk and f(xk+1). Since
P0 = f(x0), it follows that the sequence {Pk} is a convex combination of the
function values f(xi), for i = 0, 1, 2, . . . , k.
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(ii) The nonnegative parameter ηk commands the degree of monotonicity of the
line search. If for each k, ηk = 0, then the line search is the monotone Armijo-type
line search; otherwise, it is nonmonotone.

(iii) If the parameter ηk = 1, for all k, then Pk = ψk with ψk given as

ψk =
1

k + 1

k∑
i=1

f(xi). (2.22)

Next, we formally state the algorithm of the new proposed iterative method.

Algorithm 1: New Algorithm with Structured Diagonal Hessian (NASDH)

Input : Given x0 ∈ Rn, θ ∈ (0, 1), 0 ≤ ηmin ≤ ηmax ≤ 1, ℓ > 0, 0 << u << +∞,
ϵ > 0, and kmax ∈ N.

Step 1: Set k = 0, Dk = I, Qk = 1. Compute Fk, gk, fk = 1
2∥Fk∥2 and set Pk = fk.

Step 2: If ∥gk∥ ≤ ϵ and k ≥ kmax, stop. Else compute the search direction

dk = −D−1
k gk. (2.23)

Step 3: Calculate the step length using nonmonotone line search as follows. Set
α = 1, if

f(xk + αdk) ≤ Pk + αθgTk dk, (2.24)

then αk = α. Else, set α = α/2 and test (2.24) again.
Step 4: Compute the next iterate using xk+1 = xk + αkdk.
Step 5: Set sk = xk+1 − xk and compute yk = ŷk + yk using (2.11).
Step 6: Calculate the entries of Ωk using (2.15) where rk = sTk yk.
Step 7: Update the entries of the diagonal Hessian approximation Dk+1 using
(2.17).
Step 8: Determine ηk ∈ [ηmin, ηmax] using any suitable sequence between 0 and 1,
then calculate Qk+1 and Pk+1 using (2.21).
Step 9: Set k = k + 1 and go to step 2.

Remark 2.3.

(i) Although the vectors gk, ŷk and yk in Algorithm NASDH are in the form
of matrix-vector products, we implemented the algorithm as matrix-free. This
implementation is done by writing MATLAB code that computes the matrix-
vector products without explicitly forming any matrix throughout the iteration
process.

(ii) Due to the fact that the Hessian approximation Dk is a diagonal matrix, its in-
verseD−1

k is calculated by simply taking the reciprocal of each hik (i = 1, 2, . . . , n).

This means that the product D−1
k gk is calculated as component-wise vector mul-

tiplications.

In what follows, we discuss the convergence results of the proposed method. The
following assumptions will be useful in our discussion.

Assumption 2.4.

A1. The level set Θ = {x ∈ Rn | f(x) ≤ f(x0)} is bounded.
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A2. The function F : Rn → Rm, and its Jacobian are Lipschitzian. That is, for all
x, y ∈ Θ, there exist some positive constants L1 > 0 and L2 > for which

∥F (x)− F (y)∥ ≤ L1∥x− y∥, and (2.25)

∥J(x)− J(y)∥ ≤ L2∥x− y∥. (2.26)

Using the inequalities (2.25) and (2.26), we have the following conclusions

∥g(x)− g(y)∥ ≤ l∥x− y∥, ∥F (x)∥ ≤ ω1, ∥J(x)∥ ≤ ω2 and ∥g(x)∥ ≤ ω3,

where l > 0, ω1 > 0, ω2 > 0 and ω3 > 0 are given constants.

3. Convergence Analysis

In this section, we first show that the diagonal entries of the correction matrix Ωk given
by (2.15) are bounded.

Lemma 3.1. Let the Assumption 2.4 holds and assume ∥sk−1∥ ̸= 0, for all k ≥ 1. Then
the diagonal correction matrix, {Ωk−1}, generated by Algorithm NASDH, where its entries
are computed by (2.15), is bounded provided the following inequality

|rk−1| ≤ v∥sk−1∥2, v > 0, (3.1)

holds.

Proof. We only need to show that (3.1) holds and the rest of the proof will follow from
Lemma 2.1 in [31]. Let yk−1 be defined by (2.11) and rk−1 = sTk−1yk−1, then

|rk−1| =
∥∥sTk−1

(
JT
k (Fk − Fk−1) + (Jk − Jk−1)

TFk

)∥∥
≤ ∥sk−1∥

(∥∥JT
k (Fk − Fk−1)

∥∥+
∥∥(Jk − Jk−1)

TFk

∥∥)
≤ ∥sk−1∥ (∥Jk∥∥Fk − Fk−1∥+ ∥Jk − Jk−1∥∥Fk∥)
≤ ∥sk−1∥ (w2L1∥sk−1∥+ w1L2∥sk−1∥)
≤ v∥sk−1∥2,

where v = w2L1 + w1L2. Therefore, the inequality (3.1) holds and the conclusion of the
Lemma is true.

Lemma 3.2. Suppose that the Algorithm NASDH generates the sequence of search direc-
tions {dk}, then we can find some constants, say m1 > 0, m2 > 0, such that the following
inequalities hold

gTk dk ≤ −m1∥gk∥2, (3.2)

∥dk∥ ≤ m2∥gk∥, (3.3)

for all k ≥ 0.

Proof. Let the diagonal entries of the Hessian approximation Dk be defined by (2.17).
From (2.17), it holds that

ℓ ≤ min
{
max{hik−1 + ωi

k−1, ℓ}, u
}
≤ u, (3.4)
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and therefore, by the Equation (2.23) we have

gTk dk = −gTkD−1
k gk

= −gTk h−1
k gk

= −
n∑

i=1

(gik)
2/min

{
max{hik−1 + ωi

k−1, ℓ}, u
}

≤ −(1/u)

n∑
i=1

(gik)
2

= −m1∥gk∥2,

where m1 = 1/u, and (3.2) holds.
Similarly, by the fact that the diagonal matrix is symmetric, for all k, we have

∥dk∥2 = gTkD
−2
k gk

= gTk h
−2
k gk

=

n∑
i=1

(
gik/min

{
max{hik−1 + ωi

k−1, ℓ}, u
})2

≤ (1/ℓ2)

n∑
i=1

(gik)
2

= m2∥gk∥2,

where m2 = 1/ℓ2 and hence the proof.

Now, by Lemma 3.1 and 3.2 together with the Proposition 1 in [28], we conclude that
the new Algorithm NASDH is well-defined. The following result comes from Lemma 1.1
of [32].

Lemma 3.3. Suppose the sequence {xk} is generated by Algorithm NASDH and Pk and
ψk are defined by (2.21) and (2.22), respectively, then for all k = 0, 1, 2 . . . , it holds that
f(xk) ≤ Pk ≤ ψk.

Lemma 3.4. Suppose the sequences {xk} and {dk} are generated by Algorithm NASDH
such that the relation (3.2) holds, then f(xk) ≤ f(x0), for each k ≥ 0. That is, {xk} ⊂ Θ,
where Θ is the level set.
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Proof. Let Pk+1 be given as in Equation (2.21), then using Qk+1 = ηkQk + 1, together
with (2.20) and (3.2) yield

Pk+1 =
ηkQkPk + f(xk+1)

Qk+1
,

=
(Qk+1 − 1)Pk + f(xk+1)

Qk+1
,

≤ Qk+1Pk + αkθg
T
k dk

Qk+1
,

≤ Qk+1Pk − αkθm1∥gk∥2

Qk+1
,

= Pk − αkθm1∥gk∥2

Qk+1

≤ Pk,

where the last inequality holds by dropping the negative term in the preceding line. This
means the sequence {Pk+1} is decreasing and since fk ≤ Pk, (see, Lemma 3.3), we have

f(xk+1) ≤ Pk+1 ≤ Pk ≤ Pk−1 ≤ . . . ≤ P0 = f(x0),

and the proof in complete.

The following Theorem shows that Algorithm NASDH converges. The proof of the
Theorem follows from [32] and so, we omit it here.

Theorem 3.5. Suppose that xk is the algorithm generated by Algorithm NASDH. If the
Assumption 2.4 holds, then

lim inf
k→∞

∥gk∥ = 0. (3.5)

Moreover, if ηmax < 1 then

lim
k→∞

∥gk∥ = 0. (3.6)

4. Numerical Experiments

In this section, numerical experiments are reported in order to assess the efficiency
of the proposed Algorithm NASDH in comparison with Algorithm SDHAM proposed in
[28]. Both algorithms, that is, NASDH and SDHAM are implemented in such a way
that computation of any matrix is completely avoided. In the course of this experiment,
seventeen large-scale test problems (see, Table 1) are solved using five different dimensions,
i.e. 3000, 6000, 9000, 12000 and 15000. This gives a total of eighty two large-scale
test problems solve for this experiment. In Table 1, Pi stands for problem i where
i = 1, 2, . . . , 17. The parameters used for the implementation of both algorithms are as
follows

• Algorithm NASDH: ηk = 1
exp(k+1)(k+1) with ηmin = 0.1, ηmax = 0.85, ℓ = 10−30,

u = 1030; and θ = 0.00001.
• Algorithm SDHAM: All parameters are as presented in [28].
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The two algorithms are coded in MATLAB R2019b and the device used for the experi-
ments is a PC with intel Core(TM) i5-8250u processor with 4 GB of RAM and CPU 1.60
GHZ. The iteration process is terminated whenever ∥gk∥ ≤ 10−4. On the other hand,
failure, denoted by “ ”, is recorded when the number of iterations is greater than 1,000
and the stopping criterion mentioned above has not been satisfied.

The results of the experiment are presented in Tables 2–3, where NITER, NFVAL,
NMVP, TIME and FVALUE denote the number of iterations, the number of function
evaluations, the number of matrix-vector product, the CPU time in seconds (TIME), and
the value of the objective function f at the solution. From the information presented
in Tables 2–3, it can be seen that both algorithms are competitive. Interestingly, while
Algorithm SDHAM failed in some instances, the new Algorithm NASDH solves all the
test problems considered in this experiment successfully. The results reported in Tables
2–3 are summarized in Figures 1–3 with the aid of the performance profile of Dolan and
Moré [33]. These figures show that the new Algorithm NASDH outperforms Algorithm
SDHAM in terms of NITER, NFVAL and NMVP. Putting everything together, it can be
seen that the new Algorithm NASDH works well and is efficient.

Table 1. List of test problems with references and starting points

Problems Function name Starting point

Large-scale

P1 Penalty function I [34] (1/3, 1/3, . . . , 1/3)T

P2 Trigonometric function [35] (1, 1, . . . , 1)T

P3 Discrete boundary value [35] ( 1
n+1 (

1
n+1 − 1), . . . , 1

n+1 (
n

n+1 − 1))T

P4 Linear function full rank [35] (1, 1, . . . , 1)T

P5 Problem 202 [36] (2, 2, . . . , 2)T

P6 Sine function [37] (1, 1, . . . , 1)T

P7 Exponential function I [34] ( n
n−1 , . . . ,

n
n−1 )

T

P8 Exponential function II [34] ( 1
n2 ,

1
n2 , . . . ,

1
n2 )

T

P9 Logarithmic function [34] (1, 1, . . . , 1)T

P10 Trigonometric Exponential System [38] (0, 0, . . . , 0)T

P11 Extended Freudenstein and Roth [34] (6, 3, 6, 3, . . . , 6, 3)T

P12 Extended Powell singular [34] (−1,−1, . . . ,−1)T

P13 Broyden tridiagonal function [35] (− 5
4 ,−

5
4 , . . . ,−

5
4 )

T

P14 Extended Himmelblau [39] (1, 1/n, 1, 1/n, . . . , 1, 1/n)T

P15 Function 27 [34] (100, 1/n2, 1/n2, . . . , 1/n2)T

P16 Trigonometric logarithmic function [28] (1, 1, . . . , 1)T

P17 Linear full rank I [35] (1, 1, . . . , 1)T

4.1. Application of Algorithm NASDH in motion control

In this subsection, we implement the Algorithm NASDH to solve a time-varying non-
linear optimization (TVNO) called the real-time motion control problem of a 2-D planar
robotic manipulator. This problem is described as follows:

Initially, we have a discrete-time kinematic formulation of the problem at certain po-
sition level, as given in [40], is

f(θ(tk)) = ψk, (4.1)

where for notational simplicity, we set θk = θ(tk) ∈ R2 and it denotes the joint angle
vector at time tk, k = 0, 1, 2 . . . . The function f in (4.1) is a kinematic mapping function
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Table 2. Numerical results of our NASDH and SDHAM methods for
problems 1–9

NASDH SDHAM

Problems DIM NITER NFEVAL NMVP TIME FVALUE NITER NFEVAL NMVP TIME FVALUE

1

3000 4 9 13 0.12161 2.07E-08 11 34 34 0.039916 2.24E-05
6000 3 7 10 0.045944 4.42E-05 17 52 52 0.057568 8.96E-05
9000 3 7 10 0.02353 2.34E-05 22 67 67 0.11434 0.000115
12000 3 7 10 0.017739 1.92E-08 26 79 79 0.25034 0.000133
15000 3 7 10 0.033054 2.73E-05 29 88 88 0.34191 0.000159

2

3000 14 29 43 0.97561 4.98E-21 17 85 52 0.1472 7.92E-18
6000 31 63 94 1.4646 3.42E-23 19 94 58 0.42884 7.96E-19
9000 24 49 73 2.0649 1.35E-23 37 151 112 0.51592 5.8E-23
12000 19 39 58 6.911 1.92E-21 41 164 124 0.83117 5.16E-23
15000 19 39 58 4.8339 4.67E-20 39 160 118 1.4421 6.37E-25

3

3000 18 37 55 0.78725 6.79E-09 7 23 22 0.075409 3.46E-09
6000 7 15 22 0.48987 2.92E-09 3 11 10 0.023303 1E-09
9000 3 7 10 0.42246 2.11E-09 2 8 7 0.049546 1.95E-09
12000 5 11 16 1.2967 9.07E-10 1 5 4 0.022423 1.41E-09
15000 5 11 16 1.0007 7.18E-10 1 5 4 0.027679 9E-10

4

3000 2 5 7 0.036097 0.50067 2 7 7 0.010385 0.50067
6000 2 5 7 0.03346 0.50033 2 7 7 0.005553 0.50033
9000 2 5 7 0.039963 0.50022 2 7 7 0.011027 0.50022
12000 2 5 7 0.060487 0.50017 2 7 7 0.013325 0.50017
15000 2 5 7 0.074288 0.50013 2 7 7 0.020024 0.50013

5

3000 5 11 16 0.26367 1.39E-14 5 16 16 0.013016 4.16E-10
6000 5 11 16 0.022962 2.78E-14 5 16 16 0.017584 8.33E-10
9000 4 9 13 0.031193 5.4E-10 5 16 16 0.02754 1.25E-09
12000 5 11 16 0.042908 5.56E-14 5 16 16 0.053497 1.67E-09
15000 5 11 16 0.15259 8.64E-16 5 16 16 0.044452 2.08E-09

6

3000 4 9 13 0.077298 2.49E-15 4 13 13 0.007726 5.92E-10
6000 4 9 13 0.033328 4.99E-15 4 13 13 0.017933 1.18E-09
9000 4 9 13 0.036238 6.26E-11 4 13 13 0.043097 1.78E-09
12000 4 9 13 0.044584 9.98E-15 4 13 13 0.026489 2.37E-09
15000 4 9 13 0.051073 1.07E-11 4 13 13 0.041235 2.96E-09

7

3000 18 37 55 0.35413 4E-09 4 13 13 0.016785 6.03E-08
6000 16 33 49 1.2676 3.27E-09 4 13 13 0.01899 3.01E-08
9000 36 73 109 3.9131 3.3E-09 3 10 10 0.028139 8.05E-08
12000 13 27 40 1.4672 3.13E-09 3 10 10 0.025121 6.03E-08
15000 1 3 4 0.057628 6.8E-09 3 10 10 0.053128 4.83E-08

8

3000 34 69 103 0.29725 2.86E-11 2 20 7 0.011249 1.26E-12
6000 41 83 124 0.56536 1.05E-11 2 22 7 0.029077 3.15E-13
9000 31 63 94 0.80417 4.01E-12 2 23 7 0.029875 1.4E-13
12000 61 123 184 1.868 3.31E-12 2 24 7 0.044134 7.87E-14
15000 63 127 190 3.2395 2.3E-12 2 24 7 0.093146 5.04E-14

9

3000 4 9 13 0.17067 4.9E-13 6 19 19 0.018662 4.59E-12
6000 4 9 13 0.019709 1.26E-12 6 19 19 0.029738 9.11E-12
9000 6 13 19 0.03606 7.01E-16 6 19 19 0.033826 1.36E-11
12000 4 9 13 0.036446 2.85E-12 6 19 19 0.065562 1.82E-11
15000 5 11 16 0.052373 7.94E-10 6 19 19 0.052307 2.27E-11

which has the following structure

f(θ) =

l1 cos(θ1) + l2 cos(θ1 + θ2)

l1 sin(θ1) + l2 sin(θ1 + θ2)

 , (4.2)

where l1 and l2 denote the length of the first and second rod, respectively. The vector
ψk ∈ R2 denotes the end-effector position vector. In the context of motion control, the
following least squares problem

min
1

2
∥ψdk − ψk∥2, (4.3)
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Table 3. Numerical results of our NASDH and SDHAM methods for
problems 10–17

NASDH SDHAM

Problems DIM NITER NFEVAL NMVP TIME FVALUE NITER NFEVAL NMVP TIME FVALUE

10

3000 14 29 43 0.23809 5.02E-11 - - - - -
6000 13 27 40 1.4334 2.43E-11 - - - - -
9000 17 35 52 0.63981 4.99E-11 - - - - -
12000 13 27 40 2.1256 1.1E-11 121 477 364 2.9071 7.2135
15000 13 27 40 0.38888 4.13E-12 115 455 346 2.9483 7.2135

11

3000 34 69 103 0.18326 3.08E-11 21 72 64 0.098252 1.87E-13
6000 34 69 103 1.0705 6.16E-11 21 72 64 0.2035 3.75E-13
9000 31 63 94 1.0035 5.47E-11 21 72 64 0.16249 5.62E-13
12000 36 73 109 1.2625 1.38E-11 21 72 64 0.18368 7.49E-13
15000 31 63 94 1.746 8.77E-11 21 72 64 0.19406 9.37E-13

12

3000 4 9 13 0.066853 8.19E-14 1 9 4 0.01224 3.62E-12
6000 4 9 13 0.04383 1.64E-13 1 9 4 0.006845 7.23E-12
9000 4 9 13 0.10517 4.6E-17 1 9 4 0.017783 1.08E-11
12000 4 9 13 0.19762 3.27E-13 1 9 4 0.02624 1.45E-11
15000 4 9 13 0.069406 5.33E-12 1 9 4 0.055609 1.81E-11

13

3000 41 83 124 0.26592 8.24E-12 22 81 67 0.19368 1.88E-11
6000 27 55 82 0.43101 1.14E-11 22 81 67 0.22723 1.88E-11
9000 33 67 100 0.94937 1.04E-11 22 81 67 0.34454 1.88E-11
12000 23 47 70 1.0441 1.64E-11 22 81 67 0.19879 1.88E-11
15000 21 43 64 0.55033 2.79E-12 22 81 67 0.27599 1.88E-11

14

3000 16 33 49 0.04293 1.73E-10 31 101 94 0.1778 1.35E-10
6000 21 43 64 0.054546 1.47E-11 28 89 85 0.19598 8E-11
9000 23 47 70 0.099591 4.69E-11 30 97 91 0.17613 7.61E-11
12000 20 41 61 0.11591 8.17E-12 25 80 76 0.19452 3.55E-10
15000 22 45 67 0.14188 1.09E-11 26 82 79 0.26135 1.12E-10

15

3000 25 51 76 0.064434 2.17E-07 18 69 55 0.065117 2.16E-07
6000 25 51 76 0.1294 2.17E-07 18 69 55 0.17474 2.16E-07
9000 25 51 76 0.1785 2.17E-07 18 69 55 0.41657 2.16E-07
12000 25 51 76 0.43541 2.17E-07 18 69 55 0.17807 2.16E-07
15000 25 51 76 0.81997 2.17E-07 18 69 55 0.22047 2.16E-07

16

3000 4 9 13 0.062876 5.81E-13 6 19 19 0.022326 4.58E-12
6000 4 9 13 0.036574 1.37E-12 6 19 19 0.027378 9.1E-12
9000 6 13 19 0.056545 6.88E-16 6 19 19 0.03946 1.36E-11
12000 4 9 13 0.069589 2.97E-12 6 19 19 0.13291 1.81E-11
15000 5 11 16 0.15831 7.97E-10 6 19 19 0.16687 2.27E-11

17

3000 3 7 10 0.056737 374.8125 - - - - -
6000 3 7 10 0.056855 749.8125 - - - - -
9000 3 7 10 0.12004 1124.813 - - - - -
12000 3 7 10 0.065116 1499.813 - - - - -
15000 3 7 10 0.075262 1874.813 - - - - -
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Figure 1. Performance profile with respect to NITER
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is solved at each computational time interval [tk, tk+1), where, the end-effector, ψk, is
controlled to track the following Lissajous curve

ψdk =

 1.5 + 0.2 sin(tk)

√
3
2 + 0.2 sin(2tk)

 . (4.4)

To experimentally perform the simulation, we initialize the joint angle vector, θ0 = [0, π3 ]
T

and set the rod’s length as li = 1 for i = 1, 2 where the task duration, tf = 10s is
partitioned into 200 equal parts.

It can be observed from Figure 4(a) that Algorithm NASDH effectively synthesized
the robot trajectories and Figure 4(b) shows that the end effector model is fitted with
the desired path that describes the trajectories of the end effector. Finally, we plot the
residual errors obtained from the synthesized robot trajectories on both x − axis and
y − axis. These are reported in Figure 4(c)–4(d). It can be seen that the errors on both
axes are as low as 10−5. This shows the applicability of the proposed Algorithm NASDH.
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Figure 4. Numerical results generated in the course of robotic mo-
tion control experiment: (a) Robot trajectories synthesized by Algo-
rithm NASDH. (b) End effector trajectory and desired path by Algo-
rithm NASDH. (c) Residual error by Algorithm NASDH on x-axis. (d)
Residual error by Algorithm NASDH on y-axis.

5. Conclusions

We have proposed an iterative method with an improved structured diagonal Hessian
approximation for solving nonlinear least-squares problems. By incorporating some cor-
rection matrices into the sequence of our structured diagonal matrix approximation, it
contains more information of the objective function than the one offered by Mohammad
and Santos [28]. We coded the algorithm of the proposed method such that it neither
form nor store matrices throughout the iteration process. This makes it suitable for large-
scale problems. We have devised appropriate safeguards to ensure the diagonal entries
are positive definite, which subsequently guaranteed that the search directions generated
by the new method are sufficiently descending. We have presented numerical experiments
on a collection of some benchmark test problems which showed the efficiency of the new
method. Finally, we have implemented the Algorithm NASDH on problems arising from
robotic motion control. Future work includes applying the new method to solve problems
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arising from portfolio selection and data fitting. Furthermore, it will be interesting to
use the idea in this paper to solve system of nonlinear equations and some applications
[41–46].
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