
ISSN 1686-0209

Thai Journal of Mathematics
Volume 19 Number 3 (2021)

Pages 913–923

http://thaijmath.in.cmu.ac.th

The Tseng’s Extragradient Method for Quasimonotone

Variational Inequalities

Nopparat Wairojjana1, Nuttapol Pakkaranang2, Wachirapong Jirakitpuwapat3 and Nattawut Pholasa4,∗

1Applied Mathematics Program, Faculty of Science and Technology, Valaya Alongkorn Rajabhat University
under the Royal Patronage (VRU), 1 Moo 20 Phaholyothin Road, Klong Neung, Klong Luang, Pathumthani,
13180, Thailand; e-mail : nopparat@vru.ac.th (N. Wairojjana).
2Department of Mathematics, Faculty of Science and Technology, Phetchabun Rajabhat University,
Phetchabun 67000, Thailand; e-mail : nuttapol.pak@pcru.ac.th (N. Pakkaranang).
3National Security and Dual-Use Technology Center National Science and Technology Development Agency
(NSTDA), Phathum Thani, 12120, Thailand; e-mail : wachirapong.jira@hotmail.com (W. Jirakitpuwapat).
4School of Science, University of Phayao, Phayao 56000, Thailand; e-mail : nattawut math@hotmail.com (N.
Pholasa)

Abstract In this paper, we examine the weak convergence of a method to solve classical variational

inequality problems involving quasimonotone and Lipschitz continuous operators in a real Hilbert space.

The proposed method is inspired by Tseng’s extragradient method and uses a simple self-adaptive step

size rule that is independent of the Lipschitz constant. We established a weak convergence theorem for

a new method without involving any additional projections or knowledge of the Lipschitz constant of a

operator. Finally, we present some numerical experiments that show the efficiency and advantages of the

proposed method.
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1. Introduction

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and the induced norm ∥ · ∥. The
weak converge of the sequence {xn} to a point x are denoted by xn ⇀ x. For a given
closed and convex subset C ⊂ H, the variational inequality problem denoted by V I(C,G)
is to find x∗ ∈ C such that⟨

G(x∗), y − x∗⟩ ≥ 0, ∀ y ∈ C, (VIP)
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where G : H → H be an operator. For a closed and convex C ⊂ H, the metric projection
PC : H → C is defined, for all x ∈ H such that

PC(x) = argmin{∥x− y∥ : y ∈ C}.

Furthermore, R, N is the set of real and natural numbers, respectively. It is useful to note
that the problem (VIP) is equivalent to solving the following problem:

Find x∗ ∈ C such that x∗ = PC [x
∗ − λG(x∗)],

where λ can be any positive real number. The theory of variational inequalities has been
used as an important tool to study a wide range of topics, i.e., physics, engineering, eco-
nomics and optimization theory. Stampacchia [27] presented this problem in 1964, and it
is also well-established that the problem (VIP) is a crucial problem in non-linear analysis.
This is a significant mathematical problem that encompasses several important topics
in applied mathematics, including network equilibrium problems, necessary optimality
conditions, complementarity problems, and systems of nonlinear equations (for more de-
tails [6, 9–11, 17]). On the other hand, the projection methods are important iterative
methods to solve variational inequalities. Many iterative methods for solving variational
inequalities have been proposed and analyzed (see for more details [3, 4, 8, 12–15, 18–
20, 29–31, 41]) and others in [5, 7, 16, 22–26, 32, 33, 35–40]. The extragradient method
was introduced by Korpelevich [12] and Antipin [1]. The method is of the form x0 ∈ C,

yn = PC [xn − λG(xn)],
xn+1 = PC [xn − λG(yn)],

(1.1)

where 0 < λ < 1
L and L is Lipschitz constant of an operator G. In view of this method, we

use two projections on the underlying set C over each iteration. Of course, if the feasible set
C has a complicated structure, this can have an impact on the computational effectiveness
of the method used. Here, we restrict our interest to presenting some methods which can
address this drawback. The first is the following subgradient extragradient method due
to Censor et al. [3]. This method takes the form x0 ∈ C,

yn = PC [xn − λG(xn)],
xn+1 = PHn

[xn − λG(yn)].
(1.2)

where 0 < λ < 1
L and

Hn = {z ∈ H : ⟨xn − λG(xn)− yn, z − yn⟩ ≤ 0}.
In this article, we concentrate on the Tseng’s extragradient method [31] that uses only
one projection for each iteration: x0 ∈ C,

yn = PC [xn − λG(xn)],
xn+1 = yn + λ

[
G(xn)− G(yn)

]
.

(1.3)

where 0 < λ < 1
L .

The main objective of this research is to study quasimonotone variational inequalities
in infinite dimensional Hilbert spaces. To show that the iterative sequence generated by
Tseng’s extragradient method for the solution of quasimonotone variational inequalities
converges weakly to a solution. The proposed method is based on the projection method
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described in [31]. each iteration, the method only requires solving one projection on
the feasible set. If some suitable conditions are imposed on the control parameters, the
iterative sequences generated by our methods converge weakly to some solution to the
problem. We also present examples to explain the computational performance of the new
method.

The paper is organized in the following manner. In Sect. 2, some preliminary results
were presented. Sect. 3 provides a new algorithm and its convergence study. Finally, Sect.
4 presents some numerical results to point out the practical efficiency of the proposed
method.

2. Preliminaries

For all x, y ∈ H, we have

∥x+ y∥2 = ∥x∥2 + 2⟨x, y⟩+ ∥y∥2.
A metric projection PC(x) of x ∈ H is defined by

PC(x) = argmin{∥x− y∥ : y ∈ C}.

Lemma 2.1. Assume C be a nonempty, closed and convex subset of a real Hilbert space
H and PC : H → C be a metric projection from H onto C. Then

(i) Let x ∈ C and y ∈ H, we have

∥x− PC(y)∥2 + ∥PC(y)− y∥2 ≤ ∥x− y∥2;
(ii) z = PC(x) if and only if

⟨x− z, y − z⟩ ≤ 0, ∀ y ∈ C;
(iii) For y ∈ C and x ∈ H

∥x− PC(x)∥ ≤ ∥x− y∥.

Lemma 2.2. [2] For any x, y ∈ H and ℓ ∈ R. Then

(i)

∥ℓx+ (1− ℓ)y∥2 = ℓ∥x∥2 + (1− ℓ)∥y∥2 − ℓ(1− ℓ)∥x− y∥2;
(ii)

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩.

Lemma 2.3. [21] Let C be a nonempty set of H and {xn} be a sequence in H such that

(i) for every x ∈ C, limn→∞ ∥xn − x∥ exists;
(ii) each sequentially weak cluster point of {xn} within C.

Then, {xn} converges weakly to a point in C.

Lemma 2.4. [28] Let G : C → H be a pseudomonotone and continuous operator. Then,
x∗ is a solution of the problem (VIP) if and only if x∗ is a solution of the following
problem:

Find x ∈ C such that ⟨G(y), y − x⟩ ≥ 0, ∀ y ∈ C.



916 Thai J. Math. Vol. 19 (2021) /N. Wairojjana et al.

3. Main Results

In this section, we present an iterative algorithm for solving quasimonotone variational
inequalities that is based on Tseng’s extragradient method that does not require either
knowledge of the Lipschitz constant of the operator or additional projection.

Algorithm 1

Step 0: Choose x0 ∈ C and 0 < λ < 1
L .

Step 1: Compute
yn = PC(xn − λG(xn)).

If xn = yn, then STOP and yn is a solution. Otherwise, go to Step 2.
Step 2: Compute

xn+1 = yn + λ
[
G(xn)− G(yn)

]
.

Set n = n+ 1 and go back to Step 1.

In order to prove the weak convergence, it is considered that the following conditions have
been satisfied:

(G1) The solution set of problem (VIP) is denoted by Ω is nonempty;
(G2) An operator G : H → H is said to quasimonotone if⟨

G(x), y − x
⟩
> 0 =⇒

⟨
G(y), y − x

⟩
≥ 0, ∀x, y ∈ C; (QM)

(G3) An operator G : H → H is Lipschitz continuous with constant L > 0 such that

∥G(x)− G(y)∥ ≤ L∥x− y∥, ∀x, y ∈ C; (LC)

(G4) An operator G : H → H is sequentially weakly continuous if {G(xn)} converges
weakly to G(x) for every sequence {xn} converges weakly to x.

Lemma 3.1. Suppose that G : H → H satisfies the conditions (G1)-(G4) and sequence
{xn} generated by Algorithm 1. Then, we have

∥xn+1 − x∗∥2 ≤
∥∥xn − x∗∥∥2 − (

1− λ2L2
)∥∥xn − yn

∥∥2.
Proof. Since x∗ ∈ Ω, we have∥∥xn+1 − x∗∥∥2

=
∥∥yn + λ[G(xn)− G(yn)]− x∗∥∥2

=
∥∥yn − x∗∥∥2 + λ2

∥∥G(xn)− G(yn)
∥∥2 + 2λ⟨yn − x∗,G(xn)− G(yn)⟩

=
∥∥yn + xn − xn − x∗∥∥2 + λ2

∥∥G(xn)− G(yn)
∥∥2 + 2λ⟨yn − x∗,G(xn)− G(yn)⟩

=
∥∥yn − xn

∥∥2 + ∥∥xn − x∗∥∥2 + 2⟨yn − xn, xn − x∗⟩

+ λ2
∥∥G(xn)− G(yn)

∥∥2 + 2λ⟨yn − x∗,G(xn)− G(yn)⟩

=
∥∥xn − x∗∥∥2 + ∥∥yn − xn

∥∥2 + 2⟨yn − xn, yn − x∗⟩+ 2⟨yn − xn, xn − yn⟩

+ λ2
∥∥G(xn)− G(yn)

∥∥2 + 2λ⟨yn − x∗,G(xn)− G(yn)⟩. (3.1)

It is given that

yn = PC [xn − λG(xn)]
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and further it implies that

⟨xn − λG(xn)− yn, y − yn⟩ ≤ 0, ∀ y ∈ C. (3.2)

Thus, we have

⟨xn − yn, x
∗ − yn⟩ ≤ λ⟨G(xn), x

∗ − yn⟩. (3.3)

Combining expressions (3.1) and (3.3), we have∥∥xn+1 − x∗∥∥2
≤

∥∥xn − x∗∥∥2 + ∥∥yn − xn

∥∥2 + 2λ⟨G(xn), x
∗ − yn⟩ − 2⟨xn − yn, xn − yn⟩

+ λ2
∥∥G(xn)− G(yn)

∥∥2 − 2λ⟨G(xn)− G(yn), x∗ − yn⟩

=
∥∥xn − x∗∥∥2 − ∥∥xn − yn

∥∥2 + λ2
∥∥G(xn)− G(yn)

∥∥2 − 2λ⟨G(yn), yn − x∗⟩. (3.4)

It is given that x∗ is the solution of the problem (VIP) implies that

⟨G(x∗), y − x∗⟩ ≥ 0, ∀ y ∈ C.
It implies that

⟨G(y), y − x∗⟩ ≥ 0, ∀ y ∈ C.
Substituting y = yn ∈ C, we have

⟨G(yn), yn − x∗⟩ ≥ 0. (3.5)

From expressions (3.4) and (3.5), we obtain∥∥xn+1 − x∗∥∥2 ≤
∥∥xn − x∗∥∥2 − ∥∥xn − yn

∥∥2 + λ2L2
∥∥xn − yn

∥∥2
=

∥∥xn − x∗∥∥2 − (
1− λ2L2

)∥∥xn − yn
∥∥2. (3.6)

Theorem 3.2. Assume that an operator G : H → H satisfies the conditions (G1)–(G4).
Then, the sequence {xn} generated by the Algorithm 1 converges weakly to x∗ ∈ Ω.

Proof. By using Lemma 3.1, we have∥∥xn+1 − x∗∥∥2 ≤
∥∥xn − x∗∥∥2 − (

1− λ2L2
)∥∥xn − yn

∥∥2. (3.7)

Since 0 < λ < 1
L , thus we obtain

∥xn+1 − x∗∥2 ≤ ∥xn − x∗∥2. (3.8)

Thus, the expression (3.8) implies that

lim
n→∞

∥xn − x∗∥ = l, for some finite l ≥ 0. (3.9)

From expression (3.7), we have(
1− λ2L2

)∥∥xn − yn
∥∥2 ≤

∥∥xn − x∗∥∥2 − ∥∥xn+1 − x∗∥∥2. (3.10)

Due to the existence of limn→∞ ∥xn − x∗∥ = l, we deduce that

lim
n→∞

∥xn − yn∥ = 0. (3.11)

Thus, we have

lim
n→∞

∥yn − x∗∥ = l. (3.12)
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It follows that

∥xn+1 − yn∥ = ∥yn + λ[G(xn)− G(yn)]− yn∥ ≤ λL∥xn − yn∥.
The above expression implies that

lim
n→∞

∥xn+1 − yn∥ = 0. (3.13)

It follows that

lim
n→∞

∥xn+1 − xn∥ ≤ lim
n→∞

∥xn − yn∥+ lim
n→∞

∥yn − xn+1∥ = 0. (3.14)

This implies that the sequences {xn} and {yn} are bounded. Now, we show that the
sequence {xn} converges weakly to x∗ ∈ Ω. Indeed, since {xn} is bounded, we assume
that there exists a subsequence {xnk

} of {xn} such that xnk
⇀ x̂. Next, we prove that

x̂ ∈ Ω. Indeed, we have
ynk

= PC [xnk
− λnk

G(xnk
)]

that is equivalent to

⟨xnk
− λnk

G(xnk
)− ynk

, y − ynk
⟩ ≤ 0, ∀ y ∈ C. (3.15)

The inequality mentioned above implies that

⟨xnk
− ynk

, y − ynk
⟩ ≤ λnk

⟨G(xnk
), y − ynk

⟩, ∀ y ∈ C. (3.16)

Thus, we obtain

1

λnk

⟨xnk
−ynk

, y−ynk
⟩+ ⟨G(xnk

), ynk
−xnk

⟩ ≤ ⟨G(xnk
), y−xnk

⟩, ∀ y ∈ C. (3.17)

Since min
{

µ
L , λ1

}
≤ λ ≤ λ1 and {xnk

} is a bounded sequence. By the use of limk→∞ ∥xnk
−

ynk
∥ = 0 and k → ∞ in (3.17), we obtain

lim inf
k→∞

⟨G(xnk
), y − xnk

⟩ ≥ 0, ∀ y ∈ C. (3.18)

Moreover, we have

⟨G(ynk
), y − ynk

⟩
= ⟨G(ynk

)− G(xnk
), y − xnk

⟩+ ⟨G(xnk
), y − xnk

⟩+ ⟨G(ynk
), xnk

− ynk
⟩. (3.19)

Since limk→∞ ∥xnk
− ynk

∥ = 0 and G is L-Lipschitz continuity on H implies that

lim
k→∞

∥G(xnk
)− G(ynk

)∥ = 0, (3.20)

which together with expressions (3.19) and (3.20), we obtain

lim inf
k→∞

⟨G(ynk
), y − ynk

⟩ ≥ 0, ∀ y ∈ C. (3.21)

To prove further, let us take a positive sequence {ϵk} that is convergent to zero and
decreasing. For each {ϵk} we denote by mk the smallest positive integer such that

⟨G(xni
), y − xni

⟩+ ϵk > 0, ∀ i ≥ mk, (3.22)

where the existence of mk follows from (3.21). Since sequence {ϵk} is decreasing, it is
easy to see that the sequence {mk} is increasing.

Case I: If there exists a subsequence {xnmkj
} subsequence of {xnmk

} such that G(xnmkj
) =

0 (∀j). Let j → ∞, we obtain

⟨G(x̂), y − x̂⟩ = lim
j→∞

⟨G(xnmkj
), y − x̂⟩ = 0. (3.23)
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Thus, x̂ ∈ C and imply that x̂ ∈ Ω.

Case II: If there exits N0 ∈ N such that for all nmk
≥ N0, G(xnmk

) ̸= 0. Consider that

Υnmk
=

G(xnmk
)

∥G(xnmk
)∥2

, ∀nmk
≥ N0. (3.24)

Due to the above definition, we obtain

⟨G(xnmk
),Υnmk

⟩ = 1, ∀nmk
≥ N0. (3.25)

Moreover, expressions (3.22) and (3.25), for all nmk
≥ N0, we have

⟨G(xnmk
), y + ϵkΥnmk

− xnmk
⟩ > 0. (3.26)

Since G is quasimonotone, then

⟨G(y + ϵkΥnmk
), y + ϵkΥnmk

− xnmk
⟩ > 0. (3.27)

For all nmk
≥ N0, we have

⟨G(y), y−xnmk
⟩ ≥ ⟨G(y)−G(y+ ϵkΥnmk

), y+ ϵkΥnmk
−xnmk

⟩− ϵk⟨G(y),Υnmk
⟩.

(3.28)

Due to {xnk
} weakly converges to x̂ ∈ C through G is sequentially weakly continuous on

the set C, we get {G(xnk
)} weakly converges to G(x̂). Suppose that G(x̂) ̸= 0, we have

∥G(x̂)∥ ≤ lim inf
k→∞

∥G(xnk
)∥. (3.29)

Since {xnmk
} ⊂ {xnk

} and limk→∞ ϵk = 0, we have

0 ≤ lim
k→∞

∥ϵkΥnmk
∥ = lim

k→∞

ϵk
∥G(xnmk

)∥
≤ 0

∥G(x̂)∥
= 0. (3.30)

Next, consider k → ∞ in (3.28), we obtain

⟨G(y), y − x̂⟩ ≥ 0, ∀ y ∈ C. (3.31)

Thus, we infer that x̂ ∈ Ω. Therefore, we proved that:

(1) for every x∗ ∈ Ω, then limn→∞ ∥xn − x∗∥ exists;
(2) every sequential weak cluster point of the sequence {xn} is in Ω.

By Lemma 2.3, the sequence {xn} converges weakly to x∗ ∈ Ω.

Next, we introduce a variant of Algorithm 1 in which the constant step size λ is chosen
adaptively and thus produced a sequence λn that does not require the knowledge of the
Lipschitz-type constant L.

Lemma 3.3. The sequence {λn} generated by (3.32) is decreasing monotonically and
converges to λ > 0.

Proof. It is given that G is Lipschitz-continuous with constant L > 0. Let G(xn) ̸= G(yn)
such that

µ∥xn − yn∥
∥G(xn)− G(yn)∥

≥ µ∥xn − yn∥
L∥xn − yn∥

≥ µ

L
. (3.33)

The above expression implies that limn→∞ λn = λ.
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Algorithm 2

Step 0: Choose x0 ∈ C, µ ∈ (0, 1) and λ0 > 0.
Step 1: Compute

yn = PC(xn − λnG(xn)).

If xn = yn, then STOP and yn is a solution. Otherwise, go to Step 2.
Step 2: Compute

xn+1 = yn + λn

[
G(xn)− G(yn)

]
.

Set n = n+ 1 and go back to Step 1.
Step 3: Compute

λn+1 =


min

{
λn,

µ∥xn−yn∥
∥G(xn)−G(yn)∥

}
if G(xn)− G(yn) ̸= 0,

λn otherwise.

(3.32)

Lemma 3.4. Suppose that G : H → H satisfies conditions (G1)-(G4) and sequence xn

generated by Algorithm 1. Then, we have

∥xn+1 − x∗∥2 ≤
∥∥xn − x∗∥∥2 − (

1− µ2 λ2
n

λ2
n+1

)∥∥xn − yn
∥∥2.

4. Numerical Illustrations

The computational results of the proposed schemes are described in this section, in
contrast to some related work in the literature and also in the analysis of how variations
in control parameters affect the numerical effectiveness of the proposed algorithms. All
computations are done in MATLAB R2018b and run on HP i 5 Core(TM)i5-6200 8.00
GB (7.78 GB usable) RAM laptop.

Example 4.1. Consider thatH = l2 is a real Hilbert space with sequences of real numbers
satisfying the following condition

∥x1∥2 + ∥x2∥2 + · · ·+ ∥xn∥2 + · · · < +∞. (4.1)

Assume that G : C → C is defined by

G(x) = (5− ∥x∥)x, ∀x ∈ C,
where C = {x ∈ H : ∥x∥ ≤ 3}. It is easy to see that G is weakly sequentially continuous
on H and Ω = {0}. For any x, y ∈ C, we have∥∥G(x)− G(y)

∥∥ =
∥∥(5− ∥x∥)x− (5− ∥y∥)y

∥∥
=

∥∥5(x− y)− ∥x∥(x− y)− (∥x∥ − ∥y∥)y
∥∥

≤ 5∥x− y∥+ ∥x∥∥x− y∥+
∣∣∥x∥ − ∥y∥

∣∣∥y∥
≤ 5∥x− y∥+ 3∥x− y∥+ 3∥x− y∥
= 11∥x− y∥. (4.2)

Hence G is L-Lipschitz continuous with L = 11. For any x, y ∈ C let
⟨
G(x), y − x

⟩
> 0

such that

(5− ∥x∥)
⟨
x, y − x

⟩
> 0.
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Since ∥x∥ ≤ 3 implies that ⟨
x, y − x

⟩
> 0.

Thus, we have⟨
G(y), y − x

⟩
= (5− ∥y∥)

⟨
y, y − x

⟩
≥ (5− ∥y∥)

⟨
y, y − x

⟩
− (5− ∥y∥)

⟨
x, y − x

⟩
≥ 2∥x− y∥2 ≥ 0. (4.3)

Thus, we shown that G is quasimonotone on C. A projection on the set C is computed
explicitly as follows:

PC(x) =


x if ∥x∥ ≤ 3,

3x
∥x∥ , otherwise.

The control conditions have been taken as follows: (1) (Algorithm 1): λ0 = 5
11 ; (2)

(Algorithm 2): λ0 = 5
11 , µ = 0.44.

Table 1. Numerical results values for Example 4.1.

Number of Iterations Elapsed time in seconds

x0 Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

(3, 3, · · · , 31000, 0, 0, · · · ) 47 53 5.563843 7.145738

(1, 2, · · · , 1000, 0, 0, · · · ) 58 59 6.563731 8.352731
(5, 5, · · · , 510000, 0, 0, · · · ) 63 68 6.474532 9.563846

(100, 100, · · · , 10010000, 0, 0, · · · ) 84 79 11.56463 12.56383

Conclusion

In this study, we considered a weak convergence result for the variational inequalities
problem involving quasimonotone and the Lipschitz continuous operator, but the Lipschitz
constant is unknown. We modify the extragradient method with a natural step size rule.
The weak convergence result is proved without any provision for additional projections.
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