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Abstract We study the local well-posedness of the following time-fractional nonlinear diffusion equation
CD&’:\U —Au= |uP"tu, (x,t) €R™ x (0,T),
U(IE,O) = uo(x), T R"’
where 0 < a <1, A>0,T <oo,p>1,up € Co(R") and CDS";‘ denotes Caputo tempered fractional
derivative of order ae. The local existence and uniqueness results are obtained from heat kernel and fixed
point theorem. Then, we extend the solution to establish a maximal mild solution. Moreover, we provide
estimate for continuous dependence on initial condition.
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1. INTRODUCTION

Fractional calculus is a rapidly developing field of research, at the interface between
many phenomena and differential equations such as chemistry, physics, biology, engineer-
ing, epidemiology, etc (see [1-3]). The research on fractional calculus becomes a focus
area of study due to the fact that some dynamical models can be described more accu-
rately with fractional derivatives than the ones with integer-order derivatives. In recent
years, there have been many studies on fractional differential equations in various aspects
such as existence and uniqueness of solution [4-9], stability of solutions [10, 1 1], numerical
solutions [12, 13] and optimal control problem [14, 15].

One of the main research focuses on fractional calculus is the theory of fractional non-
linear diffusion equations. Nonlinear diffusion equations is an essential class of parabolic
partial differential equations, derive from a variety of diffusion phenomena which appear
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extensively in nature. Many research suggested mathematical models of physical problems
in many fields and scientific phenomena, such as heat transfer, fluid mechanics, plasma
physics, plasma waves, thermoelasticity, biochemistry and dynamics of biological groups
[16-20]. These models are determined by replacing the first-order time derivative from
the classical diffusion equation with a fractional derivative of order o and 0 < a < 1. So,
appreciable attention has been attracted to the time fractional diffusion equation. Re-
cently, researchers have studied fractional calculus for nonlinear diffusion equations based

on fixed point theorem [21-26] and in terms of fractional evolution equation [27-30].
In practical applications, there are different types of fractional operators such as
Riemann-Liouville, Caputo, Riesz, Hilfer, etc (see [1, 31-34]). Fractional calculus involves

the operation of convolution with a power law. In particular, changing the memory kernel
of the fractional operator by multiplying with an exponential factor leads to the notion of
tempered fractional calculus [35]. Tempered fractional calculus is applied for describing
the transition between normal and anomalous diffusions (or the anomalous diffusion in
finite time or bounded physical space). Thus, it is natural to find in its focused area of
study, for example, tempered fractional diffusion equations, tempered fractional Brownian
motion. Moreover, it can be accepted as the generalization of fractional calculus because
it can be reduced to the classical of Riemann-Liouville and Caputo fractional calculus.

In 2015, Zhang and Sun [25] investigated the following time-fractional diffusion equa-
tion with the Caputo fractional derivative:

{ “Dgu—Au=|uftu, zeR™ >0,

u(0,z) = ug(z), = e€R", (1.1)

where 0 < a < 1, p > 1 and CD(‘it is Caputo fractional derivative. They obtained the
Fujita critical exponent of (1.1) that if 1 <p < 1+ %, then any nontrivial positive solution
of (1.1) blows up in finite time, while if p > 1 + % and the initial value is sufficiently
small, problem (1.1) exists a global solution. This motivates us to study time-fractional
diffusion equation with a more general fractional derivative.

This paper is concerned with the local well-posedness of the following Cauchy problems
for nonlinear diffusion equations:

“Dyu—Au= |uff"tu,  (2,) € R™ x (0,77, (1.2)
subject to the initial condition
u(z,0) =up(z), =ze€R", (1.3)

where 0 < a <1, A>0,p>1,0<T < o0, CDS"’t)‘ denotes Caputo tempered fractional
derivative and

ug € Co(R™) = {u e CR™)| lim wu(z)= 0} .
|z|—o00
The aim of this paper is to investigate a well-posed problem, that is, a solution exists, the
solution is unique and the solution depends continuously upon the given data. Firstly,
we derive a mild solution for the problem (1.2)-(1.3) by using Laplace transform and
Fourier transform in terms of the heat kernel. Then, the local existence and uniqueness
of mild solution for the problem (1.2)-(1.3) is investigated by means of fixed point the-
orem. Moreover, we extend the result to prove the maximal existence of solutions. The
continuous dependence of the solution is studied in the end.
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This paper is organized as follows. In Section 2, we introduce some notions, definitions,
preliminaries that will be useful. Next, in Section 3, we derive the mild solution for
problem (1.2)-(1.3). Then, we prove local existence and uniqueness of solutions to the
problem (1.2)-(1.3) and the maximal existence of solutions will also be investigated in
Section 4. In Section 5, the continuous dependence of solutions on initial data will be
obtained. Finally, we give an example to illustrate the main results in the last section.

2. PRELIMINARIES

We provide some preliminary details, results and definitions of fractional calculus in
this section which are important throughout this paper.

Definition 2.1. The Gamma function I": (0,00) — R is defined by
I(s) = / e T .
0

Definition 2.2 ([36]). If ¢ € L' (R"), we define its Fourier transform

_ 1 —iz-£ . n
Flow) = gy [ e S@his =26, ¢eR
and its inverse Fourier transform
—1 o 1 ix-€ n
Fe(€) = g [ e telode e

Definition 2.3 ([30]). The Laplace transform of a function f is defined by

2{0y = [ e e
0
where f(t) is a given function.
Here, we are have identified u(t) = u(-,t).

Definition 2.4 (Riemann-Liouville tempered fractional integral, [37]). Let u(t) be piece-
wise continuous on (a,b), u (t) € L' ([a,b]) and «, A be parameters with a > 0 and A > 0.
The Riemann-Liouville tempered fractional integral operator I g‘ ’t’\ of order « is defined
by
ISMu(t) = eI, (eMu(t))
1 _
= m/@ (t—s)* te M)y (s)ds, a<t<b,

where 15, denotes the Riemann-Liouville fractional integral

IS u(t) = ﬁ / (t — ) tu(s)ds.

Definition 2.5 (Riemann-Liouville tempered fractional derivative [37]). For n € N, n—

1 < a < nand A > 0. The Riemann-Liouville tempered fractional derivative operator
a,\ .
D, of order a is defined by

RLDat“() _ —)\t(RLDa (eatu ))

t
—1 by
= o) dt”/ V' eMu(s)ds,  a <t <b,
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where fF Dg ; denotes the Riemann-Liouville fractional derivative

1 dr k n—a—1
Tn—a) di" /a (t—s) u(s)ds.

Definition 2.6 (Caputo tempered fractional derivative, [37]). Forn e N, n—1<a <n

and A > 0. The Caputo tempered fractional derivative operator CDZ‘:{\ of order « is
defined by

CD;X”tAu (t) == e M (CD;t (eMu(t)))

RLDg,tu(t) =

e M ¢ LdmeMu(s)
-5 [ oot Yy <t<b
I'(n —«) /a (t=s) dsm 5o '
where CDg,t denotes the Caputo fractional derivative
1 ¢ a1 d™u(s)
C na n—a—1
D t) = —— t— ds.
oult) = oy L (=

Lemma 2.7 ([37]). Let u(t) € AC™[a,b] and n — 1 < a < n. Then the Caputo tem-
pered fractional derivative and the Riemann-Liouville tempered fractional integral have
the composite properties

n-1 _a) k (eAty,
122 [ODa ()] = u(t) - kz_oe—“ L= [d (dtk ®) ]

and
CD;Y:? I:I;’ivt)‘u(t)} = u(t) lfOé c (O7 1)

Lemma 2.8 ([37]). The Laplace transform of the Riemann-Liouville tempered fractional
integral is given by

{0} = s+ 02 {10}
Definition 2.9 ([31]). The Mittag-Leffler function is defined by

oo k
z
Eo(2) =) =, C, 0.
(2) kzor(’fer) S a >

The two-parameter Mittag-Leffler function is defined by
o0 k
z
E, z:g _ z€C,a>0,8>0.

One can see E,(z) = Eq.1(2) and Eq(z) = E1,1(z) = € from the above equation.

Lemma 2.10 ([31]). The Laplace transform of two parameter Mittag-Leffler function is
se—h
s*+a’

where t and s are the variables in the time domain and Laplace domain, respectively.

LA By 5 (—at®)} = Re(s) > |a|=,

Lemma 2.11 ([38]). Let a > 0 and v be a nonnegative locally integrable function on
[0,T] for some T < co. Assume that

(1) h(t) > 0 is a nondecreasing continuous function on [0,T],
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(2) there exists M > 0 such that h(t) < M, and
(3) u(t) is a nonnegative and locally integrable on 0 <t < T.

If
u(t) <wo(t) + h(t)/o (t — ) tu(s)ds,
then
u(t) < v(t) +/0 3 W(t—s)m_lv(s) ds, 0<t<T.

Moreover, if v(t) is nondecreasing function on [0,T] then

ult) < v(t)Ea (h(£)D()t?) .

Definition 2.12 ([1, 39]). The Wright type function is given by
= (—2)" 1 & () (alk + 1)) sin (n(k + 1))
9al2) = Z El(—ak+1-a) Z K!
k=0 k=0
for0 <a<1andzeC.
Proposition 2.13 ([1, 39]). The wright type function ¢, is an entire function and has

the following properties:
(1) $a(0) =0 for 6 >0 and [;° ¢o(0)d0 = 1;
(2) [ 6a(0)07d0 = £ for v > —1;
(3) f()oo (ba(H)e_ZQda = Ea(_z), z € C;
(4) afg" 09a(0)e™**d0 = Eq,a(~2), z€C.

From the problem (1.2)-(1.3), we denote A = A and it generates a semigroup {T'(¢) }+>0
on Cy(R™) with domain D(A) = {u € Co(R™)|Au € Co(R™)}. Then {T'(t)}i>0 is an
analytic contractive semigroup Co(R™) and, for ¢t > 0,2 € R™ we have

T(t)u = G(x —y,t)u(y, t)dy,
RTL
where G(z,t) = W(f'm‘z/(‘”) and T'(t) is a contractive semigroup on LP(R™) for

p=>1
Lemma 2.14 ( Lemma 3.5.8, [10]). Fort > 0, we have
_n(l_1
1T (a0l oy < (4rt) ™% G675 | o oy

forug € LT(R™) and 1 < g < p < oc.

3. REPRESENTATION FORMULA OF MILD SOLUTIONS

Lemma 3.1. Let ug € Co(R™) and f € L*((0,T],Co(R™)). The solution of the following
problem:

{CDS‘&)‘U(I,t) — Au(z,t) = f(z,1), (z,t) € R" x (0, 7],

u(z,0) = ug(x), xR, (3.1)
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where 0 < a < 1 and X > 0 satisfies the following integral equation

u(z,t) = e S, (t)ug + /t (t— )" e AT (8 — 8) f(, 5)ds,
where 0
t)ug _/ a0 < Gz — y, t*0)uo(y )dy> o
and

To(t)up = /000 af ( . 0o (0)G(z — y,taﬁ)uo(y)dy> dé fort>0.

Proof. Taking the Fourier transform with respect to = into Equation (3.1) , we obtain

DGR ) + €U ) = F(&,t) and  U(&,0) = Ty (€).
Applying Lemma 2.7, we obtain

U(s,t):eﬂtmwﬁ / (t=7)° e (U ) + P, 7)) . (32)

Taking Laplace transform with respect to ¢ into both side of (3.2), we obtain

2{0En}=2{c0©)}

1

a2 {(CEPTen + Fen) |

(14 s+ 07168) 2 {0€.0} = 550000 + oy 2 {Fien}
(s+n"+1g?) 2{0En} = s+ 0" o+ 2 {Fen)}]
2{0En} = ((s+N"+g? ™
x |(s+ 2 0o() + 2 {Fe,0)}] -

Applying the inverse Laplace transform to the both sides of the above equation, we obtain
O(,t) =27 {((s+ 1) +1¢) ™ (s + 17} 0o(©)
_ o -1 _ A
+ 27+ N+ i) e {2 {Fen})
= e MEL (—Et)U(&) + e Mt By o (—|€[2%) * F(€, 1)

t
= e M B (—[€*t%)Uo(€) + / (t =) e M By o (<61 (= 9)) F(€,5)ds
0
—\t /oo ¢a(9)€*|€|2t09d9[j’0(5)

+/0t( — 5)o- 1,=A(t— s)( / Opa —€)(t—s)" ) 9) F(g,s)ds

Fo [ = e o/,

Since
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the inverse Fourier transform of the above equation can be represented as
u(z,t)

_ 71 [eAt ¢a(9)652ta9d0] * ug ()
0

N /Ot y ;)g F1 {(t 5)a-TemA(t=3) (a /0 N 9¢a(0)e('5'2<”>“)d0)] * f(x,5)ds
=M OOO ¢a(9>{ (271T)” /n e—|§|2t”‘9€ix§d€}d9 * U()(.%‘)

t
_|_/ (t_s)aflef)\(tfs)
0

Q h L (1817 (t=9)) giat x f(x,s)ds
><< /O e%(e){(%)n / ( ) ds}df)) f(x,s)d

=e M /000 00 (0)G(x,t40)dO * ug(x)

# [t (o [T 00,060 (- 7000 « 1 (a1,

le|?
where G(z,t) = 7 lt)% e~ is the heat kernel.
Therefore, the solution of Equation (3.1) can be represented by

u(z,t)
2[00 ([ 6= vt o) a

# [t ([Tao ([ 060 -0t 005)ay) o) ds

Lemma 3.2 ([25]). The operator S, (t) for t > 0 has the following properties:
(1) If up > 0 and ug # 0, then

Sa(t)uo >0 and ||Sa(t)u0||L1 R") — ||u0||L1(R")'
(2)[f1<q<p<ooand1—%—1 , then
’n F -
[Sa(&)uoll o gny < (4t®) 2 u )

WHUOHLQ (Rn)*
(

Lemma 3.3 ([25]). The operator T, (t) for t > 0 has the following properties:

(1) If up > 0 and ug # 0, then
To(t)uo >0 and  ||Ta(t)uollprgny = lluollprn)-
(2) [flgqugooand%:%—%<%, then

(47Tt(l)7ﬂ ( 27’)

”Ta(t)uOHLp(]Rn) <a T (1 +a— OJ%) HUOHLQ(R")‘
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Lemma 3.4. Assume that f € LP([0,T]; Co(R™)), p > 1, ap > 1 and

w(t) = t —8)* e M= (t — 8) F(s)ds.
0=[ (-9 Talt — 5)f(s)d
Then w € C ([0,T]; Co(R™)) .

Proof. The proof follows a similar argument to the proof of Lemma 2.4 in [25]. Let
X = Cy (R™). We have that for every h > 0and t <t+h < T,

w(t+h) — w(t)

t+h
/ (t+h—s)* e XEF=)T (b4 h — 5) f(s)ds
0

/ t (t—s)* e AT (t — 5) f(s)ds

a 0
a /Hh /Oo 0o (0)(t + b — 5)*Le XEH=T (¢t 4 h — 5)*6) f(s)dbds
0 0
L /Ot /OOO 06a(0)(t — 5)*Le X E=IT (1 — 5)°0) f(s)dfds
. / - / T 00a(0)(t + h— ) AERIT (1 4+ b 5)°0) f(s)d0ds

+a/ / Opa (0 t+h— 5)* " Le AT (1 4 b — 5)20)
. )a 1 —)\(t S)T ((t — s)a9)1| f(S)dedS
= Il + I2~

We estimate I; by Holder inequality and Proposition 2.13 to obtain

t+h  poo
Rl <a [ [ 00u0)e+h =927 (5 v

- F(la/m (/ dal0 de) (t+h—s)""te X £ (s)] xds

p—1

! e L a7 )
F(a)”f”LP((&T),X)/t [(t+h—s) e } ds

p—1

e~ AMt+h) t+h . .
< WHJC”LP((O 7),X) / [(t+h— 5)°"2eX] 7T ds
t

p—1
1 p— 1 o pa—1
< — P P . .
T (pa — 1> I fllze 0.1y, )P (3.3)
To estimate I, consider for 0 < s < ¢t
[+ 1= )1 XEHIT (14— 5)20) £(5) = (¢ = ) DT (¢ = °6) £)|

<2(t =) f(s)lx

X
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and there exists constant C' > 0 such that

H [(t +h— 8)ale M= (4 b — 5)20) — (t — 5)>"Le NI (¢ — s)ae)} f(s)HX

< ‘(t +h—s) e AT (1 — ) e AT T (¢4 h - 5)°0) f(s)llx
+(t =) e NI (T((t+h—5)70) = T ((t = 5)0)) f(s)llx
<Ot =) Rl f(s)]x-

It follows
2] x < C’/t /OO 0o (0) mi 1 h 0| (s)|| xds
20l x = o o (0% [e% min (t — S)l—a’ (t — s)2—a x
C ¢ 1 h 72T B
< i P .
~ T'(w) (/0 (mm { (t— 5)1704’ (t — 5)2704 }) dS) ”fHL (0,7),X)
Since

& . 1 h p-1
< /0 (mln {Sla, 2o }) ds

h o0 p  pla=2)
:/ Sp(a—l)/(p—l)ds+/ hv—1s »-1 (s

0 h
_ p(p — 1) hp;:fll
(pa—1)(p+1—pa) ’
we obtain
pa—1

2]l x < Cllfllze(o,m),x)h" 7 (3.4)
By the estimation (3.3) and (3.4), we conclude

4 1)~ wly < (= (272) 7 o=t g

w -—w () P P P .

X = F(Oé) po — 1 Lr((0,T),X)

It follows that

lwit+h) —w(t)||y =0 ash—0
which implies that w is continuous. [ ]

4. LOCAL EXISTENCE AND UNIQUENESS RESULTS

For this section, we will prove the local existence and uniqueness of mild solution for
problem (1.2)-(1.3). Firstly, we introduce the definition of mild solution of (1.2)-(1.3).
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Definition 4.1. Let ug € Cy(R™) and T > 0. A function u € C ([0, T]; Co(R™)) is called
a mild solution of the problem (1.2)-(1.3) if satisfies the following integral equation

t
u(t) = e MSo (t)ug + / (t— )" e AT (8 — ) |ulP M u(s)ds.
0

Theorem 4.2. Let ug € Cy (R™). Then, there exists T > 0 such that the problem (1.2)-
(1.3) has a unique mild solution u in C ([0,T]; Co(R™)) provided that satisfy

QpTae)\T 4p71pTae)\T

Tal(a) o} (any <1 and Tal(a) o} s ny < 1. (4.1)
Proof. For given T > 0 and ug € Co (R™), let

Er ={ulue C([0,T]; Co(R"™)), lull oo (0,110 ®n)) < 2ltoll poc gy}

and

Al ) = max [u(t) = oDl ey for wv € By,

Since C ([0, T]; Co(R™)) is a Banach space, (ET, d) is a complete metric space. We define
the operator as

t
(Au) (t) = e S, (t)ug + / (t— ) te AT, (8 — 5) |uP~ u(s)ds, wu € Er.
0

Then, Au € C ([0, T]; Co(R™)) by Lemma 3.4. First, we will show that A is a self map on
Er. Let u € Ep. Then for any ¢ € [0,7] by Lemma 3.2 and 3.3, we have

[I(Aw) D oo )

t
e_)‘tHS’a(t)u0||Loo(Rn) + ”/0 (t — )" e AT, (¢ — 5) ‘u(s)p_l‘ u(s)ds

Lo°(R™)

t
< ™| o ) + / (t— )2 Le A0 [Tyt — )] Ju(s)P uls) o (s

1 ¢ a—1 —\(+—
m/0 (t— 5 e Ju(s)[? . g d

_ 2° [Juo| e gy €N [t a1
S e At“uO”Loo(Rn) + F(OE) A (t _ 8) eASds

< e_MHUOHLOO(R“) +

2 luoll 7~ gy €Tt -
< ol ey + ——r /O(t—s)a L

T n 2P |lu OHLoo(]R" M 2
- 0fl oo (R) F(oz) a

QpTae/\T »
< lluoll oo gy + Tal(a) [[to|7 00 (g -

It follows that

1(AW) (Dl oo ey < 2l[uoll oo -
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Now, we show that A is a contraction map. Let u,v € Ep . Then, for any t € [0,7]
we have

IAu) (8) = (Av) ()
' _ s afle—k(t—s)
<[

1 ¢ a—1 A
< t— —A(t—s)
- T a)/o (t—s)" e

(
t
p a—1_—\(t—s) p—1 p—1
< = t— - (g @
< o [ =9 (o) + 1) 1) = o) oy

Ta(t = ()" uls) = Tult = )o@ o) ds

()" uls) ~ ()" ()|, ds

4r=1p ||u0||}£;,1 re) 7 a—1 ~
< (@) &) /0 (t—s) e_A(t_é)HU(S) - U(S)HLOO(]R”)dS
1 7 t
o (R") / a—1_—\(t—s)
< u(s) —v(8)|; oo .7 00 (R7 t—s e ds
Far ) = o e o ey [ (6=
4p_1p||uo||1£_1 et t
B oo (R™) / a—1 _\s
= u(s) —v(8)||; e oo (Ton t—s e ds
Ta) l[u(s) = v($)l oo ((0,7); 100 () ; (t—s)
421 [luo |7 = gy £
= al' (@) [|u(s) — U(S)HLOO((O,T);LOQ(]R"))

4P~1p Juo < gy TN
= al(a) [[u(s) — U(S)HLoo((o,T);Loo(Rn))

< luls) = v()l Loo (0,1 L (R7Y)-

Therefore A is a contraction map on Er . As a consequence of the Banach fixed point
theorem, there exists a unique fixed point u* € Ep such that u* = Au*. Therefore, u* is
the unique mild to problems (1.2)-(1.3) on [0,T]. L]

Theorem 4.3. Let ug € Co(R™). Then, there exists a mazimal time Ty = T(ug) > 0
such that the problem (1.2)-(1.3) has a unique mild solution u in C ([0,T]; Co(R™)) and
either Tyoz = +00 01 Thge < +00 and ”uHLOO((O,t);CO(R")) — 00 ast — Traz

Proof. We notice that a mild solution u of the problem (1.2)-(1.3) defined on [0, T can
be extended to a larger interval [0, T+ h] with A > 0. Let v(¢) = u(t + T) be a mild
solution of

CDgMv — Av=|ufP" v, te(0,h],
v(0) = u(T).

Therefore, repeating the methods of steps in Theorem 4.2, we can prove that there exists
a maximal interval [0, Tihax) such that the mild solution u of the problem (1.2)-(1.3),
where

Tiax = sup{T > 0|there exists a mild solution u of (1.2)-(1.3) in C ([0, T]; Co(R™))}.
Assume that Tihax < +00 and there exists M > 0 such that
||u(t>||L°°(]Rn) <M, for t € [0, Trnax)-
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Now, we will claim that . lTim u(t) exists in Cy(R™). For any 0 < t1 < ta < Tinax, We
—

max

have
l[u(t2) = w(ti)ll poo (mony

< |le " Salta)uo — 6ﬂtlsa(tl)“‘)||L°°(1R<")

ta
+ / (ts — ) L ME-T, (8, — )[u(s)Pu(s)ds
0

t1
- / (t1 — )" e M=, (11 — s)|uls) [P u(s)ds| | poo mny
0

< |le™ 284 (t2)up — e_Mlsa(tl)“O||L°°(R”)

t1
+ / (ty — ) e M= (8 — 5) [u(s) P u(s)ds
0

ta
+/ (ty — )" e MNE=IT (ty — 8)|u(s)|P M u(s)ds

t1
(t1 — s)aile_’\(tl_s)Ta(tl — s)|u(s)\p71u(s)d8

(t1 — s)* e MNE=IT (1 — ) |u(s)|P M u(s)ds

— | (=) e ETIT, (1 — ) |uls) [P u(s)ds| | oo ey

" — )T (t — 8)* e A t2s) — 8)|u(s) [P u(s)ds
N /O (£ — 5) (ty — 5)*7Y] To(ta — s)[u(s)[" " u(s)d

Lo= (R™)

ta
+ / (ta — ) e ME==T (ty — s)|u(s)[P ™ u(s)ds

ty

Lo (R™)

= TN Tt ) - Tt s)uls) P ul)ds
0

Lee (R™)
=15+ I+ I3+ I4.

It can be shown that I; — 0 as t; — t9 and we obtain that

MP e max
L < ———[t% —t% — (t9 — t1)°
2_F(a+1)[2 T (t2 —t1)"]
and

MP e max

I3< =—— (ty — )"
3= F(a+1)(2 )

and hence Is — 0 and I3 — 0 as to — t1.
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For t; =0 and 0 < ty < T, it is easy to see that Iy = 0. Then, for any ¢ € (0,t;), we
have

t1—6
I < / (t1 — s)* e [e N2 T, (ty — 8) — e AT (t — s)]\u(s)\pﬁlu(s)ds
0 Loc(Rn)
t1
+ / (ty — ) M [e M T (ty — 5) — e M T (1 — )]|uls) [P u(s)ds
t1—¢ Loo(Rn)
MPe> 2MPe™
< su e M=) (1) — ) — e MO (4 — 5 H X + .
- O§s<£—6 (t2 ) (s ) Lo (R™) o M(a+1)

It follows that Iy — 0 as ¢t — t; and € — 0. This implies that
l[u(t2) = w(t1)l poo ny = O as ty — 1.

Hence ur,,, = lm wu(t) exists in Co(R™). We define u (Thax) = ur

max max
t— T‘max -

C([0, Thax), Co(R™)) and then, by Lemma 3.4,

. Then, u €

/O (t— 5)* eI, (¢ — ) |ul " u(s)ds € C ([0, Tomax] , Co (BY)) .

For h >0and § >0, we let

Eh,5 - {U eC ([Tmaxy Tmax + h], CO(Rn)) | u (Tmax) = ur, d(u, uTmax) S 5}a

ax?
where

d(u,v) = te[ngaKax+h]\IU(t) = V()| oo (rm)

for u,v € Ej_5. Since C ([Tmax; Tmax + h]; Co(R™)) is a Banach space, (Ej s, d) is a com-
plete metric space. We define the operator K on Ej, 5

Tmax
(Kv) (t) = e So(t)uo + / (t — )" Le AT (8 — 8)|[ulP " u(s)ds
0

t
+ / (t —s)* e ME0T (8 — s) [P T u(s)ds, wve Ehs.
Tmax

It is clearly that Kv € C ([Tmax, Tmax + h]; Co(R™)) and (Kv) (Tmax) = Ur,.., -
E} s. Then, for any t € [Thax, Tmax + 7

[(Kv) (8) = Uy | oo @y
S He_AtSa(t>U0 — €_ATmaXSa(Tmax)u0HLoo(]Rn

Let v €

)

n]]ax
+ / (t— )" e M, (E— 8)ufP " u(s)ds
0

Trl]ax
- / (Tmax — 8)* e AN Tmax=9) T (T — ) |ulP " u(s)ds
0

L= (R™)

t
/ (t — )" e AT (¢ — 8)|u|P o(s)ds

Tmax

"

Lo (R")
=:J1+ Jo + J3.
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Taking h > 0 small enough so that J; < g, Jy < g and

t
Jz < / (t—s)“‘le‘*“‘s)Ta(t—8)(!@”_1!11(8)—IUTH.MI”_luT,,,aX)ds
Trmax Lo (R")
t
+ / (t— )"l MITL(t — 5) Jug,,, [P ug,,
Tonax Leo (R")
t
< [ e g ) ([ o) - o )|
o Lo (R
t
+/ (t_s)a_lei)\(TmaX7S) T (t_8)|uTmax |p_1uT'max dS
Tn]zxx Lo (®m)
1
<7 a) (H 1 (T T s (&) F (0T ((Tmax,T,,,ax+h>;L°°<Rn>>)
1 _
x/ i ORI PRLE
Tmax
/ a 16_>\(Tmax_8) Ta(t_s)|uTmax|p71uTmax S
Tmax Le=(R™)
< (a (HU| T Tt h)i2oe (@) T 10T mac [T oo (e, max+h);L°°(1R")))

Tmax

[T HLoe(Rn) /t 1
4+ — (t—s)*" e M Tmax—5) g
I'(a) Trax

p—1
= T (H”||Loo((Tmax,T,naerh);Lw(R")) + ||“Tmax||Lw((Tmax,Tan);Lw(R")))

p
Me)\(t—ﬂnax)

d A(t—T, ) « e
- max/ (¢ — Tmax t— Tmax
* &t ( S Ia+1) ( )
)
< Z
-3
for t € [Tmax, Tmax + ] . Then, we obtain

||(’CU) (t) = UTax ||L°°(]R") < 6’ te [Tma)m Tmax + h] .

Next, we show that K is a contraction map on E}, s for h small enough. Let w,v € E}, 5.
Then, for any ¢ € [Tmax, Tmax + 7] we have

[(Kw) () = (Kv) ()] oo (geny

< [t e ) () - bl ets)|

Timax

S
L (R"™)
S ||w - IU”LOO (Enax7Tnlax+h)'Loo(Rn))

xXp (||w||Lao((:rmax Tinax+h);Loo(R7)) T ||”||L°°((me, Tmax+h); LW(R"))>

67/\Tmax /t a—1
X ——— (t—1s)"" "eMds
I(@) U1
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S W = Vll oo (T Toan 1)L (R7))
p—1
B (1000 o B T2 8)) + 1 B T2 )
eMt—Tmax)

Tt )

2p 1 5 p—1 eA(t*Tmax)
< 9P~ -
> p( + ||uTlnax||L°°(Rn)) T(a+1)

X [Jw — UHLoc((me,T,W+h);Loo(Rn))

(t - Tmax)a

<27 1p(s et .
< p( +|IUTmax||Loo(Rn)) ot D) 120 =Vl oo (T, T+ 0)sL5 ®7))-

Choosing h small enough such that

e>\h

p—1 1
2]3—1 (6 oo n ) 7]7‘0( < 9"
PO+ [ugnll L (R™) I'a+1) 2

Then, it follows that K is a contraction map on Ejs . By the Banach fixed point
theorem, there exists a unique fixed point v* € Ej, 5 such that (Kv*)(t) = v*(t). Since
¥ (Tmax) = Kv (Tax) = ur,,.,., we can define

~ u(t), t€[0,Tmax)
i ={ ) e,

then %(t) € C (([0, Timax + k], Co(R™)) and
a(t) = e M8 (H)uo + / t (t — ) e AT, (t— )@’ a(s)ds.
0

Thus, (t) is a mild solution of (1.2)-(1.3), which contradicts with the definition of Tijax.
u

5. CONTINUOUS DEPENDENCE ON INITIAL CONDITIONS

Now, we give a characterization of continuous dependence on initial conditions of the
problem (1.2)—(1.3).

Theorem 5.1. Let u and w be solutions to the following problem:

CDSMu— Au= |uf "y, (2,t) € R x (0, Tinax)
u(z,0) =up(z), xR

and

CDa’t)‘w — Aw = |w\p_1w, (z,t) € R™ x (O,Tmax]
w(z,0) = wo(z), zeR"™

for some Thax < 00 and Tax < 00 satisfying the condition (4.1). Then, for allt € [0,T],
we have

_ —1
lu(t) = wll ey < e lluo = woll o n) Ea (p [2 (ol ey + ol qamy) )7 )

for some 0 < T < min{Tyax, Tinax}-
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Proof. By Lemma 3.1, we have
t
u(t) = e S, (t)ug + / (t— )" e AT (t— ) |ulP " u(s)ds, for t € [0, Thnax]
0

and

t
w(t) = e MS, (Hwy + / (t —s)* e AT (8 — ) |w[P w(s)ds  for t € [0, Toax)-
0

By the proof of Theorem 4.2, we can find 0 < T < min{T ax, Tmax} such that
[u@)[| oo @y < 2Mu0ll oo mny  and  [w(E)l| oo gny < 2l[woll oo mn)

for all ¢ € [0, T].
Setting x(t) := |lu(t) — w(t)||z®n). Then, we obtain

w(t) < e Sa(t) (uo — wo) || o= (rmy

t
+ / (t = )2 Le AT (¢ — 8)[uf” u(s) = Talt — )] w(s)]| e e ds
0

< e Mlug — wol| Lo (R

1 k a—1 —1 —1
+ 7/ (t — ) e M| JuP T u(s) — [w]PT M w(s) || oo (reyds
T(a) Jo =
S €7M||Uo — wOHLOO(Rn)
20=1p p—1
=+ F(a) (||u0||LOO(R7L) + ||u)0HLoo(Rn))

t
x / (t = )" e Ju(s) = w(s)l| o o .

It follows that

eMa(t)

< luo — wol| Lo &n)

2r—1y —1
+ T(a) (ol oo my + llwoll Lo ny)”
t
a—1 )s
[ =7 ) = w06y
0+ 22 (ol + oollmcan )™ [ = 00771 a6 ey 5
= e ee— 0 Loo(Rn 0 L= (R™ - oo n .
I(a) (&) (R") o Lo (R™)

Applying Lemma 2.11, we obtain

2p*1p
I'(a)

a(t) < o0)Bn ot (lolloeery + unlz=cen ) Tl

and hence

_ _ -1 ,4
2(t) < € 0(0)Ea (27 (o] oo amy + o oo amy)” ™ )
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6. AN EXAMPLE
In this section, we present an example of the time-fractional nonlinear diffusion equa-
tion. Let u and w be solution of the following problem:
1
CDg,fu — Au= |u|2u, (x,t) € R x (0,1], (6.1)
u(z,0) = %6795272, z€eR

and

CDftw— Aw= [wfw, (5,1 €Rx (0,3, 62)
w(z,0) = 5 sin®(), xER,

respectively. Here, welet o« = L, A =1,p=3,T=1,T = %, uo(z) = ée*’JQ*Q and

wo(z) = o sin®(z).
Then, we calculate the condition (4.1) to obtain

WM 8e ( 1

2
1
g2
~ U .~ 0.00671<1,
CJ[F(O[) HUOHL (R) T (%) sup e ) 8e3T (%) >

8e? z€R

o=

9P oeNT 8(3)%ez /1 0\’
—_— - 222 2 (= supsi —0.10337 < 1,
OéF(Ot) HwOHL (]R) T (%) <2 ilé.gsnl ($)> >~

4p=lpTeerT p—1 48¢ < 1 2>2 3

I S T - - supe - = —— = 0.04025 < 1
ol(c) ol ® (%) 8e? Lcr 4e37 (%)

and
. 1

ar=ipTeert ' 48 ()%er (1 ?

- = = == | ~ 0.62024 < 1.
e Il = 212 (55 sin(e))

By Theorem 4.2, we obtain that the problem (6.1) and (6.2) have the unique mild solutions
u and w, respectively. Moreover, the mild solution u of the problem (6.1) is continuously
dependent on the initial data (6.1) with

1 1 11y
lu(t) —w@)| <et (86_2 + 20) E, (3 ( + 10) t°‘> for all ¢t € [0, T7,

with 0 < T < min{T, T'}.

7. CONCLUSION

In this paper, we investigated local existence uniqueness of mild solution which is
basic concepts of knowledge. These results can be extended to maximal existence result.
Furthermore, the continuous dependence on initial conditions are also proved. Other
aspects in qualitative analysis of solutions of diffusion equations such as blow-up, global
existence and regularity could be further investigated under various fractional derivatives
and conditions.
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