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1. Introduction

Throughout this paper, we always assume that H is a real Hilbert space with inner
product ⟨·, ·⟩ and induced norm ∥ · ∥. Let C be a nonempty, convex, and closed subsets
of H. Recell that the nearest point (or metric) projection from H onto C is defined by

ProjHC y := {x ∈ C : ∥x− y∥ = distC(y)}, ∀y ∈ H, (1.1)

where distC(y) := infx∈C∥x− y∥. The nearest point projection operator plays a crucial
role innonsmooth analysis, convex programming, and fixed point problems of nonexpansive-
like mappings.

Let F : C → H be a mapping, recall that the following classical variational inequality
problem (VIP) is to find z ∈ C such that

⟨F (z), x− z⟩ ≥ 0 for all x ∈ C. (1.2)
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From now on, the solution set of the variational inequality problem by V I(C,F ). One
knows that x solves problem V I(C,F ) if and only if x is a fixed point of the mapping
ProjHC (I − µF ) , that is,

x = ProjHC (x− µFx), µ > 0. (1.3)

The VIP(1.2 ), which serves as a powerful and efficient mathematical model, unifies many
classical concepts in convex programming, nonsmooth analysis, variational analysis, and
functional analysis, such as complementarity problems, systems of nonlinear equations,
and equilibrium problems under a general setting. In recent years, much attention has
been given to developing efficient and implementable numerical solution methods for
solving variational inequality problems and related convex optimization problems, see
[1, 3–5] and the references therein.

Korpelevich [6] proposed the extragradient method in 1976 for solving saddle point
problems, and it has since been extended to the VIP. It was proved that, in a finite
dimensional space, the sequence {xn} defined by

x1 ∈ H,

yn = ProjHC (xn − αFxn),

xn+1 = ProjHC (xn − αFyn), n ≥ 1, (1.4)

where F : C → H is a monotone and L-Lipschitz continuous mapping, and α ϵ(0, 1
L ),

converges weakly to a solution of variational problem (1.2); see [6] and the references
therein.

Recently, the extragradient method has been extensively investigated and extended to
the framework of infinite dimensional spaces, and a number of efficient modifications were
obtained; see [7–11] and the references therein. In particular, an alternative modification
to the extragradient method is the following algorithm proposed by Tseng [12].

x1 ∈ H,

yn = ProjHC (xn − αFxn),

xn+1 = ProjHC (yn − α(Fyn − Fxn)), n ≥ 1, (1.5)

where F is a monotone and L-Lipchitz continuous mapping, X is some convex and closed
set, and α is a constant in (0, 1

L ). In real-world applications, such as physics [13], eco-
nomics [17], image recovery [18], and control theory [19], many results or modelings are
investigated in the setting of infinite dimension spaces. Strong convergence, that is, con-
vergence in the norm, is much more useful and desirable in such problems than weak
convergence, that is, convergence in the weak topology, because strong convergence of
iterative sequences translates into tangible properties, for example, the energy ∥xn−x∥of
the error between the solution xand the iterate xn becomes arbitary. The natural ques-
tion that arises is how to construct an efficient algorithm which guarantees the strong
convergence, that is, norm convergence, in the setting of infinite dimensional spaces with
no compact conditions on involved operators. To obtain an answer to this question,
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Nadezhkina and Takahashi [20] introduced the following hybrid extragradient method

x1 ∈ H,

yn = ProjHC (xn − αFxn) ,

zn = ProjHC (xn − αFyn) ,

Cn = {ω ∈ C : ∥zn − ω∥ ≤ ∥xn − ω∥},
Qn = {ω ∈ C : ⟨xn − ω, x0 − xn⟩ ≥ 0},

xn+1 = ProjHCn

∩
Qn

(x0) , n ≥ 1, (1.6)

where F : C → H is a monotone and L-Lipschitz continuous mapping with α ϵ
(
0, 1

L

)
.

They proved that the sequence {xn} generated by (1.9) converges in norm to ProjHV I(C,F ) (x0).

To implement the extragradient algorithm, one needs to calculate projections two times
at each iteration. This may affect the efficiency of the algorithm from viewpoint of
computation. With some choices on set Cn, we show that it is possible to throw out one
projection at each iteration in (1.4) or (1.9).

Recently, Censor, Gibali, and Reich [? ] and Malitsky and Semenov [9] investigated
hybrid extragradient algorithms with the strong restrictions that the potential mapping
is both monotone and Lipschitz continuous. However, it is not very clear if convergence
is still available if monotonicity is replaced by pseudo-monotonicity. We, in this paper,
consider the pseudo-monotonicity in our convergence analysis, which is one of the high-
lights of this paper. Based on the methods and techniques discussed in this manuscript,
many convex optimization problems could be extended to pseudo-convex optimization
problems. Very recently, Liu and Qin [33] introduced new extragradient-like algorithm
for solving a variational inequality problem with a pseudo-monotone and Lipschitz con-
tinuous mapping in a Hilbert space. This algorithm was generated as follow:

x0, x1 ∈ H,

yn = xn + αn (xn − xn−1) ,

zn = ProjHC (xn − µnFyn) ,

where µn is chosen to be the largest µ ∈
{
ϱ, ϱσ, ϱσ2, ...

}
such that

µ ∥Fzn − Fyn∥ ≤ ν ∥zn − yn∥
wn = zn − µn (Fzn − Fyn) ,

Cn = {p ∈ H : ∥xn − p∥2 −
(
1− 2ν2

)
∥xn − zn∥2 + 2ν2α2

n ∥xn−1 − xn∥2

≥ ∥wn − p∥2},
Qn = {p ∈ H : ⟨xn − p, x0 − xn⟩ ≥ 0} , n ≥ 1,

xn+1 = ProjHCn
∩

Qn
(x0) , n ≥ 1, (1.7)

On the other hand, the inertial extrapolation, which was first proposed by Polyak
[21] as an acceleration process, has been employed to solve various convex minimization
problems recently. It is based on the heavy ball method of the two-order time dynamical
system. Inertial type methods involve two iterative steps and the second iterative step
is obtained with the aid of previous two iterates. They can be viewed as an efficient
technique to deal with various iterative algorithms, in particular, the projection-based
algorithms; see [14–16, 22–25, 27, 28, 28].
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Recently, Gibali [29] introduced a self-adaptive method by adopting Armijo-like searches
and obtained a convergence result in a finite dimensional space. This methods uses vari-
able and nonmonotone stepsizes avoiding using the Lipschitz continuity; however, it uses
two values of operator F at each iteration even with fixed steps.

In this research we focus on the common variational inequality problems (CVIP) is to
find zϵC such that

⟨Fi (z) , x− z⟩ ⩾ 0, for all xϵC and i = 1, 2, 3, ..., N. (1.8)

In 2012, Censor et al. [30] presented the algorithm for solving the CVIP here,finite ele-
ments are computed in parallel of each iterations. The closed convex subset C1

n, C
2
n, ..., C

N
n

are constructed getting xn+1 which is projected onto the intersection of these closed con-
vex subset. This algorithm generated by x1ϵH and compute

yin = PKi
(xn − λi

nAi(xn)),

zin = PKi(xn − λi
nAi(y

i
n)),

Ci
n = {zϵH :

⟨
xn − zin, z − xn − γi

n

(
zin − xn

)⟩
≤ 0},

Cn =

N∩
i=1

Ci
n ,

Wn = {zϵH : ⟨x1 − xn, z − xn⟩ ≤ 0},
xn+1 = PCn∩Wnx1, (1.9)

where Ki is a nonempty closed and convex subset of H.
Recently, some authors have constructed different fast iterative algorithms with the aim

of inertial extrapolation, such as inertial proximal algorithms, inertial forward-backward
splitting algorithms, inertial Mann algorithms, and inertial subgradient extragradient
algorithms. Among first-order methods, there has always been some trade-off between
methods with variable stepsizes and ones with fixed stepsizes. Methods requiring fixed
stepsizes necessitate knowledge of the Lipschitz constant of monotone mappings.One can
estimate the Lipschitz constant from the above; however, this estimation is often quite
conservative. As a result, methods with fixed stepsizes typically use tiny steps.Methods
with variables stepsizes execute some search procedures with the goal of locating an
appropriate stepsize in each case iteration. They are more flexible and often allow us to
use a larger step than what is predicted by the Lipschitz constant. At this moment, there
are some adaptivity techniques for variational inequality problems.

In this paper, inspired and motivated by the methods, a parallel extragradient-like al-
gorithm is proposed for solving common variational inequalities problems involving pseu-
domonotone mapping in real Hilbert spaces. It is important to note that our proposed
scheme is effective. In particular, our algorithm can solve common pseudomonotone vari-
ational inequalities. The proof of strong convergence of the proposed algorithm is proved
without knowing the Lipschitz constant of the operator F . The proposed algorithm could
be seen as a modification of the methods that have appeared. A strong convergence
theorem is proved under mild conditions.

2. Preliminaries

Now let us recall some related definitions here. A mapping F : H → H is said to
be:
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(i) L-lipschitz continuous if and only if there exists a positive constant L > 0 such that

∥Fυ′ − Fυ∥ ≤ L∥υ′ − υ∥, for all υ′, υ ∈ H; (2.1)

(ii) Monotone if and only if

⟨υ′ − υ, Fυ′ − Fυ⟩ ≥ 0, for all υ′, υ ∈ H; (2.2)

(iii) Pseudo-monotone if and only if

⟨Fυ′, υ − υ′⟩ ≥ 0 ⇒ ⟨Fυ, υ − υ′⟩ ≥ 0, for allυ′, υ ∈ H; (2.3)

(iv) Sequentially weakly continuous if and only if, for each sequence {xn}, {xn} con-
verges weakly to x implies that F (xn) converges weakly to F (xn).

In order to prove our main result, we also need the following lemmas. The first one is
known as the KK property.

Lemma 2.1. [31] Let H be a Hilbert space. Let {xn} be a vector sequence in H. If
∥xn∥ → ∥x∥ and xn ⇀ x, then xn ⇀ x.

Lemma 2.2. [32] Let H be a Hilbert space and let F : C → H be a pseudomonotone and
continuous mapping. Then, x̂ is a solution of the V I (C,F ) if and only if ⟨F (x) , x− x̂⟩ ≥
0,∀x ∈ C.

3. Main Results

In this section, we do several computational experiments in support of the conver-
gence of the proposed algorithm and compare our algorithm with some existing algorithms
in literatures. First,we introduce two algorithm, which solve our proposed problems the
following assumptions will be used through the rest of this paper.

(a) Mapping Fi : H → H is pseudo-monoton, L-Lipschitz continuous, and sequentially
weakly continuous on bounded sets.

(b) Solution set
∩N

i=1 V I(C,Fi) ̸= ∅.
Algorithm 3.1. (Parallel inertial hybrid extragradient algorithm with the Armijo-like
step).
Initialization: Let x0, x1 ∈ C be arbitrary. Given αn ∈ (0,+∞). Let νi ∈ (0, 1√

2
) and

ϱ, σ ∈ (0, 1). Set C0 = Q0 = H.
Step 0. Set n = 1.
Step 1. Given the current iterates xn−1, xn ∈ C, calculate yn = xn + αn (xn − xn−1).
Step 2. Compute

zin = ProjHC (xn − µnFiyn) , (3.1)

where µi
n is chosen to be the largest µi ∈

{
ϱ, ϱσ, ϱσ2, ...

}
such that

µi
∥∥Fiz

i
n − Fiyn

∥∥ ≤ νi
∥∥zin − yn

∥∥ . (3.2)

Step 3. If yn − zin = 0, for all i = 1,2,...,N , then stop and xn is a solution of V I(C,F ).
Otherwise, go to Step 4.
Step 4.

wi
n = zin − µi

n

(
Fiz

i
n − Fiyn

)
(3.3)

wn = argmax
{∥∥wi

n − xn

∥∥ : i = 1, 2, ..., N
}

(3.4)
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ν = min
{
νi : i = 1, 2, ..., N

}
(3.5)

Step 5. Construct sets Cn and Qn as

Cn =
{
p ∈ H : ∥xn − p∥2 + 2ν2α2

n ∥xn−1 − xn∥2 ≥ ∥wn − p∥2
}
,

Qn = {p ∈ H : ⟨xn − p, x0 − xn⟩ ≥ 0} , n ≥ 1. (3.6)

(3.7)

Step 6. Calculate

xn+1 = ProjHCn∩Qn
x0. (3.8)

Set n := n+ 1 and return to Step 1.

Lemma 3.2. The Armijo-like search rule (3.2) always terminates and

min

{
ϱ,

νiσ

Li

}
≤ µi

n ≤ ϱ. (3.9)

Proof. Since Fi is Li-Lipschitz continuous on H, we have

νi

Li

∥∥Fi (yn)− Fi

(
ProjHC

(
xn − µi

nFiyn
))∥∥ ≤ νi

∥∥yn − ProjHC
(
xn − µi

nFiyn
)∥∥ .

This implies that (3.2) holds for all µi ≤ νi

L , thus µi
n is well defined. Obviously, ϱ ≥ µi

n.

If µi
n = ϱ , this lemma is proved. If µi

n < ϱ, one sees that
µi
n

σ must violate inequality
(3.2). Combining this with the fact that Fi is L-Lipschitz continuous on H, one has

νi
∥∥yn − ProjHC

(
xn − µi

nFiyn
)∥∥

<
µi
n

σ

∥∥Fi (yn)− Fi

(
ProjHC

(
xn − µi

nFiyn
))∥∥

≤ Lµi
n

σ

∥∥yn − ProjHC
(
xn − µi

nFiyn
)∥∥ . (3.10)

It follows that

νiσ

L
< µi

n (3.11)

This completes the proof.

Lemma 3.3. Let {xn}, {yn}, {zin}, and {wi
n} be sequences generated by Algorithm 3.1

and let u be a solution of V I(C,F ). Then,∥∥wi
n − u

∥∥2 ≤ ∥xn − u∥2 + 2ν2α2
n ∥xn − xn−1∥2 . (3.12)

Proof. Let u be a solution of the V I(C,F ). It follows from (3.1) that zin ∈ C. Therefore,
one obtains that

⟨
F (u) , zin − u

⟩
≥ 0. By using the pseudo-monotonicity of F, one obtains
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that
⟨
F (zin), z

i
n − u

⟩
≥ 0. Using (3.1), one arrives at∥∥zin − u

∥∥2 ≤
∥∥u−

(
xn − µi

nFiyn
)∥∥2 − ∥∥zin −

(
xn − µi

nFiyn
)∥∥2

= ∥xn − u∥2 + 2µi
n ⟨u− xn, Fiyn⟩ −

∥∥zin − xn

∥∥2 − 2µi
n

⟨
zin − xn, Fiyn

⟩
= ∥xn − u∥2 −

∥∥zin − xn

∥∥2 − 2µi
n

⟨
zin − u, Fiyn

⟩
= ∥xn − u∥2 −

∥∥zin − xn

∥∥2 − 2µi
n

⟨
zin − u, Fiz

i
n

⟩
+ 2µi

n

⟨
zin − u, Fiz

i
n − Fiyn

⟩
≤ ∥xn − u∥2 −

∥∥zin − xn

∥∥2 + 2µi
n

⟨
zin − u, Fiz

i
n − Fiyn

⟩
. (3.13)

In view of (3.2), (3.5), and (3.13), one has∥∥wi
n − u

∥∥2 =
∥∥zin − u

∥∥2 − 2µi
n

⟨
zin − u, Fiz

i
n − Fiyn

⟩
+ µi

n

2 ∥∥Fiyn − Fiz
i
n

∥∥2
≤ ∥xn − u∥2 −

∥∥xn − zin
∥∥2 + 2µi

n

⟨
u− zin, Fiyn − Fiz

i
n

⟩
+ ν2i

∥∥zin − zin
∥∥2

−2µi
n

⟨
zin − u, Fiz

i
n − Fiyn

⟩
≤ ∥xn − u∥2 −

∥∥zin − xn

∥∥2 + ν2
∥∥zin − (xn + αn (xn − xn−1))

∥∥2
= ∥xn − u∥2 −

∥∥zin − xn

∥∥2 + ν2
∥∥zin − xn

∥∥2 + ν2α2
n ∥xn − xn−1∥2

−2ν2αn

⟨
zin − xn, xn − xn−1

⟩
≤ ∥xn − u∥2 −

∥∥zin − xn

∥∥2 + ν2
∥∥zin − xn

∥∥2 + ν2α2
n ∥xn − xn−1∥2

+ν2
∥∥zin − xn

∥∥2 + ν2α2
n ∥xn − xn−1∥2

= ∥xn − u∥2 −
(
1− 2ν2

) ∥∥zin − xn

∥∥2 + 2ν2α2
n ∥xn − xn−1∥2 . (3.14)

This implies that ∥∥wi
n − u

∥∥2 ≤ ∥xn − u∥2 + 2ν2α2
n ∥xn − xn−1∥2 . (3.15)

for all i = 1, 2, ..., N . This completes the proof.

The boundedness of the generated sequences will be needed, for example, to ensure
the existence of weak cluster points. In light of this, we next prove the following lemma.

Lemma 3.4. The sequence {xn} generated by Algorithm 3.1 is bounded and
limn→∞ ∥xn − xn+1∥ = 0.

Proof. It is evident that sets Cn and Qn are convex and closed. In view of Lemma 3.3,
V I(C,Fi) ⊆ Cn. Let us show by the mathematical induction that V I(C,Fi) ⊆ Qn for
all n ∈ N . Since Q0 = H, we have V I(C,Fi) ⊆ Q0. Suppose that V I(C,Fi) ⊆ Qn. It
is sufficient to prove that V I(C,Fi) ⊆ Qn+1. From the facts that V I(C,Fi) ⊆ Cn ∩Qn

and xn+1 = ProjHCn∩Qn
x0, we conclude that ⟨xn+1 − ω, x0 − xn+1⟩ ≥ 0, ∀ω ∈ V I(C,Fi),

which, together with the definition of Qn, yields that ω ∈ Qn+1. Since ω is chosen
arbitrarily in V I(C,Fi), we have V I(C,Fi) ⊆ Qn+1. Hence, V I(C,Fi) ⊆ Cn ∩ Qn and
sequence {xn} is well defined. Let z = ProjHV I(C,Fi)

x0. Since xn+1 = ProjHCn∩Qn
x0 and

z ∈ V I(C,Fi) ⊆ Cn ∩Qn, we have

∥xn+1 − x0∥ ≤ ∥z − x0∥ , (3.16)

which immediately implies that {xn} is bounded. It follows from (3.6), we have xn =
ProjHQn

x0, which together with (3.16), we have ∥xn − x0∥ ≤ ∥xn+1 − x0∥. Using the
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boundedness of {xn}, one finds that limn→∞ ∥xn − x0∥ exists. In addition, it follows
from xn+1 ∈ Qn and xn = ProjHQn

x0 that

∥xn − xn+1∥2 ≤ ∥xn+1 − x0∥2 − ∥xn − x0∥2 . (3.17)

Due to the existence of limn→∞ ∥xn − x0∥, it follows from the above inequality that

lim
n→∞

∥xn − xn+1∥ = 0. (3.18)

Theorem 3.5. Let Assumptions (a) and (b) hold. The sequences {xn},{yn}, {zin}, and
{wi

n} generated by Algorithm 3.1 converge strongly to z = ProjHV I(C,Fi)
x0.

Proof. Substituting p = xn+1 into set Cn, one obtains from (S2.44) that

∥wn − xn+1∥2 ≤ ∥xn − xn+1∥2 + 2ν2α2
n ∥xn − xn−1∥2 . (3.19)

Taking the limit as n → ∞ in (3.19), if follows from (3.18) that

lim
n→∞

∥wn − xn+1∥2 ≤ lim
n→∞

∥xn − xn+1∥2 + 2ν2α2
n lim

n→∞
∥xn − xn−1∥2

= 0. (3.20)

It follows from (3.18) that

lim
n→∞

∥wn − xn∥ ≤ lim
n→∞

(∥wn − xn+1∥+ ∥xn − xn+1∥)

= lim
n→∞

∥wn − xn+1∥ = 0, (3.21)

and

lim
n→∞

∥zn − xn∥ = 0.

By virtue of Step 1 in Algorithm 3.1 and (3.18), we get

lim
n→∞

∥yn − xn∥ = lim
n→∞

αn ∥xn − xn−1∥ = 0. (3.22)

It follows from (3.22) and (3.22) that

lim
n→∞

∥yn − zn∥ ≤ lim
n→∞

(∥yn − xn∥+ ∥zn − xn∥) = 0. (3.23)

Since {xn} is bounded, one sees that there exists a sequence {xnk
}, which is a subse-

quence of {xn}, such that {xnk
} converges weakly to some x̂ ∈ H. From (12), one finds

that {ynk
} also weakly converges to x̂. From zin = ProjHC (xn − µnFiyn), one reaches⟨
zink

− (xnk
− µnk

Fiynk
) , ω − zink

⟩
≥ 0,∀ω ∈ C.

This implies that⟨
Fiynk

, ω − zink

⟩
≥ 1

µnk

⟨
zink

− xnk
, zink

− ω
⟩
,∀ω ∈ C,

which is equivalent to

µnk
⟨Fiynk

, ω − ynk
⟩ ≥

⟨
zink

− xnk
, zink

− ω
⟩
− µnk

⟨
Fiynk

, ynk
− zink

⟩
,∀ω ∈ C.

It follows from Lemma 3.2 that lim infnk→∞ µnk
> 0. Fix ω ∈ C. Taking the limit as

nk → ∞ in the above inequality, one obtains from (3.22) and (3.23) that

lim inf
nk→∞

⟨Fiynk
, ω − ynk

⟩ ≥ 0.
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Now one chooses a positive real sequence {εi}, which is decreasing and tends to 0 as k
tends to the infinity. For each εik, one denotes by mi

k the smallest positive integer, which
is such that

⟨Fi (ynk
) , ω − ynk

⟩+ εik ≥ 0,∀j ≥ mi
k, for all i = 1, 2, ..., N

where the existence of mi
k follows from (3.24). Since{εik} is decreasing, it is easy to see

that {mi
k} is increasing. In addition, for each k, Fi

(
yn

mi
k

)
̸= 0, one sets

tinmk
=

Fi

(
yn

mi
k

)
∥∥∥Fi

(
yn

mi
k

)∥∥∥2 .
This implies

⟨
Fi

(
yn

mi
k

)
, tin

mi
k

⟩
= 1 for each k0. It follows from (3.24) that⟨

Fi

(
yn

mi
k

)
, ω + εkt

i
nmk

− yn
mi

k

⟩
≥ 0.

By using the pseudo-monotonicity of Fi, we can induce from the above inequality that⟨
Fi

(
ω + εkt

i
nmk

)
, ω + εkt

i
nmk

− yn
mi

k

⟩
≥ 0. (3.24)

On the other hand, one has that sequence {ynk
} converges weakly to x̂ as k → ∞. Since

Fi is sequentially weakly continuous on C, one sees that {Fi (ynk
)} converges weakly to

Fi(x̂) . Assume Fi(x̂) ̸= 0 (otherwise, x̂ is a solution). Due to the fact that norms are
sequentially weakly lower semicontinuous, one obtains that

∥Fi (x̂)∥ ≤ lim inf
k→∞

∥Fi (ynk
)∥ .

From
{
yn

mi
k

}
⊂ {ynk

} and εk → 0 as k → ∞ , one obtains

0 ≤ lim
k→∞

∥∥∥εiktinmk

∥∥∥ = lim
k→∞

εik∥∥∥Fi

(
yn

mi
k

)∥∥∥ ≤ 0

Fi (x̂)
= 0.

Therefore, one by taking the limit as k → ∞ in (3.24) concludes that ⟨Fi (ω) , ω − x̂⟩ ≥
0. Combining this with Lemma 3.3 we get that x̂ ∈ V I(C,Fi). In view of xnk

=
ProjHQnk

(x0), V I(C,Fi) ⊆ Qnk
, z = ProjHV I(C,Fi)

(x0) and the lower semicontinuity of

norms, one deduces that

∥x0 − z∥ ≤ ∥x0 − x̂∥ ≤ lim inf
k→∞

∥x0 − xnk
∥ ≤ lim sup

k→∞
∥x0 − xnk

∥ ≤ ∥x0 − z∥ .

Since the space is a Hilbert space, one directly obtains that limk→∞ ∥x0 − xnk
∥ = ∥x0 − x̂∥.

Observe that x0 − xnk
→ x0 − x̂ as k → ∞. Lemma 3.2 sends us to xnk

→ x̂ as nk → ∞.
According to z ∈ V I(C,Fi) ⊆ Qn, we have

∥z − xnk
∥2 = ⟨z − x0, z − xnk

⟩+ ⟨x0 − xnk
, z − xnk

⟩ .
≤ ⟨z − x0, z − xnk

⟩ .

Letting k → ∞, one reaches

∥z − x̂∥2 ≤ ⟨z − x0, z − x̂⟩ ≤ 0.
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This shows that z = x̂. Since {xnk
} is an arbitrary subsequence of sequence {xn},one

finds that xn → z. From (3.21), (3.22), and (3.22), one concludes that yn → z, zn → z
and wn → z as n → ∞. This completes the proof.

Remark 3.6. If N=1, Theorem 3.5 becomes to Theorem 1 of Liu and Qin [33].

4. Conclusion

In this work, we introduce a new parallel extragradient-like algorithm for solving
common variational inequalities of nonmonotone and Lipschitz continuous mappings in
real Hilbert spaces. The inertial technique is used to speed up the convergence and
the hybrid extragradient method is used for obtaining strong convergence theorem. The
results obtain in this paper extend many recent ones in the literature.
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