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Abstract In this paper, we prove the existence and uniqueness solution of fractional delay differential

equation and separated condition of the from:

CD
q

0+
u(t) = f(t, u(t), u(g(t))), t ∈ [0, T ], 1 < q < 2,

a1u(0) + b1CD
p

0+
u(T ) = η1, a2u(0) + b2CD

p

0+
u(T ) = η2, 0 < p ≤ 1,

u(t) = ψ(t), t ∈ [−h, 0)

where CD
q

0+
,C D

p

0+
are the Caputo fraction derivative of order q, p and we consider a1, a2, b1, b2, η1, η2 ∈

R, the functions f ∈ C([0, T ]×R×R,R), g ∈ C((0, T ], [−h, T ]) with g(t) ≤ t and h > 0, ψ(t) is continuous

and bounded via fixed point theorem of Schaefers and Boyd-Wong nonlinear contraction. Also we give

example as an application to illustrate the results obtained.

MSC: 26A33; 34A34; 34B15; 47H01; 54H25

Keywords: Fractional delay differential equation; separated conditions; fixed point theorems.

Submission date: 27.04.2021 / Acceptance date: 11.07.2021

1. Introduction

Fractional calculus is an old mathematical problem and has been always thought of as
a pure mathematical problem for nearly three centuries. Though having a long history, it
was not applied to physics and engineering for a long period of time. However, in the last
few decades, fractional calculus began to attract increasing attention of scientists from
an application point of view. Fractional differential equations have an important role in
numerous fields of study carried out by mathematicians, physicists and engineers. They
have used it basically to developed the mathematical modeling, many physical applica-
tions and engineering disciplines such as viscoelasticity, control, porous media, phenomena
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in eletromagnetics etc., (see [1–3]). The major differences between fractional order differ-
ential operator and classical calculus is its nonlocal behavior, that is the feature future
state based on the fractional differential operator depends on its current and past states.
More details on the fundamental concepts of fractional calculus, fractional differential
equations and fractional integral equations can be found in books like A. A. Kilbas, H.
M Srivastava and J. J. Trujillo [1], K. S Miller and B. Ross [2], and J. Banas and K.
Goebel [4]. Fractional integro-differential equations involving the Caputo-Fabrizio deriv-
ative have been studied by many researchers from differential points of view (see [5–8] and
the references therein). However, in real world systems, delay is very often encountered
in many practical systems such as automatic control, biology and hydraulic networks,
economics, and long transmission lines.

Delayed differential equations are correspondingly used to describe such dynamical
systems. In recent years, delayed FDEs begin to arouse the attention of many researchers
[9–11]. To simulate these equations is an important technique in the research, accord-
ingly, finding effective numerical methods for the delayed FDEs is a necessary process.
Qualitative theory of differential equations have significant application, and the existence
of solutions and of positive solutions of fractional differential equations, which respect the
initial and boundary value, have also received considerable attention. In order to study
such type of problems different kind of techniques such as fixed point theorems [12–14],
fixed point index [14, 15], upper and lower solutions method [16], coincidence theory
[17] etc., are in vogue. For instance, in [18–20], the authors investigate the existence of
solutions of boundary value problems.

CD
q
0+u(t) = −f(t, u(t), CDq

0+u(t)), 0 < t < 1,

au(0)− bu′(0) = 0, y(1) =

∫ 1

0

k(s)g(t, u(s))ds+ µ,

where 1 < q < 2, CD
q
0+ is the Caputo fraction derivative order q, (E, ∥·∥) be Banach

space, f : [0, 1] × C([0, 1], E) × E → E, k ∈ C([0, 1], E),k ̸= 0, a, b ∈ R+, a + b > 0 and
a
a+b < q − 1.

In [21], the authors investigated the existence and uniqueness of solutions of the non-
local fractional integral condition.

RLD
q
0+x(t) = f(t, x(t)), t ∈ [0, T ],

x(0) = 0, x(T ) =

n∑
i=1

αiHI
pi
0+x(ηi),

where 1 < q ≤ 2, RLD
q
0+ is the Riemann-Liouville fractional derivative of order q, HI

pi
0+

is Hadamard fractional integral of order pi > 0, ηi ∈ (0, T ), f : [0, T ] × R → R, and

αi ∈ R, i = 1, 2, · · · , n are real constants such that

n∑
i=1

αiη
q−1
i

(q − 1)pi
̸= T q−1.

In [22], the authors study and investigate the ψ−Hilfer fractional differential equation
with nonlocal multi point condition of the form:

Dq,p;ψ
a+ u(t) = f(t, u(t), Dq,p;ψ

a+ u(t)), t ∈ [a, b],

I1−r;ψa+ u(a) =

m∑
i=1

βiu(ηi), q ≤ r = q + p− qp < 1, ηi ∈ [a, b],



844 Thai J. Math. Vol. 19 (2021) /P. Borisut et al.

where 0 < q < 1, 0 ≤ p ≤ 1, m ∈ N, βi ∈ R, i = 1, 2, . . . ,m, −∞ < a < b < ∞, Dq,p;ψ
a+

is the ψ− Hilfer fractional derivative, f : [a, b]×R×R → R is a continuous function and

I1−r;ψa+ is the ψ-Riemann-Liouville fractional integral of order 1− r.
Inspired by the above papers in [18–22], the objective of this paper is to derive the

existence and uniqueness solution of fractional delay differential equation and separated
condition of the from:

CD
q
0+u(t) = f(t, u(t), u(g(t))), t ∈ [0, T ], 1 < q < 2, (1.1)

a1u(0) + b1CD
p
0+u(T ) = η1, a2u(0) + b2CD

p
0+u(T ) = η2, 0 < p ≤ 1,

u(t) = ψ(t), t ∈ [−h, 0)
where CD

q
0+ and CD

p
0+ are the Caputo fraction derivative of order q, p and we consider

a1, a2, b1, b2, η1, η2 ∈ R, the functions f ∈ C([0, T ]×R×R,R), g ∈ C((0, T ], [−h, T ]) with
g(t) ≤ t and h > 0, ψ(t) is continuous and bounded via fixed point theorem of Schaefers
and Boyd-Wong nonlinear contraction. This study gives us several ideas for solving
boundary valued problem for fractional differential equation by using some suitable fixed
point theorems.

The current paper is organized as follows: Section 1 contains the introduction; in
Section 2, some basic definitions of fractional differential equations are introduced. In
Section 3, the main results are devided into two parts; existance result via Schaefer’s fixed
point theorem is considered in Section 3.1; the study of existence and uniqueness result
via Boyd and Wong fixed point theorem is presented in Section 3.2. As an application,
we present example to illustrate the results obtained. Finally, a conclusion is presented
in Section 4.

2. Preliminaries

We need the following lemmas that will be used to prove our main results.

Definition 2.1. [23] The Riemann-Liouville fractional integral of order q > 0 with the
lower limit zero for a function f : (0,∞) → R is defined by

RLI
q
0+f(t) =

1

Γ(q)

∫ t

0

(t− s)q−1f(s)ds,

where Γ(·) denotes the Gamma function defined by

Γ(q) =

∫ ∞

0

e−ssq−1ds.

Definition 2.2. [24] The Caputo fractional derivative of order q > 0 of a function
f : (0,∞) → R is defined by(

CD
q
0+f

)
(t) =

1

Γ(n− q)

∫ t

0

(t− s)n−q−1f (n)(s)ds,

where n is the smallest integer greater than or equal to q.

Lemma 2.3. [23] Let n− 1 < q < n. If f ∈ Cn([a, b]), then

RLI
q
0+(CD

q
0+x)(t) = x(t) + c0 + c1t+ c2t

2 + · · ·+ cn−1t
n−1,

where ci ∈ R,i = 1, 2, . . . , n, n is the smallest integer greater than or equal to q.

Proposition 2.4. [23] If q, ρ > 0 then
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(1) If f(t) = k ̸= 0, k is a constant, then CD
q
0+k = 0 and RLD

q
0+k = t−qk

Γ(1−q) .

(2) RLD
q
0+t

q−1 = 0.

(3) For ρ > 1, we have RLI
q
0+t

ρ = Γ(ρ+1)
Γ(q+ρ+1) t

q+ρ.

(4) For ρ > −1 + q, we have RLD
q
0+t

ρ = Γ(ρ+1)
Γ(1+ρ−q) t

ρ−q.

(5) For ρ > 0, we have CD
q
0+t

ρ = Γ(ρ+1)
Γ(1+ρ−q) t

ρ−q.

Lemma 2.5. [24](Arzela-Ascoli theorem) Let M ⊆ C[a, b]. M is relatively compact
in C[a, b] if and only if M is

(1) uniformly bounded (meaning that it is a bounded set in C[a, b]),
(2) equicontinuous on [a, b], for any ϵ > 0 there exists δ > 0 such that |t2 − t1|< δ
implies |f(t2)− f(t1)|< ϵ for any f ∈M .

Definition 2.6. [24] Let X and Y be normed spaces. The mapping A : X → Y is said to
be completely continuous, if A(C) is a relatively compact subset of Y for every bounded
subset C of X.

Theorem 2.7. [25] (Schaefer’s fixed point theorem)
Let A : X → X be a completely continuous operator. If the set E(A) = {x ∈ X : x =
λ∗Ax for some λ∗ ∈ [0, 1]} is bounded, then A has fixed points.

Definition 2.8. [25] Let E be a Banach space and let A : E → E be a mapping. A
is said to be a nonlinear contraction if there exists a continuous nondecreasing function
Ψ : R+ → R+ such that Ψ(0) = 0 and Ψ(ϵ) < ϵ for all ϵ > 0 with the property:

∥Ax−Ay∥≤ Ψ(∥x− y∥), for all x, y ∈ E.

Theorem 2.9. [25] (Boyd and Wong fixed point theorem)
Let E be a Banach space and let A : E → E be a nonlinear contraction. Then A has a
unique fixed point in E.

3. Main Results

In this section, we are going to study the existence of solution for problem (4.1) by
using Schaefer’s fixed point theorem. Firstly, we establish the following lemma to ensure
a solution for u(t).

Lemma 3.1. Let 1 < q < 2, assume y(t) ∈ C[0, T ], then the following equation

CD
q
0+u(t) = y(t), t ∈ [0, T ], 1 < q < 2, (3.1)

a1u(0) + b1CD
p
0+u(T ) = η1, a2u(0) + b2CD

p
0+u(T ) = η2, 0 < p ≤ 1,

u(t) = ψ(t), t ∈ [−h, 0)
where CD

q
0+ ,C D

p
0+ are the Caputo fraction derivative of order q, p and we consider

a1, a2, b1, b2, η1, η2 ∈ R, h > 0, ψ(t) is continuous and bounded, has a solution

u(t) =



ψ(t), t ∈ [−h, 0),

RLI
q
0+y(t) +

b2η1 − b1η2
a1b2 − a2b1

+
Γ(2− q)t

b1T 1−q

(
η1 − a1

(
b2η1 − b1η2
a1b2 − a2b1

)

−b1CDp
0+(RLI

q
0+y(T ))

)
, t ∈ [0, T ].
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Proof. We may apply Lemma 2.3 to reduce equation (3.1) to an equivalent integral equa-
tion.

u(t) =RL I
q
0+y(t) + c0 + c1t.

By u(0) = c0 and CD
p
0+u(T ) = CD

q
0+(RLI

q
0+y(T )) + c1

Γ(2)T 1−q

Γ(2+q) , we can get

a1c0 + b1CD
q
0+(RLI

q
0+y(T )) +

c1b1T
1−q

Γ(2− q)
= η1

a2c0 + b2CD
q
0+(RLI

q
0+y(T )) +

c1b2T
1−q

Γ(2− q)
= η2.

So,

c0 =
b2η1 − b1η2
a1b2 − a2b1

c1 =
Γ(2− q)

b1T 1−q

[
η1 − a1

(
b2η1 − b1η2
a1b2 − a2b1

)
− b1CD

q
0+(RLI

q
0+y(T ))

]
.

Hence,

u(t) =



ψ(t), t ∈ [−h, 0],

RLI
q
0+y(t) +

b2η1 − b1η2
a1b2 − a2b1

+
Γ(2− q)t

b1T 1−q

(
η1 − a1

(
b2η1 − b1η2
a1b2 − a2b1

)

−b1CDp
0+(RLI

q
0+y(T ))

)
, t ∈ (0, T ].

LetX := C[−h, T ] with the sup norm and define the operator A : C[−h, T ] → C[−h, T ]
as follows,

Au(t) =



ψ(t), t ∈ [−h, 0],

RLI
q
0+f(t, u(t), u(g(t))) +

b2η1 − b1η2
a1b2 − a2b1

+
Γ(2− q)t

b1T 1−q

(
η1 − a1

(
b2η1 − b1η2
a1b2 − a2b1

)

−b1CDp
0+(RLI

q
0+f(T, u(T ), u(g(T )))

)
, t ∈ (0, T ].

then the equation (4.1) has a solution if and only if the operator A has a fixed point.

3.1. Existance result via Schaefer’s fixed point theorem

We begin with an existance result via Schaefer’s fixed point theorem.

Theorem 3.2. Suppose that
(H1) f ∈ C(I × R× R,R), g ∈ (I, [−h, T ]), g(t) ≤ t, h ≥ 0.
(H2) There exists k > 0 such that∣∣∣f(t, u1, u2)− f(t, v1, v2)

∣∣∣ ≤ k
(
|u1 − v1|+|u2 − v2|

)
for all t ∈ [0, T ].
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(H3) There exist continuous functions θ1, θ2, θ3 : [0, T ] → R+ with

θ̄1 = sup
[0,T ]

θ1(t) < 1,

θ̄2 = sup
[0,T ]

θ2(t) < 1,

θ̄3 = sup
[0,T ]

θ3(t) < 1.

If
∣∣∣f(t, u, v)∣∣∣ ≤ θ1(t) + θ2(t)|u|+θ3(t)|v| for all t ∈ [0, T ], u, v ∈ R, and

(
T q

Γ(q+1) +

Γ(2−q)T 2q−p+1

Γ(q−p+1)

)
(ψ̄2+ψ̄3) < 1, then the problem (4.1) has at least one solution in C[−h, T ].

Proof. The proof will be give in several steps.
Consider the operator A : C[−h, T ] → C[−h, T ], defined by:

Au(t) =



ψ(t), t ∈ [−h, 0),

RLI
q
0+f(t, u(t), u(g(t))) +

b2η1 − b1η2
a1b2 − a2b1

+
Γ(2− q)t

b1T 1−q

(
η1 − a1

(
b2η1 − b1η2
a1b2 − a2b1

)

−b1CDp
0+(RLI

q
0+f(T, u(T ), u(g(T )))

)
, t ∈ [0, T ].

Step 1: A is continuous.
Let {un} be sequence such that un → u in C[−h, T ] where n → ∞, then for each
t ∈ [−h, 0), we have∣∣∣Aun(t)−Au(t)

∣∣∣ = ∣∣∣ψ(t)− ψ(t)
∣∣∣ = 0, for all un, u ∈ C([−h, 0),R).

For all t ∈ [0, T ], we have∣∣∣Aun(t)−Au(t)
∣∣∣ ≤ RLI

q
0+

∣∣∣f(t, u(t), u(g(t)))− f(t, un(t), un(g(t)))
∣∣∣

+
Γ(2− q)t

T 1−q CD
p
0+(RLI

q
0+

∣∣∣f(T, u(T ), u(g(T )))− f(T, un(T ), un(g(T )))
∣∣∣)

≤ kRLI
q
0+

(∣∣∣u(t)− un(t)
∣∣∣+ ∣∣∣u(g(t))− un(g(t))

∣∣∣)
+
kΓ(2− q)T

T 1−q CD
p
0+(RLI

q
0+

(∣∣∣u(T )− un(T )
∣∣∣+ ∣∣∣u(g(T ))− un(g(T ))

∣∣∣)
≤ 2k

(
1 + T qΓ(2− q)

)( T q

Γ(q + 1)
+

T q−p+1

Γ(q − p+ 1)

)
∥un − u∥.

So, ∥Aun − Au∥C[0,T ]→ 0 as n → ∞. Thus show that the operator A is continuous in
C[−h, T ].
Step 2: A(Br) ⊂ Br.
Let u belong to Br. In order to prove that Au ∈ Br, it suffices to show that |Au(t)|≤ r
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for t ∈ [−h, T ]. However, for t ∈ [−h, 0), we get |Au(t)|= |ψ(t)|< r1. For t ∈ [0, T ], we get

|Au(t)| ≤ RLI
q
0+ |f(t, u(t), u(g(t)))|+

∣∣∣ b2η1 − b1η2
a1b2 − a2b1

∣∣∣+ Γ(2− q)T q

b1

(
|η1|

+
∣∣∣a1( b2η1 − b1η2

a1b2 − a2b1

)∣∣∣+ b1CD
p
0+

(
RLI

q
0+ |f(T, u(T ), u(g(T ))|)

)
≤ RLI

q
0+

(
θ̄1 + (θ̄2 + θ̄3)∥u∥

)
+
∣∣∣ b2η1 − b1η2
a1b2 − a2b1

∣∣∣+ Γ(2− q)T q

b1

(
|η1|

+
∣∣∣a1( b2η1 − b1η2

a1b2 − a2b1

)∣∣∣+ b1CD
p
0+

(
RLI

q
0+

(
θ̄1 + (θ̄2 + θ̄3)∥u∥

)
≤

∣∣∣ b2η1 − b1η2
a1b2 − a2b1

∣∣∣+ Γ(2− q)T q

b1

(
|η1|+

∣∣∣a1( b2η1 − b1η2
a1b2 − a2b1

)∣∣∣)+ ( T q

Γ(q + 1)

+
Γ(2− q)T 2q−p+1

Γ(q − p+ 1)

)
θ̄1 +

( T q

Γ(q + 1)
+

Γ(2− q)T 2q−p+1

Γ(q − p+ 1)

)
(θ̄2 + θ̄3)∥u∥

≤ r2,

where, r2 ≥ α+β
γ with

α :=
∣∣∣ b2η1 − b1η2
a1b2 − a2b1

∣∣∣,
β :=

Γ(2− q)T q

b1

(
|η1|+

∣∣∣a1( b2η1 − b1η2
a1b2 − a2b1

)∣∣∣+ ( T q

Γ(q + 1)
+

Γ(2− q)T 2q−p+1

Γ(q − p+ 1)

)
θ̄1,

γ := 1−
( T q

Γ(q + 1)
+

Γ(2− q)T 2q−p+1

Γ(q − p+ 1)

)
(θ̄2 + θ̄3).

Choose r = max{r1, r2}. Thus, we have A(Br) ⊂ Br.
Step 3: A(Br) is uniformly bounded and equicontinuous.

From step 2, we get A(Br) =
{
Au : u ∈ Br

}
⊂ Br. Hence, for each u ∈ Br, we get

∥Au∥≤ r, which means that A(Br) is uniformly bounded. Let τ1, τ2 ∈ [0, T ], τ1 < τ2
and choose u ∈ Br we have;∣∣∣Au(τ2)−Au(τ1)

∣∣∣ ≤
∣∣∣ 1

Γ(q)

∫ τ2

0

(τ2 − s)q−1f(s, u(s), u(g(s)))ds

− 1

Γ(q)

∫ τ1

0

(τ1 − s)q−1f(s, u(s), u(g(s)))ds
∣∣∣

+(τ2 − τ1)
Γ(2− q)T q

b1

(
η1 − a1[b2η1 − b1η2]

+b1CD
p
0+(RLI

q
0+f(T, u(T ), u(g(T ))))

)
.∣∣∣Au(τ2)−Au(τ1)

∣∣∣ ≤ 1

Γ(q)

∫ τ1

0

[
(τ2 − s)q−1 − (τ1 − s)q−1

](
θ̄1 + (θ̄2 + θ̄3)|u|

)
ds

+
1

Γ(q)

∫ τ2

τ1

(τ2 − s)q−1
(
θ̄1 + (θ̄2 + θ̄3)|u|

)
ds

+(τ2 − τ1)
Γ(2− q)T q

b1

(
η1 − a1[b2η1 − b1η2]

+b1CD
p
0+(RLI

q
0+f(T, u(T ), u(g(T ))))

)
.
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∣∣∣Au(τ2)−Au(τ1)
∣∣∣ ≤

(
θ̄1 + (θ̄2 + θ̄3)∥u∥

)
Γ(q + 1)

(
τ q2 − τ q1 − (τ2 − τ1)

q
)
+

(τ2 − τ1)
q

Γ(q + 1)
∥u∥

+(τ2 − τ1)
Γ(2− q)T q

b1

(
η1 − a1[b2η1 − b1η2]

+b1CD
p
0+(RLI

q
0+f(T, u(T ), u(g(T ))))

)
.

As τ1 → τ2, the right hand side of the above inequality tends to zero. It is clear that if
τ1, τ2 ∈ [−h, 0) then ∥Au(τ2)− Au(τ1)∥= 0. So, A(Br) is equicontinuous and uniformly
bounded. Hence as a consequence of Arzalà -Ascoli theorem, we can conclude that A :
C[−h, T ] → C[−h, T ] is completely continuous.
Step 4: E(A) is bounded set,

where E(A) =
{
u ∈ C[−h, T ] : u = λ∗(Au), 0 < λ∗ < 1

}
and choose u ∈ E(A), u =

λ∗(Au) for some 0 < λ∗ < 1. So for each t ∈ [0, T ], we get

u(t) = λ∗RLI
q
0+f(t, u(t), u(g(t))) +

b2η1 − b1η2
a1b2 − a2b1

+
Γ(2− q)t

b1T 1−q

(
η1 − a1

( b2η1 − b1η2
a1b2 − a2b1

)
−b1CDp

0+(RLI
q
0+f(T, u(T ), u(g(T ))))

)
it follows from step 2 and for each t ∈ [0, T ], we get

|u(t)|= |λ∗(Au)(t)|≤ |(Au)(t)|≤ r.

It is clear that if t ∈ [−h, 0) then |u(t)|= |λ∗(Au)(t)|≤ |(Au)(t)|= |ψ(t)|≤ r. Hence the
set E(A) is bounded set. As a consequence of Schaefer’s fixed point theorem, A has a
fixed point which is a solution of problem (4.1).

3.2. Existence and Uniqueness Result Via Boyd and Wong Fixed Point

Theorem.

Theorem 3.3. Let f : [−h, T ] × R × R → R be a continuous function satisfying the
assumption:

|f(t, u(t), u(g(t))− f(t, v(t), v(g(t))|≤ β(t)|u− v|
B + |u− v|

, for t ∈ [−h, T ], u, v ≥ 0,

where β(t) : [a, b] → R is continuous and B is the constant defined by B :=RL I
q
a+β(t) +

Γ(2 − q)T qCD
p
0+(RLI

q
0+f(T, u(T ), u(g(T )))) < 1. Then the problem (4.1) has a unique

solution on C[−h, T ].

Proof. Consider a continuous non-decreasing function Ψ : R+
∪
{0} → R+

∪
{0} by

Ψ(ϵ) = β(s)ϵ
B+ϵ , ∀ϵ > 0, such that Ψ(0) = 0 and Ψ(ϵ) < ϵ ∀ϵ > 0. For any u, v ∈ C[−h, T ]
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and for each t ∈ [−h, T ], yields.

|Au(t)−Av(t)| ≤ RLI
q
a+

∣∣∣f(s, u(s), u(g(s))− f(s, v(s), v(g(s))
∣∣∣

+Γ(2− q)T q−pCD
p
0+(RLI

q
0+

∣∣∣f(s, u(s), u(g(s))− f(s, v(s), v(g(s))
)

≤ RLI
q
a+
β(s)|u− v|
B + |u− v|

(t) + Γ(2− q)T qCD
p
0+(RLI

q
0+
β(s)|u− v|
B + |u− v|

)(T )

≤ Ψ(∥u− v∥)
B

[
RL
Iqa+β(s)(t)

+Γ(2− q)T qCD
p
0+(RLI

q
0+f(T, u(T ), u(g(T ))))

]
≤ Ψ(∥u− v∥).

This implies that ∥Tu−Tv∥≤ Ψ(∥u−v∥). There for A is a non-linear contraction. Hence,
by theorem (Boyd and Wong). The operator A has a unique fixed point, which is the
unique solution of the problem (4.1).

Example 3.4. Consider the following fractional boundary value problems


CD

7
5

0+u(t) =
sin2 t

999+9t

(
|u(t)|

1+|u(t)|

)
+ cos2 t

999+et

( |CD
7
5
0+
u(t)|

1+|CD
7
5
0+
u(t)|

)
+ 1

2 , t ∈ [0, π],

u(0) = π, u(π) =RL I
1
3

0+u(
π
2 ).

(3.2)

By comparing problem (4.1) and (3.2), we obtain the following parameters: q = 7/5, p =

1/3, η = π, κ = π/2, f(t, u(t),C D
7
5

0+u(t)) =
sin2 t

999+9t

(
|u(t)|

1+|u(t)|

)
+ cos2 t

999+et

( |CD
7
5
0+
u(t)|

1+|CD
7
5
0+
u(t)|

)
+ 1

2 .

As,
∣∣∣f(t, u, v)− f(t, u∗, v∗)

∣∣∣ ≤ 1
1,000

∣∣∣u− u∗
∣∣∣+ 1

1,000

∣∣∣v − v∗
∣∣∣ with M = N = 1/1, 000 and

f(t, u(t),C D
7
5

0+u(t)) ≤ 1
2 + 1

1,000

∣∣∣u(t)∣∣∣ + 1
1,000

∣∣∣v(t)∣∣∣. Therefore the condition of Theorem

3.2 is satisfied with TMΓ(p+2))
(TΓ(p+2)−κp+1)(1−N)

{
κq+p

Γ(q+p+1) +
T q

Γ(q+1)

}
≈ 0.0049 < 1. Hence, the

problem (3.2) has at least one solution on [0, π], if we choose β(t) = 0.002. Then, we find



Fractional-Order Delay Differential Equation ... 851

B ≈ 0.0202, clealy clealy,∣∣∣f(t, u(t),C D 7
5

0+u(t))− f(t, v(t),C D
7
5

0+v(t))
∣∣∣ ≤ 1

1, 000

( ∣∣∣u− v
∣∣∣

1 + |u− v
∣∣∣

+

∣∣∣CD 7
5

0+u(t)−
CD

7
5

0+v(t)
∣∣∣

1 +
∣∣∣CD 7

5

0+u(t)− CD
7
5

0+v(t)
∣∣∣
)

≤ 1

1, 000

( ∣∣∣u− v
∣∣∣

1 + |u− v
∣∣∣ +

1
999

∣∣∣u− v
∣∣∣

1 + 1
999 |u− v

∣∣∣
)

≤ 1

1, 000

( ∣∣∣u− v
∣∣∣

1 + |u− v
∣∣∣ +

∣∣∣u− v
∣∣∣

999 + |u− v
∣∣∣
)

≤ 1

500

( |u− v|
0.0202 + |u− v|

)
.

Hence, by Theorem 3.3, problem (3.2) has a unique solution on (0, π).

4. conclusions

We have derived the existence and uniqueness solution of fractional delay differential
equation and separated condition of the from:

CD
q
0+u(t) = f(t, u(t), u(g(t))), t ∈ [0, T ], 1 < q < 2,

a1u(0) + b1CD
p
0+u(T ) = η1, a2u(0) + b2CD

p
0+u(T ) = η2, 0 < p ≤ 1,

u(t) = ψ(t), t ∈ [−h, 0)
where CD

q
0+ and CD

p
0+ are the Caputo fraction derivative of order q, p and we consider

a1, a2, b1, b2, η1, η2 ∈ R, the functions f ∈ C([0, T ]×R×R,R), g ∈ C((0, T ], [−h, T ]) with
g(t) ≤ t and h > 0, ψ(t) is continuous and bounded via fixed point theorem of Schaefers
and Boyd-Wong nonlinear contraction. Moreover, one example is given to illustrate the
results obtained. Our results are new and develop the previous results in [18–22].
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