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Abstract: This paper is intended to estimate the upper bounded of |c| such that
Julia sets of complex polynomials of the form zn +c are simple closed curves when
n = 2, 3, 4, . . .. Moreover, we study the geometric properties of these Julia sets.
We know that Julia sets of complex polynomials of the form z2 + c are simple
closed curves provided |c| < 1/4. We expect the same phenomenon, i.e. Julia sets
of complex polynomials of the form zn + c are simple closed curves if |c| is small
enough. However, they are far from being smooth; indeed, they contain no smooth
arcs at all.
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1 Notations and Preliminaries

Let f be a function from C to C and w ∈ C. We denote the iterations of a function
f by f1 = f and fk = fk−1 ◦ f . We call w a fixed point of f provided f(w) = w.
If fp(w) = w for some integer p > 1, then w is a periodic point of f . The least
p such that fp(w) = w is called the period of w. Suppose f is holomorphic in
a neighborhood of w and w is a periodic point of period p, with (fp)′(w) = λ,
where the prime denotes complex differentiation. The point w is called attractive
if |λ| < 1, repelling if |λ| > 1, and indifferent if |λ| = 1. The Julia set J(f) of
a complex polynomial f is the closure of the set of repelling periodic points of f .
The complement of the Julia set of a complex polynomial is called the Fatou set
or stable set F (f).

Let U be an open set in C, and let {gk : U → C} be a family of complex
holomorphic functions. The family {gk} is said to be normal on U if every sequence
of functions selected from {gk} has a subsequence which converges uniformly on
every compact subset of U , either to a bounded holomorphic function or to ∞.
The family {gk} is normal at the point w of U if there is some open subset V of
U containing w such that {gk} is a normal family on V . Define

J0(f) = {z ∈ C : the family {fk}k>1 is not normal at z}
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and

F0(f) ≡ Cr J0(f)
= {z ∈ C such that there is an open set V with

z ∈ V and {fk} normal on V }.

The followings are the basic properties of Julia sets. For further references,
see [4].

Proposition 1 If f is a polynomial, then J0(f) is compact.

Proposition 2 J0(f) is non-empty.

Proposition 3 J0(f) is forward and backward invariant, i.e. J0 = f(J0) = f−1(J0).

Proposition 4 J0(fp) = J0(f) for every positive integer p.

Proposition 5 Let f be a polynomial, let w ∈ J0(f) and let U be any neighborhood

of w.Then W ≡
∞⋃

k=1

fk(U) is the whole of C, except possibly for a single point.

Any such exceptional point is not in J0(f), and is independent of w and U .

Proposition 6 The following holds for all z ∈ C with, at most, one exception:
(a) If U is an open set intersecting J0(f) then f−k(z) intersects U for infinitely

many values of k.

(b) If z ∈ J0(f) then J0(f) is the closure of
∞⋃

k=1

f−k(z).

Proposition 7 If f is a polynomial, J0(f) has empty interior.

Proposition 8 J0(f) is a perfect set (i.e. closed and with no isolated points and
is therefore uncountable).

Proposition 9 If f is a polynomial, J(f) = J0(f).

Proposition 10 Let w be an attractive fixed point of f . Then ∂A(w) = J(f).
The same is true if w = ∞.

It is known (see [3]) that when n = 2, the Julia sets of z2 + c are simple
closed curves provided |c| < 1/4. To illustrate the ideas, let us consider briefly
when n = 3. Recall the cubic formula which can be found in [5]. We then use
the formula to solve z3 + c− z = 0 to find the fixed points. The explicit formula
also enable us to estimate |c| in order to proceed with the similar argument when
n = 2.
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2 Main Results

For general n, we can not use the same method because there is no general formula
for solving an algebraic equation of degree n > 5. Note that for c = 0, the complex
polynomials of the form zn have one attractive fixed at z = 0 and n− 1 repelling
fixed points on the unit circle. When |c| is small enough, we expect the result
would resemble the case c = 0, namely, these polynomials also have one attractive
fixed point near the point z = 0 and n − 1 repelling fixed points. To prove our
main theorem, we will apply Rouché’s theorem. We use it to compare the zeros of
complex polynomials of the form zn− z + c with the zeros of complex polynomials
of the form zn − z. Consequently, we can estimate the upper bound of |c| such
that the complex polynomials of the form zn + c have exactly one attractive fixed
points. Finally, we will show that if the complex polynomials of the form zn + c
have only one attractive fixed point, then their Julia sets are simple closed curves.
Moreover, if c is a complex number which is not real, then their Julia sets are
nowhere differentiable.

Let fn,c(z) = zn + c, f̃n,c(z) = zn − z + c when n = 2, 3, 4, . . . and D(a, r)
denote the set {|z − a| < r}.

Lemma 1 If |c| < n− 1
n n−1

√
n

, n = 2, 3, 4, . . ., then fn,c(z) has exactly one attractive

fixed point in D

(
0;

1
n−1
√

n

)
.

Proof. Let g(z) = zn − z. Consider ξ ∈ ∂D

(
0;

1
n−1
√

n

)
. Then

|f̃n,c(ξ)− g(ξ)| = |ξn − ξ − c)− (ξn − ξ)| = |c| < n− 1
n n−1

√
n

,

and

|g(ξ)| = |ξn − ξ|
> ||ξ|n − |ξ||
=

∣∣∣
( 1

n−1
√

n

)n

−
( 1

n−1
√

n

)∣∣∣

=
∣∣∣∣

1
n n−1

√
n
− 1

n−1
√

n

∣∣∣∣

=
n− 1

n n−1
√

n
.

Thus |f̃n,c(ξ)− g(ξ)| < |g(ξ)| ∀ξ ∈ ∂D

(
0;

1
n−1
√

n

)
. By Rouché’s Theorem, f̃n,c

and g have the same number of zeros in D

(
0;

1
n−1
√

n

)
. Since g has only one zero
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in D

(
0;

1
n−1
√

n

)
, so does f̃n,c. Let z0 be a zero of f̃n,c in D

(
0;

1
n−1
√

n

)
. Since

|f ′n,c(z0)| = |n(z0)n−1| < n

(
1

n−1
√

n

)n−1

= 1, z0 is attractive. This implies fn,c

has exactly one attractive fixed point in D

(
0;

1
n−1
√

n

)
. ¤

Lemma 2 Assume that |c| <
n− 1

n n−1
√

n
when n = 2, 3, 4, . . .. If C0 is the circle

|z| = 1
n−1
√

n
, then Ck = f−k

n,c (C0) is a loop surrounding Ck−1 = f−k+1
n,c (C0) where

k = 1, 2, 3, . . .

Proof. Write Ck = f−k
n,c (C0) where k = 1, 2, 3, . . .. Let C0 be the curve |z| =

1
n−1
√

n
. Since

|f−1
n,c(z)| > ||z| − |c|| 1n

>

∣∣∣∣
1

n−1
√

n
− n− 1

n n−1
√

n

∣∣∣∣
1
n

=
1

n−1
√

n
= |z| for all z ∈ C0,

C1 is a loop surrounding C0. The above inequality also implies that C0∩C1 = ∅. As
a result, Ck+1∩Ck = ∅ for all k = 0, 1, 2, . . .. This is obvious since fk

n,c would map
Ck+1, Ck to C1 and C0, respectively. As C1 and C0 are disjoint, so are Ck+1 and
Ck. This fact implies that Ck+1 must be totally inside Ck or totally surrounding
Ck. We claim that Ck+1 is surrounding Ck. Since fk

n,c is a polynomial, fk
n,c maps

a bounded open connected set to a bounded open connected set. Therefore, fk
n,c

must map the interior of the loop Ck+1 to the interior of the loop C1 and map
the interior of the loop Ck to the interior of the loop C0. If Ck+1 lies inside Ck,
then the interior of Ck+1 is a proper subset of the interior of Ck. By applying
fk

n,c to those interiors, we would have that the interior of C1 is a proper subset of
the interior of C0. This is not possible since C1 is surrounding C0 by the above
inequality. Hence, Ck+1 is a loop surrounding Ck for all k = 0, 1, 2, . . .. ¤

Let w be an attractive fixed point of a complex polynomial f . Write A(w) =
{z ∈ C : fk(z) → w as k → ∞} for the basin of attraction of w. E is called a
connected component of a topological space X if it is a maximal connected subset
of X. The connected component of A(w) containing w is called the immediate
basin of attraction of w and denoted by A∗(w). We define the basin of attraction
of infinity, A(∞), in the same way. Lemma 3 below is a well-known result and the
proof will be omitted. Interested readers can consult [1].

Lemma 3 Let z0 be an attractive fixed point of fn,c. If A∗(z0) contains all of
preimages of z0, then A∗(z0) is the only component of A(z0).
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Lemma 4 Let c be a complex number such that |c| <
n− 1

n n−1
√

n
and C0 be the

circle |z| =
1

n−1
√

n
. Then, for each k > 1,

∣∣f−k
n,c (z) − f−k+1

n,c (z)
∣∣ < αγn for some

constants α and γ > 1.

Proof. Since f ′n,c(z0) = n(z0)n−1 and C0 is the circle |z| =
1

n−1
√

n
, there is

a positive number r > 1 such that |f ′n,c(z)| > r for all z outside C0. Thus,

|(f−1
n,c(z))′| 6 1

|(fn,c)′(z)| <
1
r

for all z outside C. For each two points z1, z2

outside C, let β : [0, 1] → Cr C be the straight line joining z1 to z2. Therefore,

|f−1
n,c(z2)− f−1

n,c(z1)| =
∣∣∣∣
∫

β

(f−1
n,c(z))′dz

∣∣∣∣

6
∫ z2

z1

|(f−1
n,c(β(t)))′||dβ(t)|

<
1
r

∫ z2

z1

|dβ(t)|

=
1
r
|z1 − z2|.

By simple calculations, for each z ∈ C0 and k ∈ N, f−k
n,c (z) is outside C0. Applying

the above inequality, we get that

∣∣f−k
n,c (z)− f−k+1

n,c (z)
∣∣ <

(
1
r

) ∣∣f−k+1
n,c (z)− f−k+2

n,c (z)
∣∣

<

(
1
r

)2

|f−k+2
n,c (z)− f−k+3

n,c (z)|
...

<

(
1
r

)k−2

|f−2
n,c(z)− f−1

n,c(z)|.

Hence, for each k > 1 and z ∈ C0, |f−k
n,c (z) − f−k+1

c (z)| < αγk where γ =
1
r

and

α = r2|f−2
n,c(z)− f−1

n,c(z)| as required. ¤

Lemma 5 Let {ψk(θ)}∞k=0 be a sequence of continuous functions on an open do-
main U such that there is a positive number γ < 1 such that for each n ∈ N,

|ψk(θ)− ψk−1(θ)| < (γ)k.
Then ψk(θ) converges uniformly to a continuous function ψ(θ) as k →∞.

Proof. Let gk(θ) = ψk(θ) − ψk−1(θ). Then for each k ∈ N, |gk(θ)| < (γ)k. By
Weierstrass M-test, ψk(θ) − ψ0(θ) converges uniformly to a continuous function
φ(θ) as k→∞. Let ψ(θ) = φ(θ) + ψ0(θ). Then ψ(θ) is also a continuous function.
Hence ψk(θ) converges uniformly to a continuous function ψ(θ) as k →∞. ¤
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Theorem 1 Let c be a complex number such that |c| <
n− 1

n n−1
√

n
where n =

2, 3, 4, . . . Then J(fn,c) is a simple closed curve.

Proof. Let C0 be the circle |z| =
1

n−1
√

n
and Ck = f−k

n,c (C0) k = 1, 2, 3, . . .. By

Lemma 1, c and the attractive fixed point of fn,c are inside C0. By Lemma 2, the
inverse image C1 is a loop surrounding C0. Let A1 be the annular region between

C0 and C1. Pick z =
eiθ

n−1
√

n
= ψ0(θ) on C1.

{
f−1

n,c(z)
}

is a set of n different

points. Choose ψ1(θ) ∈
{
f−1

n,c(z)
}

such that the curve γ0(t) joining ψ0(θ) and
ψ1(θ) is a subset of A1 and has the shortest length (such a curve exists since A1

is diffeomorphic to {r1 ≤ |z| ≤ r2} for some r1, r2 > 0). Note that f−1
n,c(γ0(t)) are

n non-intersecting curves. We choose the one, denoted by γ1(t), that has ψ1(θ)
as the starting point. γ0(t) and γ1(t) are then sewn together to produce a single
curve. Continuing this process, we get a sequence of loops Ck, each surrounding
its predecessor, and families of curves joining the points ψk(θ) in Ck to ψk+1(θ) in
Ck+1 for each k.

As k → ∞, the curves Ck approach the boundary of the basin of attraction
fixed point of fn,c. By Lemma 3, the basin of attraction fixed point of fn,c has
exactly one component. By Lemma 4, we get the length of the curve joining a
point ψk(θ) to a point ψk+1(θ) converges to 0 at a geometric rate as k → ∞.
Therefore, ψk(θ) converges uniformly to a continuous function ψ(θ) as k→ ∞.
Hence J(fn,c) is the closed curve given by ψ(θ) (0 6 θ 6 2π).

Now, we will show that ψ(θ) parametrizes a simple curve. Assume that ψ(θ1) =
ψ(θ2). Let D be the region bounded by C0 and the two paths joining ψ0(θ1) and
ψ0(θ2) to this common point. The boundary of D remains bounded under iterates
of fn,c, so by the maximum modulus Theorem, D remains bounded under iterates
of fn,c. ¿From the fact that If w ∈ J(fn,c) and U is a neighborhood of w, then

W ≡
∞⋃

k=1

fk(U) is the whole of C, except possibly for a single point, we have the

interior of D cannot contain any points of J(fn,c). Hence ψ(θ1) = ψ(θ) = ψ(θ2)
for all θ between θ1 and θ2. Therefore J(fn,c) is a simple closed curve. ¤

Theorem 2 Suppose c is a complex number which is not real and |c| < n− 1
n n−1

√
n

.

Then J(fn,c) is a simple nowhere differentiable closed curve.

Proof. By Theorem 1, J(fn,c) is a simple closed curve. Let z1 be a repelling
fixed point of fn,c. It is easy to check that f ′n,c(z1) is a complex number which is
not real. We will show that z1 does not lie in a smooth arc in ψ(θ). Suppose not.
Since J(fn,c) is invariant under fn,c, the image of ψ(θ) would also be a smooth
arc in J(fn,c) passing through z1. Since arg(f ′n,c(z1)) 6= 0 and 6= π, the tangents
to these two curves would not be parallel. Hence, ψ(θ) would not be simple at
z1, which is a contradiction. This implies z1 does not lie in a smooth arc in ψ(θ).
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Since for each z ∈ J(fn,c), J0(f) is the closure of
∞⋃

k=1

f−k(z), the preimages of z1

are dense in J(fn,c). It follows that J(fn,c) contains no smooth arcs. ¤
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