Geometry of Julia Set of Complex Polynomial $z^{n}+c$

K. Daowsud, N. Kitisin

Abstract

This paper is intended to estimate the upper bounded of $|c|$ such that Julia sets of complex polynomials of the form $z^{n}+c$ are simple closed curves when $n=2,3,4, \ldots$. Moreover, we study the geometric properties of these Julia sets. We know that Julia sets of complex polynomials of the form $z^{2}+c$ are simple closed curves provided $|c|<1 / 4$. We expect the same phenomenon, i.e. Julia sets of complex polynomials of the form $z^{n}+c$ are simple closed curves if $|c|$ is small enough. However, they are far from being smooth; indeed, they contain no smooth arcs at all.

Keywords: Complex dynamics, Julia sets.
2000 Mathematics Subject Classification: 37F10

1 Notations and Preliminaries

Let f be a function from \mathbb{C} to \mathbb{C} and $w \in \mathbb{C}$. We denote the iterations of a function f by $f^{1}=f$ and $f^{k}=f^{k-1} \circ f$. We call w a fixed point of f provided $f(w)=w$. If $f^{p}(w)=w$ for some integer $p \geqslant 1$, then w is a periodic point of f. The least p such that $f^{p}(w)=w$ is called the period of w. Suppose f is holomorphic in a neighborhood of w and w is a periodic point of period p, with $\left(f^{p}\right)^{\prime}(w)=\lambda$, where the prime denotes complex differentiation. The point w is called attractive if $|\lambda|<1$, repelling if $|\lambda|>1$, and indifferent if $|\lambda|=1$. The Julia set $J(f)$ of a complex polynomial f is the closure of the set of repelling periodic points of f. The complement of the Julia set of a complex polynomial is called the Fatou set or stable set $F(f)$.

Let U be an open set in \mathbb{C}, and let $\left\{g_{k}: U \rightarrow \mathbb{C}\right\}$ be a family of complex holomorphic functions. The family $\left\{g_{k}\right\}$ is said to be normal on U if every sequence of functions selected from $\left\{g_{k}\right\}$ has a subsequence which converges uniformly on every compact subset of U, either to a bounded holomorphic function or to ∞. The family $\left\{g_{k}\right\}$ is normal at the point w of U if there is some open subset V of U containing w such that $\left\{g_{k}\right\}$ is a normal family on V. Define

$$
J_{0}(f)=\left\{z \in \mathbb{C}: \text { the family }\left\{f^{k}\right\}_{k \geqslant 1} \text { is not normal at } z\right\}
$$

and

$$
\begin{aligned}
F_{0}(f) \equiv & \mathbb{C} \backslash J_{0}(f) \\
= & \{z \in \mathbb{C} \text { such that there is an open set } V \text { with } \\
& \left.z \in V \text { and }\left\{f^{k}\right\} \text { normal on } V\right\} .
\end{aligned}
$$

The followings are the basic properties of Julia sets. For further references, see [4].

Proposition 1 If f is a polynomial, then $J_{0}(f)$ is compact.
Proposition $2 J_{0}(f)$ is non-empty.
Proposition $3 J_{0}(f)$ is forward and backward invariant, i.e. $J_{0}=f\left(J_{0}\right)=f^{-1}\left(J_{0}\right)$.
Proposition $4 J_{0}\left(f^{p}\right)=J_{0}(f)$ for every positive integer p.
Proposition 5 Let f be a polynomial, let $w \in J_{0}(f)$ and let U be any neighborhood of w.Then $W \equiv \bigcup_{k=1}^{\infty} f^{k}(U)$ is the whole of \mathbb{C}, except possibly for a single point. Any such exceptional point is not in $J_{0}(f)$, and is independent of w and U.

Proposition 6 The following holds for all $z \in \mathbb{C}$ with, at most, one exception:
(a) If U is an open set intersecting $J_{0}(f)$ then $f^{-k}(z)$ intersects U for infinitely many values of k.
(b) If $z \in J_{0}(f)$ then $J_{0}(f)$ is the closure of $\bigcup_{k=1}^{\infty} f^{-k}(z)$.

Proposition 7 If f is a polynomial, $J_{0}(f)$ has empty interior.
Proposition $8 J_{0}(f)$ is a perfect set (i.e. closed and with no isolated points and is therefore uncountable).

Proposition 9 If f is a polynomial, $J(f)=J_{0}(f)$.
Proposition 10 Let w be an attractive fixed point of f. Then $\partial A(w)=J(f)$. The same is true if $w=\infty$.

It is known (see [3]) that when $n=2$, the Julia sets of $z^{2}+c$ are simple closed curves provided $|c|<1 / 4$. To illustrate the ideas, let us consider briefly when $n=3$. Recall the cubic formula which can be found in [5]. We then use the formula to solve $z^{3}+c-z=0$ to find the fixed points. The explicit formula also enable us to estimate $|c|$ in order to proceed with the similar argument when $n=2$.

2 Main Results

For general n, we can not use the same method because there is no general formula for solving an algebraic equation of degree $n \geqslant 5$. Note that for $c=0$, the complex polynomials of the form z^{n} have one attractive fixed at $z=0$ and $n-1$ repelling fixed points on the unit circle. When $|c|$ is small enough, we expect the result would resemble the case $c=0$, namely, these polynomials also have one attractive fixed point near the point $z=0$ and $n-1$ repelling fixed points. To prove our main theorem, we will apply Rouché's theorem. We use it to compare the zeros of complex polynomials of the form $z^{n}-z+c$ with the zeros of complex polynomials of the form $z^{n}-z$. Consequently, we can estimate the upper bound of $|c|$ such that the complex polynomials of the form $z^{n}+c$ have exactly one attractive fixed points. Finally, we will show that if the complex polynomials of the form $z^{n}+c$ have only one attractive fixed point, then their Julia sets are simple closed curves. Moreover, if c is a complex number which is not real, then their Julia sets are nowhere differentiable.

Let $f_{n, c}(z)=z^{n}+c, \tilde{f}_{n, c}(z)=z^{n}-z+c$ when $n=2,3,4, \ldots$ and $D(a, r)$ denote the set $\{|z-a|<r\}$.

Lemma 1 If $|c|<\frac{n-1}{n \sqrt[n-1]{n}}, n=2,3,4, \ldots$, then $f_{n, c}(z)$ has exactly one attractive fixed point in $D\left(0 ; \frac{1}{\sqrt[n-1]{n}}\right)$.

Proof. Let $g(z)=z^{n}-z$. Consider $\xi \in \partial D\left(0 ; \frac{1}{\sqrt[n-1]{n}}\right)$. Then

$$
\left.\left|\tilde{f}_{n, c}(\xi)-g(\xi)\right|=\mid \xi^{n}-\xi-c\right)-\left(\xi^{n}-\xi\right)\left|=|c|<\frac{n-1}{n \sqrt[n-1]{n}},\right.
$$

and

$$
\begin{aligned}
|g(\xi)| & =\left|\xi^{n}-\xi\right| \\
& \geqslant|\xi|^{n}-|\xi| \\
& =\left|\left(\frac{1}{\sqrt[n-1]{n}}\right)^{n}-\left(\frac{1}{\sqrt[n]{n-1} \sqrt{n}}\right)\right| \\
& =\left|\frac{1}{n^{n-1} \sqrt{n}}-\frac{1}{\sqrt[n-1]{n}}\right| \\
& =\frac{n-1}{n \sqrt[n-1]{n}} .
\end{aligned}
$$

Thus $\left|\widetilde{f}_{n, c}(\xi)-g(\xi)\right|<|g(\xi)| \quad \forall \xi \in \partial D\left(0 ; \frac{1}{\sqrt[n-1]{n}}\right)$. By Rouché's Theorem, $\widetilde{f}_{n, c}$ and g have the same number of zeros in $D\left(0 ; \frac{1}{\sqrt[n-1]{n}}\right)$. Since g has only one zero
in $D\left(0 ; \frac{1}{\sqrt[n-1]{n}}\right)$, so does $\widetilde{f}_{n, c}$. Let z_{0} be a zero of $\widetilde{f}_{n, c}$ in $D\left(0 ; \frac{1}{\sqrt[n-1]{n}}\right)$. Since $\left|f_{n, c}^{\prime}\left(z_{0}\right)\right|=\left|n\left(z_{0}\right)^{n-1}\right|<n\left(\frac{1}{\sqrt[n-1]{n}}\right)^{n-1}=1, z_{0}$ is attractive. This implies $f_{n, c}$ has exactly one attractive fixed point in $D\left(0 ; \frac{1}{\sqrt[n-1]{n}}\right)$.

Lemma 2 Assume that $|c|<\frac{n-1}{n \sqrt[n-1]{n}}$ when $n=2,3,4, \ldots$. If C_{0} is the circle $|z|=\frac{1}{\sqrt[n-1]{n}}$, then $C_{k}=f_{n, c}^{-k}\left(C_{0}\right)$ is a loop surrounding $C_{k-1}=f_{n, c}^{-k+1}\left(C_{0}\right)$ where $k=1,2,3, \ldots$
Proof. Write $C_{k}=f_{n, c}^{-k}\left(C_{0}\right)$ where $k=1,2,3, \ldots$. Let C_{0} be the curve $|z|=$ $\frac{1}{\sqrt[n-1]{n}}$. Since
C_{1} is a loop surrounding C_{0}. The above inequality also implies that $C_{0} \cap C_{1}=\emptyset$. As a result, $C_{k+1} \cap C_{k}=\emptyset$ for all $k=0,1,2, \ldots$. This is obvious since $f_{n, c}^{k}$ would map C_{k+1}, C_{k} to C_{1} and C_{0}, respectively. As C_{1} and C_{0} are disjoint, so are C_{k+1} and C_{k}. This fact implies that C_{k+1} must be totally inside C_{k} or totally surrounding C_{k}. We claim that C_{k+1} is surrounding C_{k}. Since $f_{n, c}^{k}$ is a polynomial, $f_{n, c}^{k}$ maps a bounded open connected set to a bounded open connected set. Therefore, $f_{n, c}^{k}$ must map the interior of the loop C_{k+1} to the interior of the loop C_{1} and map the interior of the loop C_{k} to the interior of the loop C_{0}. If C_{k+1} lies inside C_{k}, then the interior of C_{k+1} is a proper subset of the interior of C_{k}. By applying $f_{n, c}^{k}$ to those interiors, we would have that the interior of C_{1} is a proper subset of the interior of C_{0}. This is not possible since C_{1} is surrounding C_{0} by the above inequality. Hence, C_{k+1} is a loop surrounding C_{k} for all $k=0,1,2, \ldots$.

Let w be an attractive fixed point of a complex polynomial f. Write $A(w)=$ $\left\{z \in \mathbb{C}: f^{k}(z) \rightarrow w\right.$ as $\left.k \rightarrow \infty\right\}$ for the basin of attraction of $w . E$ is called a connected component of a topological space X if it is a maximal connected subset of X. The connected component of $A(w)$ containing w is called the immediate basin of attraction of w and denoted by $A^{*}(w)$. We define the basin of attraction of infinity, $A(\infty)$, in the same way. Lemma 3 below is a well-known result and the proof will be omitted. Interested readers can consult [1].

Lemma 3 Let z_{0} be an attractive fixed point of $f_{n, c}$. If $A^{*}\left(z_{0}\right)$ contains all of preimages of z_{0}, then $A^{*}\left(z_{0}\right)$ is the only component of $A\left(z_{0}\right)$.

Lemma 4 Let c be a complex number such that $|c|<\frac{n-1}{n \sqrt[n-1]{n}}$ and C_{0} be the circle $|z|=\frac{1}{\sqrt[n-1]{n}}$. Then, for each $k>1,\left|f_{n, c}^{-k}(z)-f_{n, c}^{-k+1}(z)\right|<\alpha \gamma^{n}$ for some constants α and $\gamma>1$.
Proof. Since $f_{n, c}^{\prime}\left(z_{0}\right)=n\left(z_{0}\right)^{n-1}$ and C_{0} is the circle $|z|=\frac{1}{\sqrt[n-1]{n}}$, there is a positive number $r>1$ such that $\left|f_{n, c}^{\prime}(z)\right|>r$ for all z outside C_{0}. Thus, $\left|\left(f_{n, c}^{-1}(z)\right)^{\prime}\right| \leqslant \frac{1}{\left|\left(f_{n, c}\right)^{\prime}(z)\right|}<\frac{1}{r}$ for all z outside C. For each two points z_{1}, z_{2} outside C, let $\beta:[0,1] \rightarrow \mathbb{C} \backslash C$ be the straight line joining z_{1} to z_{2}. Therefore,

$$
\begin{aligned}
\left|f_{n, c}^{-1}\left(z_{2}\right)-f_{n, c}^{-1}\left(z_{1}\right)\right| & =\left|\int_{\beta}\left(f_{n, c}^{-1}(z)\right)^{\prime} d z\right| \\
& \leqslant \int_{z_{1}}^{z_{2}}\left|\left(f_{n, c}^{-1}(\beta(t))\right)^{\prime}\right||d \beta(t)| \\
& <\frac{1}{r} \int_{z_{1}}^{z_{2}}|d \beta(t)| \\
& =\frac{1}{r}\left|z_{1}-z_{2}\right|
\end{aligned}
$$

By simple calculations, for each $z \in C_{0}$ and $k \in \mathbb{N}, f_{n, c}^{-k}(z)$ is outside C_{0}. Applying the above inequality, we get that

$$
\begin{aligned}
\left|f_{n, c}^{-k}(z)-f_{n, c}^{-k+1}(z)\right| & <\left(\frac{1}{r}\right)\left|f_{n, c}^{-k+1}(z)-f_{n, c}^{-k+2}(z)\right| \\
& <\left(\frac{1}{r}\right)^{2}\left|f_{n, c}^{-k+2}(z)-f_{n, c}^{-k+3}(z)\right| \\
& \vdots \\
& <\left(\frac{1}{r}\right)^{k-2}\left|f_{n, c}^{-2}(z)-f_{n, c}^{-1}(z)\right|
\end{aligned}
$$

Hence, for each $k>1$ and $z \in C_{0},\left|f_{n, c}^{-k}(z)-f_{c}^{-k+1}(z)\right|<\alpha \gamma^{k}$ where $\gamma=\frac{1}{r}$ and $\alpha=r^{2}\left|f_{n, c}^{-2}(z)-f_{n, c}^{-1}(z)\right|$ as required.

Lemma 5 Let $\left\{\psi_{k}(\theta)\right\}_{k=0}^{\infty}$ be a sequence of continuous functions on an open domain U such that there is a positive number $\gamma<1$ such that for each $n \in \mathbb{N}$,

$$
\left|\psi_{k}(\theta)-\psi_{k-1}(\theta)\right|<(\gamma)^{k}
$$

Then $\psi_{k}(\theta)$ converges uniformly to a continuous function $\psi(\theta)$ as $k \rightarrow \infty$.
Proof. Let $g_{k}(\theta)=\psi_{k}(\theta)-\psi_{k-1}(\theta)$. Then for each $k \in \mathbb{N},\left|g_{k}(\theta)\right|<(\gamma)^{k}$. By Weierstrass M-test, $\psi_{k}(\theta)-\psi_{0}(\theta)$ converges uniformly to a continuous function $\phi(\theta)$ as $\mathrm{k} \rightarrow \infty$. Let $\psi(\theta)=\phi(\theta)+\psi_{0}(\theta)$. Then $\psi(\theta)$ is also a continuous function. Hence $\psi_{k}(\theta)$ converges uniformly to a continuous function $\psi(\theta)$ as $k \rightarrow \infty$.

Theorem 1 Let c be a complex number such that $|c|<\frac{n-1}{n \sqrt[n-1]{n}}$ where $n=$ $2,3,4, \ldots$ Then $J\left(f_{n, c}\right)$ is a simple closed curve.

Proof. Let C_{0} be the circle $|z|=\frac{1}{\sqrt[n-1]{n}}$ and $C_{k}=f_{n, c}^{-k}\left(C_{0}\right) \quad k=1,2,3, \ldots$ By Lemma 1, c and the attractive fixed point of $f_{n, c}$ are inside C_{0}. By Lemma 2, the inverse image C_{1} is a loop surrounding C_{0}. Let A_{1} be the annular region between C_{0} and C_{1}. Pick $z=\frac{e^{i \theta}}{\sqrt[n-1]{n}}=\psi_{0}(\theta)$ on $C_{1} .\left\{f_{n, c}^{-1}(z)\right\}$ is a set of n different points. Choose $\psi_{1}(\theta) \in\left\{f_{n, c}^{-1}(z)\right\}$ such that the curve $\gamma_{0}(t)$ joining $\psi_{0}(\theta)$ and $\psi_{1}(\theta)$ is a subset of A_{1} and has the shortest length (such a curve exists since A_{1} is diffeomorphic to $\left\{r_{1} \leq|z| \leq r_{2}\right\}$ for some $\left.r_{1}, r_{2}>0\right)$. Note that $f_{n, c}^{-1}\left(\gamma_{0}(t)\right)$ are n non-intersecting curves. We choose the one, denoted by $\gamma_{1}(t)$, that has $\psi_{1}(\theta)$ as the starting point. $\gamma_{0}(t)$ and $\gamma_{1}(t)$ are then sewn together to produce a single curve. Continuing this process, we get a sequence of loops C_{k}, each surrounding its predecessor, and families of curves joining the points $\psi_{k}(\theta)$ in C_{k} to $\psi_{k+1}(\theta)$ in C_{k+1} for each k.

As $k \rightarrow \infty$, the curves C_{k} approach the boundary of the basin of attraction fixed point of $f_{n, c}$. By Lemma 3, the basin of attraction fixed point of $f_{n, c}$ has exactly one component. By Lemma 4, we get the length of the curve joining a point $\psi_{k}(\theta)$ to a point $\psi_{k+1}(\theta)$ converges to 0 at a geometric rate as $\mathrm{k} \rightarrow \infty$. Therefore, $\psi_{k}(\theta)$ converges uniformly to a continuous function $\psi(\theta)$ as $\mathrm{k} \rightarrow \infty$. Hence $J\left(f_{n, c}\right)$ is the closed curve given by $\psi(\theta)(0 \leqslant \theta \leqslant 2 \pi)$.

Now, we will show that $\psi(\theta)$ parametrizes a simple curve. Assume that $\psi\left(\theta_{1}\right)=$ $\psi\left(\theta_{2}\right)$. Let D be the region bounded by C_{0} and the two paths joining $\psi_{0}\left(\theta_{1}\right)$ and $\psi_{0}\left(\theta_{2}\right)$ to this common point. The boundary of D remains bounded under iterates of $f_{n, c}$, so by the maximum modulus Theorem, D remains bounded under iterates of $f_{n, c}$. ¿From the fact that If $w \in J\left(f_{n, c}\right)$ and U is a neighborhood of w, then $W \equiv \bigcup_{k=1}^{\infty} f^{k}(U)$ is the whole of \mathbb{C}, except possibly for a single point, we have the interior of D cannot contain any points of $J\left(f_{n, c}\right)$. Hence $\psi\left(\theta_{1}\right)=\psi(\theta)=\psi\left(\theta_{2}\right)$ for all θ between θ_{1} and θ_{2}. Therefore $J\left(f_{n, c}\right)$ is a simple closed curve.

Theorem 2 Suppose c is a complex number which is not real and $|c|<\frac{n-1}{n \sqrt[n-1]{n}}$.
Then $J\left(f_{n, c}\right)$ is a simple nowhere differentiable closed curve.
Proof. By Theorem $1, J\left(f_{n, c}\right)$ is a simple closed curve. Let z_{1} be a repelling fixed point of $f_{n, c}$. It is easy to check that $f_{n, c}^{\prime}\left(z_{1}\right)$ is a complex number which is not real. We will show that z_{1} does not lie in a smooth arc in $\psi(\theta)$. Suppose not. Since $J\left(f_{n, c}\right)$ is invariant under $f_{n, c}$, the image of $\psi(\theta)$ would also be a smooth arc in $J\left(f_{n, c}\right)$ passing through z_{1}. Since $\arg \left(f_{n, c}^{\prime}\left(z_{1}\right)\right) \neq 0$ and $\neq \pi$, the tangents to these two curves would not be parallel. Hence, $\psi(\theta)$ would not be simple at z_{1}, which is a contradiction. This implies z_{1} does not lie in a smooth arc in $\psi(\theta)$.

Since for each $z \in J\left(f_{n, c}\right), J_{0}(f)$ is the closure of $\bigcup_{k=1}^{\infty} f^{-k}(z)$, the preimages of z_{1} are dense in $J\left(f_{n, c}\right)$. It follows that $J\left(f_{n, c}\right)$ contains no smooth arcs.

Acknowledgments

The authors would like to express their gratitude to the referees of the Thai Journal of Mathematics for their invaluable comments. The authors would also like to thank Sujin Khomrutai for his help in the proof of the Lemma 2.

References

[1] L. Carleson and T.W. Gamelin, Complex Dynamics, Springer-Verlag, 1993.
[2] R.B. Conway, Functions of One Complex Variable, Narosa Publishing House, New Delhi, 1982.
[3] R.L. Devancy, An Introduction to Chaotic Dynamical Systems, 2 ${ }^{\text {nd }}$ ed., Addison-Wesley Publishing Company, Inc., 1989.
[4] K.J. Falconer, Fractal Geometry, John-Wiley \& Sons, 1990.
[5] J. Rotman, Galois Theory, $2^{\text {nd }}$ ed., Springer-Verlag, New York, 1998.

Katthaleeya Daowsud
Department of Mathematics,
Faculty of Science,
Kasetsart University
Bangkok 10903 Thailand
E-mail: jkatthaleeya@hotmail.com
Nataphan Kitisin
Department of Mathematics,
Faculty of Science,
Chulalongkorn University,
Bangkok 10330 Thailand
E-mail: Nataphan.K@Chula.ac.th

