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Abstract The Langevin equation is a core premise of the Brownian motion, which describes the develop-

ment of essential processes in continuously changing situations. As a generalization of the classical one, the

fractional Langevin equation offers a fractional Gaussian mechanism with two indices as parametrization,

which is more flexible to model fractal systems. This paper deals with a nonlinear fractional Langevin

equation involving two fractional orders with nonlocal integral boundary conditions. Our goal is to find

the existence and uniqueness of a solution to the proposed Langevin equation by using the appropriate

fixed point method. Some examples are also presented to illustrate the importance of our results in the

existing literature.
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1. Introduction

Differential equations are widely used to explain the dynamical behavior of physical
systems. If, for example, physical structures have memory and genetic properties, such as
complex networks [22], stock market [21], anomalous diffusion [20], bacterial chemotaxis
[19] and viscoelastic deformation [18], then fractional differential equations may be used
to describe these models (see, for example [7, 37–39]).

Fractional order models are sometimes more accurate than integer-order models due
to the additional degrees of freedom provided by fractional-order models. Additionally,
fractional differential equations are one of the best ways for describing the inherited
characteristics of diverse materials and techniques [49]. The existence of a memory term
in such models not only accounts for the process’s past but also for its current and future
growth. For some recent work on fractional differential equations, see [1, 43–48].
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The theory and application of fractional differential equations have experienced ex-
tensive development (for more detail, see [30, 31]). It has been evident to researchers
in recent decades that the analysis of various forms of fractional differential equations is
of particular significance (see, for more detail [32, 33]). Most papers and books on frac-
tional calculus are based on the linear fractional differential equations’ solvability [27–29].
Different interpretations of fractional derivatives exist. Many of them have integral op-
erators with various regularity properties, and some of them include singular kernels, for
example Riemann-Liouville [33], Caputo [33], Caputo Fabrizio [34], etc (for more detail,
see [35]). Many recent publications have used nonlinear computational techniques such as
the Leray Schauder theorem, fixed-point analysis, and stabilization to solve the nonlinear
fractional differential equations [23–26].

In the literature, several complex fractional modeling methods are used, including
(but not limited to) the eminent Caputo and RiemannLiouville operators (see, for exam-
ple [38, 39]). Various new generalizations of the Hadamard, Hilfer and CaputoHadamard
operators were employed in this century, and various modeling attempts have been con-
ducted by utilizing these new operators (see, for example [36, 37]). Five years ago, a rad-
ical formulation of a fractional frame without singularity was proposed by Fabrizio and
Caputo [34]. A new operator has been created named as the fractional Caputo-Fabrizio
operator. Nieto and Losada [40] focused on some significant computational aspects shortly
after this work. The implementation of nonsingular operators led to numerous research
articles about fractional modeling on this topic (for more detail, see [41, 42]).

Paul Langevin first introduced the Langevin equation in 1908 in order to better explain
Brownian motion [2]. In this, Newton’s second rule was extended to a Brownian particle
to develop the stochastic mechanics’ law named Langevin equation, which is applied to a
molecule to describe the F = ma of thermodynamics. The Langevin equation is commonly
adopted to discuss the progression of natural processes in oscillating conditions [4, 5, 12].
For example, if an arbitrary oscillation force is believed to be white noise, then Brownian
motion is defined in terms of the Langevin equation. Nevertheless, the ordinary Langevin
equations do not offer an exact explanation of the components for structures of a dynamic
culture. Therefore, it is easier to substitute the natural derivative with fractional and
analyze the Langevin equation in terms of the fractional derivative. For some latest work
regarding the fractional Langevin equation, see [14–16, 41].

In the earlier 1990s, Mainardi developed the fractional Langevin equation [3]. There
are several multiple kinds of fractional Langevin equations that have been investigated
in [4–6]. The standard fractional Langevin equation that included only one fractional
memory kernel was examined in [6]; the nonlinear Langevin equation with two fractional
orders was studied in [4, 13]; the nonlinear Langevin equation that contained both a
fractional memory kernel and a fractional derivative was analyzed in [9, 10].

Anti-periodic boundary value problems arise in the mathematical modeling of a wide
range of scientific phenomena [50] and have garnered significant attention in recent years.
For further information on anti-periodic boundary conditions, including examples and
details, see [51, 52].

Here, we deal with the following fractional Langevin equation with nonlocal integral
boundary conditions and two different fractional orders in different intervals.

Dm
(
Dℓ + ϑ

)
σ(ζ) = φ(ζ, σ(ζ)), ζ ∈ (0, 1), (1.1)
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σ(0) + σ(1) = κ1

υ∫
0

σ(ς)dς,

Dℓσ(0) +Dℓσ(1) = κ2

υ∫
0

σ(ς)dς,

D2ℓσ(0) +D2ℓσ(1) = κ3

υ∫
0

σ(ς)dς,

(1.2)

where Dℓ and Dm are the Caputo fractional derivative of order 0 < ℓ < 1 and 1 < m ≤ 2,
ϑ, κ1, κ2, κ3 ∈ R, 0 < υ < 1, φ : [0, 1] × R → R is a given continuously differentiable
function and D2ℓ is the sequential fractional derivative discussed in [31] and defined by{

Dℓσ = Dℓσ,

Dkℓσ = DℓD(k−1)ℓσ, (k = 2, 3, . . . ).
(1.3)

Our intent is to find the existence and uniqueness of a solution to the fractional
Langevin equation (1.1) with (1.2) by using the fixed point theorems due to Banach
[17] and Krasnoselskii [8]. We first discuss some basic results related to the fractional
derivatives and integral. After that, we examine the existence results for the proposed
nonlinear fractional Langevin equation. The first conclusion is focused on the concept of
the Banach fixed point theorem, while the second finding is relied on a fixed point theorem
by Krasnoselskii. At the end, some examples are given to demonstrate the importance of
our findings in this area of research.

2. Preliminaries

In the continuation, the subsequent concepts and established results will be required.

Definition 2.1 ([11]). The Riemann-Lioville fractional integral of order ℓ > 0 for a
continuous function σ : [0,∞) → R is defined as

Iℓσ(ζ) =
1

Γ(ℓ)

∫ ζ

0

(ζ − ς)ℓ−1σ(ς)dς

equipped with that the right-hand-side integral exists, where Γ(ℓ) defined by

Γ(ℓ) =

∫ ∞

0

ζℓ−1e−ζdζ, ℓ > 0.

Definition 2.2 ([33]). For a function σ : [0,∞) → R, the Caputo fractional derivative of
order ℓ > 0 is defined as

Dℓσ(ζ) =
1

Γ(η − ℓ)

∫ ζ

0

(ζ − ς)η−ℓ−1σ(n)(s)dς (η − 1 < ℓ < η, η = [ℓ] + 1),

where [ℓ] represents the integer part of ℓ.

Lemma 2.3 ([11, 33]). Let σ ∈ L1([0, 1]) and ℓ,m > 0.

(i) If ℓ ∈ N, then Iℓσ(ζ) = 1
(ℓ−1)!

∫ ζ

0
(ζ − ς)ℓ−1σ(ς)ds.

(ii) If ℓ ∈ N, then Dℓσ(ζ) = σ(ℓ)(ζ).
(iii) DℓIℓσ(ζ) = σ(ζ).
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(iv) IℓImσ(ζ) = Iℓ+mσ(ζ).

Lemma 2.4 ([11]). Let n ∈ N and n−1 < ℓ ≤ n. For a continuous function σ : [0,∞) →
R, we have

IℓDℓσ(ζ) = σ(ζ) + a0 + a1ζ + a2ζ
2 + ...+ an−1ζ

n−1,

where ai ∈ R for all i = 1, 2, . . . , n− 1.

We now consider the following linear fractional Langevin equation

Dm
(
Dℓ + ϑ

)
σ(ζ) = ψ(ζ), 0 < ζ < 1, 0 < ℓ < 1, 1 < m ≤ 2, (2.1)

enhanced with the nonlocal integral boundary conditions

σ(0) + σ(1) = κ1
υ∫
0

σ(ς)dς,

Dℓσ(0) +Dℓσ(1) = κ2
υ∫
0

σ(ς)dς,

D2ℓσ(0) +D2ℓσ(1) = κ3
υ∫
0

σ(ς)dς,

(2.2)

where σ ∈ L1([0, 1]) is an unknown function, 0 < υ < 1 and ϑ, κi ∈ R, for i = 1, 2, 3.

Lemma 2.5. σ is a solution of (2.1) with the condition (2.2) if and only if it is a solution
of the following nonlinear integral equation

σ(ζ) =
1

Γ(ℓ+m)

∫ ζ

0

(ζ − ς)ℓ+m−1ψ(ς)dς − ϑ

Γ(ℓ)

∫ ζ

0

(ζ − ς)ℓ−1σ(ς)dς

− 1

2Γ(ℓ+m)

∫ 1

0

(1− ς)ℓ+m−1ψ(ς)dς +
ϑ

2Γ(ℓ)

∫ 1

0

(1− ς)ℓ−1σ(ς)dς

+

(
1− 2ζℓ

4Γ(ℓ+ 1)Γ(m)

)∫ 1

0

(1− ς)m−1ψ(ς)dς (2.3)

+
Γ(2− ℓ)

Γ(ℓ+ 2)

(
1− ℓ

4
+
ζℓ(1 + ℓ)

2
− ζℓ+1

)∫ 1

0

(1− ς)m−ℓ−1

Γ(m− ℓ)
ψ(ς)dς

+
A0

4Γ(ℓ+ 2)

υ∫
0

σ(ς)dς,

where

A0 =

 {
2Γ(ℓ+ 2) + (1 + ℓ)ϑ(2ζℓ − 1)

}
κ1

+
{
(1 + ℓ)(2ζℓ − 1) + ϑΓ(2− ℓ)

(
2ζℓ(2ζ − ℓ− 1)− (1− ℓ)

)}
κ2

+
{
Γ(2− ℓ)(2ζℓ(2ζ − ℓ− 1)− (1− ℓ))

}
κ3

 .
Proof. Let σ be a solution of (2.1) with the condition (2.2). As argued in [7] with Lemmas
2.3 and 2.4, the general solution of

Dm
(
Dℓ + ϑ

)
σ(ζ) = ψ(ζ)

can be written as

σ(ζ) = Iℓ+mψ(ζ)− ϑIℓσ(ζ) + a1 + a2
ζℓ

Γ(ℓ+ 1)
+ a3

ζℓ+1

Γ(ℓ+ 2)
. (2.4)
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Using the boundary condition (2.2), we have

a3 = − Γ(2− ℓ)

Γ(m− ℓ)

∫ 1

0

(1− ς)m−ℓ−1ψ(ς)dς + (ϑκ2 + κ3)Γ(2− ℓ)

υ∫
0

σ(ς)dς,

a2 =
−1

2Γ(m)

∫ 1

0

(1− ς)m−1ψ(ς)dς +
Γ(2− ℓ)

2Γ(m− ℓ)

∫ 1

0

(1− ς)m−ℓ−1ψ(ς)dς

+

(
ϑκ1 + (1− ϑΓ(2− ℓ))κ2 − Γ(2− ℓ)κ3

2

) υ∫
0

σ(ς)dς,

a1 =
−1

2Γ(ℓ+m)

∫ 1

0

(1− ς)ℓ+m−1ψ(ς)dς +
ϑ

2Γ(ℓ)

∫ 1

0

(1− ς)ℓ−1σ(ς)dς

+
1

4Γ(ℓ+ 1)Γ(m)

∫ 1

0

(1− ς)m−1ψ(ς)dς +
(1− ℓ)Γ(2− ℓ)

4Γ(m− ℓ)Γ(ℓ+ 2)

∫ 1

0

(1− ς)m−ℓ−1ψ(ς)dς

+
1

4Γ(ℓ+ 2)
×

 (2Γ(ℓ+ 2)− (1 + ℓ)ϑ)κ1
− ((1 + ℓ) + ϑ(1− ℓ)Γ(2− ℓ))κ2

−((1− ℓ)Γ(2− ℓ))κ3


υ∫

0

σ(ς)dς.

Replacing the values of a1, a2, a3 in (2.4), we have the desired solution.
On the other hand, it is easy to prove that, if σ is a solution of the integral equation

(2.3), then σ is also a solution of the problem (2.1) with the condition (2.2).

Lemma 2.6. For all ℓ ∈ (0, 1), we have

V := max
ζ∈[0,1]

∣∣ζℓ(2ζ − ℓ− 1)
∣∣ = {

1− ℓ if ℓ ≤ 1
2 ,(

ℓ
2

)ℓ
if ℓ > 1

2 .
(2.5)

In the proof of our main results, we shall adopt the Banach contraction mapping
principle and the Krasnoselskii fixed point theorem which is described below.

Theorem 2.7 ([8]). Let O be a closed convex and nonempty subset of Banach space B.
Suppose that G1 : O → B and G2 : O → B are two operators satisfying the following
conditions:

(1) G1a+ G2b ∈ O whenever a, b ∈ O;
(2) G1 is compact and continuous on O;
(3) G2 is a Banach contraction mapping on O.

Then there exists a ∈ O such that a = G1a+ G2a.

3. Main Results

Let X = [0, 1] and B = C(X ,R) be the normed space of all continuous functions from
X into R endowed with the norm ∥·∥ : B → [0,∞) defined by

∥σ∥ = sup{|σ(ζ)| , ζ ∈ X}
for all σ ∈ B.

We add the following hypotheses before stating and proving the key findings. Suppose
that the following conditions hold:

(H̃1): the function φ : X × R → R is jointly continuous;
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(H̃2): the function φ satisfies

|φ(ζ, σ1)− φ(ζ, σ2)| ≤ Ļ |σ1 − σ2| , ∀ζ ∈ X , σ1, σ2 ∈ R

where Ļ is the Lipschitz constant;
(H̃3): there exists a continuous function ϕ : X → [0,∞) such that

|φ(ζ, µ)| ≤ ϕ(ζ), ∀(ζ, µ) ∈ (X ,R).

For the computational convenience, we set

A0 =

 {
2Γ(ℓ+ 2) + (1 + ℓ)ϑ(2ζℓ − 1)

}
κ1

+
{
(1 + ℓ)(2ζℓ − 1) + ϑΓ(2− ℓ)

(
2ζℓ(2ζ − ℓ− 1)− (1− ℓ)

)}
κ2

+
{
Γ(2− ℓ)(2ζℓ(2ζ − ℓ− 1)− (1− ℓ))

}
κ3

 , (3.1)
A1 =

 (2Γ(ℓ+ 2) + (1 + ℓ)|ϑ|)κ1
+((1 + ℓ) + |ϑ|Γ(2− ℓ) (2V + 1− ℓ))κ2

+(Γ(2− ℓ)(2V + 1− ℓ))κ3

 , (3.2)

Θ = Ξ1 + ĻΘ1, (3.3)

Ξ = Ļ

(
1

2Γ(ℓ+m+ 1)
+

1

4Γ(m+ 1)Γ(ℓ+ 1)
+

Γ(2− ℓ)(2V + 1− ℓ)

4Γ(ℓ+ 2)Γ(m− ℓ+ 1)

)
+

|ϑ|
2Γ(ℓ+ 1)

+
A1v

4Γ(ℓ+ 2)
, (3.4)

where

Θ1 := Ļ

(
3

2Γ(ℓ+m+ 1)
+

1

4Γ(m+ 1)Γ(ℓ+ 1)
+

Γ(2− ℓ)(2V + 1− ℓ)

4Γ(ℓ+ 2)Γ(m− ℓ+ 1)

)
(3.5)

Ξ1 :=
3|ϑ|

2Γ(ℓ+ 1)
+

A1v

4Γ(ℓ+ 2)
(3.6)

From Lemma 2.5, we can write

σ = G(σ) = G1(σ) + G2(σ), (3.7)

where the operator Gi : B → B for all i = 1, 2 can be described as

(G1σ)(ζ) =
1

Γ(ℓ+m)

∫ ζ

0

(ζ − ς)ℓ+m−1φ(ς, σ(ς))dς − ϑ

Γ(ℓ)

∫ ζ

0

(ζ − ς)ℓ−1σ(ς)dς (3.8)

and

(G2σ)(ζ) = − 1

2Γ(ℓ+m)

∫ 1

0

(1− ς)ℓ+m−1φ(ς, σ(ς))dς +
ϑ

2Γ(ℓ)

∫ 1

0

(1− ς)ℓ−1σ(ς)dς

+

(
1− 2ζℓ

4Γ(ℓ+ 1)Γ(m)

)∫ 1

0

(1− ς)m−1φ(ς, σ(ς))dς +
Γ(2− ℓ)

Γ(ℓ+ 2)
×(

1− ℓ+ 2ζℓ(1 + ℓ)− 4ζℓ+1

4Γ(m− ℓ)

)∫ 1

0

(1− ς)m−ℓ−1φ(ς, σ(ς))dς

+
A0

4Γ(ℓ+ 2)

υ∫
0

σ(ς)dς. (3.9)
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Theorem 3.1. Consider the problem (1.1) with (1.2). Assume that the assumptions (H̃1)

and (H̃2) hold. Then the boundary value problem (1.1) with (1.2) has a unique solution
if Θ < 1, where Θ is given by (3.3).

Proof. We define G : B → B for each σ ∈ B by

(Gσ)(ζ) =
1

Γ(ℓ+m)

∫ ζ

0

(ζ − ς)ℓ+m−1φ(ς, σ(ς))dς − ϑ

Γ(ℓ)

∫ ζ

0

(ζ − ς)ℓ−1σ(ς)dς

− 1

2Γ(ℓ+m)

∫ 1

0

(1− ς)ℓ+m−1φ(ς, σ(ς))dς +
ϑ

2Γ(ℓ)

∫ 1

0

(1− ς)ℓ−1σ(ς)dς

+

(
1− 2ζℓ

4Γ(ℓ+ 1)Γ(m)

)∫ 1

0

(1− ς)m−1φ(ς, σ(ς))dς +
Γ(2− ℓ)

Γ(ℓ+ 2)
×(

1− ℓ+ 2ζℓ(1 + ℓ)− 4ζℓ+1

4Γ(m− ℓ)

)∫ 1

0

(1− ς)m−ℓ−1φ(ς, σ(ς))dς

+
A0

4Γ(ℓ+ 2)

υ∫
0

σ(ς)dς.

We set supζ∈X |φ(ζ, 0)| = M and choose

r̃ ≥ MΘ1

1−Θ
, (3.10)

where Θ1 is given by (3.5). We now prove that GBr̃ ⊂ Br̃, where Br̃ = {σ ∈ B : ∥σ∥ ≤ r̃}.
For σ ∈ Br̃, we get

∥Gσ∥ = sup
ζ∈X

∣∣∣∣∣ 1

Γ(ℓ+m)

∫ ζ

0

(ζ − ς)ℓ+m−1φ(ς, σ(ς))dς − ϑ

Γ(ℓ)

∫ ζ

0

(ζ − ς)ℓ−1σ(ς)dς

− 1

2Γ(ℓ+m)

∫ 1

0

(1− ς)ℓ+m−1φ(ς, σ(ς))dς +
ϑ

2Γ(ℓ)

∫ 1

0

(1− ς)ℓ−1σ(ς)dς

+

(
1− 2ζℓ

4Γ(ℓ+ 1)Γ(m)

)∫ 1

0

(1− ς)m−1φ(ς, σ(ς))dς +
Γ(2− ℓ)

Γ(ℓ+ 2)
×(

1− ℓ+ 2ζℓ(1 + ℓ)− 4ζℓ+1

4Γ(m− ℓ)

)∫ 1

0

(1− ς)m−ℓ−1φ(ς, σ(ς))dς

+
A0

4Γ(ℓ+ 2)

υ∫
0

σ(ς)dς

∣∣∣∣∣∣
≤ (Ļr̃ +M)

Γ(ℓ+m)
sup
ζ∈X

∫ ζ

0

(ζ − ς)ℓ+m−1dς +
|ϑ| r̃
Γ(ℓ)

sup
ζ∈X

∫ ζ

0

(ζ − ς)ℓ−1dς +
(Ļr̃ +M)

2Γ(ℓ+m)
×∫ 1

0

(1− ς)ℓ+m−1dς +
|ϑ|r̃
2Γ(ℓ)

∫ 1

0

(1− ς)ℓ−1dς +
(Ļr̃ +M)

4Γ(ℓ+ 1)Γ(m)

∫ 1

0

(1− ς)m−1dς

+
Γ(2− ℓ)(Ļr̃ +M)

Γ(ℓ+ 2)Γ(m− ℓ)

(
1− ℓ

4
+
V

2

)∫ 1

0

(1− ς)m−ℓ−1dς +
A1r̃

4Γ(ℓ+ 2)

υ∫
0

dς

≤ r̃,

which shows that ∥Gσ∥ ≤ r̃. Let σ1, σ2 ∈ B. For each ζ ∈ X , we have
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∥Gσ1 − Gσ2∥ = sup
ζ∈X

|(Gσ1)(ζ)− (Gσ2)(ζ)|

≤ 1

Γ(ℓ+m)
sup
ζ∈X

∫ ζ

0

(ζ − ς)ℓ+m−1 |φ(ς, σ1(ς))− φ(ς, σ2(ς))| dς

+
|ϑ|
Γ(ℓ)

sup
ζ∈X

∫ ζ

0

(ζ − ς)ℓ−1 |σ1(ς)− σ2(ς)| dς

+
1

2Γ(ℓ+m)

∫ 1

0

(1− ς)ℓ+m−1 |φ(ς, σ1(ς))− φ(ς, σ2(ς))| dς

+
|ϑ|

2Γ(ℓ)

∫ 1

0

(1− ς)ℓ−1 |σ1(ς)− σ2(ς)| dς

+
1

4Γ(ℓ+ 1)Γ(m)

∫ 1

0

(1− ς)m−1 |φ(ς, σ1(ς))− φ(ς, σ2(ς))| dς

+
Γ(2− ℓ)

Γ(ℓ+ 2)Γ(m− ℓ)

(
1− ℓ

4
+
V

2

)
×∫ 1

0

(1− ς)m−ℓ−1 |φ(ς, σ1(ς))− φ(ς, σ2(ς))| dς

+
A1

4Γ(ℓ+ 2)

υ∫
0

|σ1(ς)− σ2(ς)| dς

≤ Θ ∥σ1 − σ2∥ ,

where Θ is given by (3.3) and depends on the constants associated to the problem. Hence,
G is a Banach contraction mapping if Θ < 1. Consequently, the completion of the theorem
relies on the Banach contraction mapping principle. This fills out the proof.

Theorem 3.2. Consider the problem (1.1) with (1.2). Assume that the assumptions

(H̃1), (H̃2) and (H̃3) hold. Then the boundary value problem (1.1) with (1.2) has at least
one solution if Ξ < 1, where Ξ is given by (3.4).

Proof. Let G1 and G2 be defined as in (3.8) and (3.9). We set supζ∈X |ϕ(ζ)| ≤ ∥ϕ∥ . Let
Br̃ = {σ ∈ B : ∥σ∥ ≤ r̃} be the closed ball described for

r̃ ≥ Θ1 ∥ϕ∥ (1− Ξ1)
−1
,

where Θ1 and Ξ1 are given by (3.5) and (3.6), respectively. Then, for σ1, σ2 ∈ Br̃, we
have

∥G1σ1 + G2σ2∥ ≤ Θ1 ∥ϕ∥+ r̃Ξ1

≤ r̃

which concludes that G1σ1 + G2σ2 ∈ Br̃. In view of condition (H̃2), G2 may be shown to
be a Banach contraction mapping if Ξ < 1. Continuity of φ indicates that the operator
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G1 is continuous. Further, G1 is bounded uniformly on Br̃ as

∥(G1σ) (ζ)∥ = sup
ζ∈X

∣∣∣∣∣ 1

Γ(ℓ+m)

∫ ζ

0

(ζ − ς)ℓ+m−1φ(ς, σ(ς))dς − ϑ

Γ(ℓ)

∫ ζ

0

(ζ − ς)ℓ−1σ(ς)dς

∣∣∣∣∣
≤ ∥ϕ∥

Γ(ℓ+m)
sup
ζ∈X

∫ ζ

0

(ζ − ς)ℓ+m−1dς +
|ϑ| ∥σ1∥
Γ(ℓ)

sup
ζ∈X

∫ ζ

0

(ζ − ς)ℓ−1dς

≤ ∥ϕ∥
Γ(ℓ+m+ 1)

+
|ϑ| r̃

Γ(ℓ+ 1)
.

Let us suppose that 0 ≤ ζ1 < ζ2 ≤ 1. For σ ∈ Br̃, we obtain

∥(G1σ)(ζ2)− (G1σ)(ζ1)∥ =

∥∥∥∥∥ 1

Γ(ℓ+m)

∫ ζ2

0

(ζ2 − ς)ℓ+m−1φ(ς, σ(ς))dς

− ϑ

Γ(ℓ)

∫ ζ2

0

(ζ2 − ς)ℓ−1σ(ς)dς

− 1

Γ(ℓ+m)

∫ ζ1

0

(ζ1 − ς)ℓ+m−1φ(ς, σ(ς))dς

+
ϑ

Γ(ℓ)

∫ ζ1

0

(ζ1 − ς)ℓ−1σ(ς)dς

∥∥∥∥∥
≤ ∥ϕ∥

Γ(ℓ+m+ 1)

(
ζℓ+m
2 − ζℓ+m

1

)
+

|ϑ| r̃
Γ(ℓ+ 1)

(
2(ζ2 − ζ1)

ℓ + ζℓ1 − ζℓ2
)
,

which is not dependent on σ and approaches to zero as ζ2 → ζ1. Thus, G1 is relatively
compact on Br̃. Consequently, G1 is compact by the Arzelá-Ascoli theorem. Hence all of
the Theorem 2.7’s premises are fulfilled. Therefore the proposed problem (1.1) with (1.2)
has at least one solution on Br̃. This fills out the proof.

4. Some illustrative examples

Here, we present the following examples to support our key findings.

Example 4.1. Consider the following boundary value problem

D
3
2

(
D

2
5 +

1

8

)
σ(ζ) = φ(ζ, σ(ζ)), 0 < ζ < 1,

σ(0) + σ(1) = 2

1
4∫

0

σ(ς)dς,

D
2
5σ(0) +D

2
5σ(1) = 3

1
4∫

0

σ(ς)dς,

D 4
5σ(0) +D 4

5σ(1) = 5

1
4∫

0

σ(ς)dς,

(4.1)
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where ℓ = 2
5 , m = 3

2 , ϑ = 1
8 , v = 1

4 , κ1 = 2, κ2 = 3, κ3 = 5 and φ(ζ, σ(ζ)) will be

evaluated on the premises of the theorems. With the provided data, we have V = 3
5 ,

Θ1 ≈ 1.343 and Ξ1 ≈ 0.771.

Case 1 (Banach fixed point theorem): We define φ : X × R → R by

φ(ζ, µ) = Ļ(1 + ζ sin(ζµ)) (4.2)

for all ζ ∈ X and µ ∈ R, where Ļ > 0 is a constant. It is straightforward that
φ : X × R → R is continuous and

|φ(ζ, σ1)− φ(ζ, σ2)| = Ļ |ζ sin(ζσ1)− ζ sin(ζσ2)| ≤ Ļ |σ1 − σ2| (4.3)

for all ζ ∈ X and σ1, σ1 ∈ R, where Ļ is the Lipschitz constant. Note that the
conditions (H̃1) and (H̃2) are satisfied. Also, if we pick L < 229

1343 , then all the

conditions of Theorem 3.1 are fulfilled. Thus, if L < 229
1343 , then the proposed

problem (4.1) has a unique solution on X .
Case 2 (Krasnoselskii’s fixed point theorem): For Theorem 3.2, we de-

fine φ as indicated in (4.2) and ϕ(ζ) = 1 + ζ. Clearly, the conditions (H̃1), (H̃2)

and (H̃3) hold. Also, if we choose Ļ < 185
398 , then all Theorem 3.2 premises are

fulfilled. Thus, the proposed problem (4.1) has at least one solution on X if
Ļ < 185

398 .

Example 4.2. Consider the boundary value problem given below

D
6
5

(
D

1
3 +

1

25

)
σ(ζ) = φ(ζ, σ(ζ)), 0 < ζ < 1,

σ(0) + σ(1) =
7

16

1
6∫

0

σ(ς)dς,

D
1
3σ(0) +D

1
3σ(1) =

13

29

1
6∫

0

σ(ς)dς,

D 2
3σ(0) +D 2

3σ(1) =
3

17

1
6∫

0

σ(ς)dς,

(4.4)

where ℓ = 1
3 , m = 6

5 , ϑ = 1
25 , v = 1

6 , κ1 = 7
16 , κ2 = 13

29 , κ3 = 3
17 and φ(ζ, σ(ζ)) will

be evaluated on the premises of the theorems. With the provided data, we have V = 2
3 ,

Θ1 ≈ 1.755 and Ξ1 ≈ 0.155.

Case 1 (Banach fixed point theorem): We define φ : X × R → R by

φ(ζ, µ) = Ļ(|µ| cos(ζ) + 1), (4.5)

for all ζ ∈ X and µ ∈ R, where Ļ > 0 is a constant. It is straightforward that
φ : X × R → R is continuous and

|φ(ζ, σ1)− φ(ζ, σ2)| ≤ Ļ |σ1 − σ2| (4.6)

for all ζ ∈ X and σ1, σ1 ∈ R, where Ļ is the Lipschitz constant. Note that the
conditions (H̃1) and (H̃2) are satisfied. Also, if we pick L < 0.845

1.755 , then all the



On the Novel Existence Results of Solutions for Fractional Langevin Equation ... 837

conditions of Theorem 3.1 are fulfilled. Thus, if L < 0.845
1.755 , then the proposed

problem (4.4) has a unique solution on X .
Case 2 (Krasnoselskii’s fixed point theorem): For Theorem 3.2, we de-

fine φ as indicated in (4.5) and ϕ(ζ) = 1 + ζ. Clearly the conditions (H̃1), (H̃2)

and (H̃3) hold. Also, if we choose Ļ < 89
102 , then all Theorem 3.2 premises are

fulfilled. Thus, the proposed problem (4.4) has at least one solution on X if
Ļ < 89

102 .

Example 4.3. Consider the following boundary value problem

D
9
5

(
D

1
4 +

1

11

)
σ(ζ) = φ(ζ, σ(ζ)), 0 < ζ < 1,

σ(0) + σ(1) =
1

3

1
2∫

0

σ(ς)dς,

D
1
4σ(0) +D

1
4σ(1) =

4

11

1
2∫

0

σ(ς)dς,

D 1
2σ(0) +D 1

2σ(1) =
3

2

1
2∫

0

σ(ς)dς,

(4.7)

where ℓ = 1
4 , m = 9

5 , ϑ = 1
11 , v = 1

2 , κ1 = 1
3 , κ2 = 4

11 , κ3 = 3
2 and φ(ζ, σ(ζ)) will be

evaluated on the premises of the theorems. With the provided data, we have V = 3
4 ,

Θ1 ≈ 1.212 and Ξ1 ≈ 0.638.

Case 1 (Banach fixed point theorem): We define φ : X × R → R by

φ(ζ, µ) = Ļ(|µ|+ cos(ζ)), (4.8)

for all ζ ∈ X and µ ∈ R, where Ļ > 0 is a constant. It is straightforward that
φ : X × R → R is continuous and

|φ(ζ, σ1)− φ(ζ, σ2)| ≤ Ļ |σ1 − σ2| (4.9)

for all ζ ∈ X and σ1, σ1 ∈ R, where Ļ is the Lipschitz constant. Note that the
conditions (H̃1) and (H̃2) are satisfied. Also, if we pick L < 181

606 , then all the

conditions of Theorem 3.1 are fulfilled. Thus, if L < 181
606 , then the proposed

problem (4.7) has a unique solution on X .
Case 2 (Krasnoselskii’s fixed point theorem): For Theorem 3.2, we de-

fine φ as indicated in (4.8) and ϕ(ζ) = 1 + ζ. Clearly the conditions (H̃1), (H̃2)

and (H̃3) hold. Also, if we choose Ļ < 22
35 , then all Theorem 3.2 premises are

fulfilled. Thus, the proposed problem (4.7) has at least one solution on X if
Ļ < 22

35 .

5. Conclusion

A broad range of generalizations of the Langevin equation has been proposed in recent
years, including fractional derivatives [3–6]. This paper proposed the nonlinear fractional
Langevin equation having two fractional orders at different intervals and nonlocal integral
boundary conditions. We used the fixed-point theorems due to Banach and Krasnoselskii
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to figure out the existence and uniqueness of a solution to the suggested boundary value
problem. Three illustrative examples are also presented to show the significance of our
results in the particular literature. Our method is simple and can be extended to several
real-world problems.

In the end, we raise the stability of the following fractional differential equation as an
open problem for the interested readers

Dm
(
Dℓ + ϑ

)
σ(ζ) = φ(ζ, σ(ζ)), ζ ∈ (0, 1),

associated with 

σ(0) + σ(1) = κ1

υ∫
0

σ(ς)dς,

Dℓσ(0) +Dℓσ(1) = κ2

υ∫
0

σ(ς)dς,

D2ℓσ(0) +D2ℓσ(1) = κ3

υ∫
0

σ(ς)dς,

where Dℓ and Dm are the Caputo fractional derivative of order 0 < ℓ < 1 and 1 < m ≤ 2,
ϑ, κ1, κ2, κ3 ∈ R, 0 < υ < 1, φ : [0, 1] × R → R is a given continuously differentiable
function and D2ℓ is the sequential fractional derivative.
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