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1. Introduction

A metric space X is a CAT (0) space if it is geodesically connected and every geodesic
triangle in X is at least as thin as its comparison triangle in the Euclidean plane. It is
well known that any complete, simply connected Riemannian manifold having nonpositive
sectional curvature is a CAT (0) space. Other examples include Pre-Hilbert spaces, R-
trees (see [2]), Euclidean buildings (see [3]), the complex Hilbert ball with a hyperbolic
metric (see [14]), and many others. For a thorough discussion of these spaces and of the
fundamental role they play in geometry see Bridson and Haefliger [2]. Burago, et al. [5]
contains a somewhat more elementary treatment, and Gromov [15] a deeper study.

Fixed point theory in a CAT (0) space has been first studied by Kirk (see [20, 21]). He
showed that every nonexpansive mapping defined on a bounded closed convex subset of
a complete CAT (0) space always has a fixed point. Since then the fixed point theory for
various mappings in a CAT (0) space has been rapidly developed and a lot of papers have
appeared (see e. g., [6–13, 16, 18, 22, 23, 25–27, 31, 39, 40]).

It is worth mentioning that the results in CAT(0) spaces can be applied to any CAT (κ)
space with κ ≤ 0 since any CAT (κ) space is a CAT (κ′) space for every κ′ ≥ κ (see [2],
p. 165).
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The Mann [29] iteration process is defined by the sequence {xn},

xn+1 = (1− αn)xn + αnTxn, n ≥ 1, (1.1)

where {αn} is a sequence in (0,1).
Further, the Ishikawa [17] iteration process is defined by the sequence {xn},{

xn+1 = (1− αn)xn + αnTyn,
yn = (1− βn)xn + βnTxn, n ≥ 1,

(1.2)

where {αn} and {βn} are the sequence in (0,1). This iteration process reduces to the
Mann iteration process when βn = 0 for all n ≥ 1.

Agarwal, ORegan and Sahu [1] introduced the following S-iteration process which is
independent of those of the Mann iteration (1.1) and the Ishikawa iteration (1.2),{

xn+1 = (1− αn)Txn + αnTyn,
yn = (1− βn)xn + βnTxn, n ≥ 1,

(1.3)

where {αn} and {βn} are the sequence in (0,1).
Schu [37], in 1991, considered the modified Mann iteration process which is a general-

ization of the Mann iteration process,

xn+1 = (1− αn)xn + αnT
nxn, n ≥ 1, (1.4)

where {αn} is a sequence in (0,1).
Tan and Xu [41], in 1994, considered the modified Mann iteration process which is a

generalization of the Mann iteration process,{
xn+1 = (1− αn)xn + αnT

nyn,
yn = (1− βn)xn + βnT

nxn, n ≥ 1,
(1.5)

where {αn} and {βn} are the sequence in (0,1). This iteration process reduces to the
Mann iteration process when βn = 0 for all n ≥ 1.

Sahin and Basarir [35] modified S-iteration process (1.3) in a CAT (0) space as follows.
Let C be a nonempty closed convex subset of a complete CAT (0) space X and let

T : C → C be an asymptotically quasi-nonexpansive mapping with F (T ) ̸= ∅. Suppose
that {xn} is a sequence generated iteratively by x1 ∈ C,{

xn+1 = (1− αn)T
nxn ⊕ αnT

nyn,
yn = (1− βn)xn ⊕ βnT

nxn, n ≥ 1,
(1.6)

where and throughout the paper {αn}, {βn} are the sequence such that 0 ≤ αn, βn ≤ 1
for all n ≥ 1. They studied modified S-iteration process (1.6) for asymptotically quasi-
nonexpansive mapping in the CAT (0) space and established some strong convergence
results under some suitable conditions which generalize some results of Khan and Abbas
[19]. Also, (1.6) reduces (1.3) when Tn = T for all n ≥ 1.

In 1976, Lim [28] introduced the concept of ∆-convergence in a general metric space.
In 2008 Kirk and Panyanak [23] specialized Lims concept to the CAT (0) space and proved
that it is very similar to the weak convergence in a Banach space. Also, Dhompongsa and
Panyanak [11] obtained the ∆-convergence theorems for the Picard, Mann and Ishikawa
iterations in a CAT (0) space for nonexpansive mappings.

In 2010, Niwongsa and Panyanak [32] proved ∆ and strong convergence theorems of the
following Noor iteration for an asymptotically nonexpansive mapping in CAT (0) spaces.
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For a given x1 ∈ C, zn = γnT
nxn ⊕ (1− γn)xn,

yn = βnT
nzn ⊕ (1− βn)xn,

xn+1 = αnT
nyn ⊕ (1− αn)xn, n ≥ 1,

(1.7)

where {αn}, {βn} and {γn} are real sequence in [0,1] and T is an asymptotically nonex-
pansive mapping on a nonempty closed bounded and convex subset of a complete CAT (0)
space X.

Nanjaras and Panyanak [30] proved the demiclosedness principle for asymptotically
nonexpansive mappings and gave the ∆-convergence theorem of the modified Mann iter-
ation process for mappings of this type in a CAT (0) space.

Our purpose in this paper is to get some results on the strong and ∆-convergence of the
following new three-step iteration process for an asymptotically nonexpansive mapping
in a CAT (0) space. For a given x1 ∈ C, zn = γnT

nxn ⊕ (1− γn)xn,
yn = βnT

nzn ⊕ (1− βn)zn,
xn+1 = αnT

nyn ⊕ (1− αn)T
nzn, n ≥ 1,

(1.8)

where {αn}, {βn} and {γn} are real sequence in [0,1] and T is an asymptotically nonex-
pansive mapping on a nonempty closed bounded and convex subset of a complete CAT (0)
space X.

2. Preliminaries and Lemmas

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more
briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such
that c(0) = x,c(l) = y, and d(c(t), c(t′)) = |t − t′| for all t, t′ ∈ [0, l]. In particular, c is
an isometry and d(x, y) = l. The image α of c is called a geodesic (or metric) segment
joining x and y. When it is unique this geodesic segment is denoted by [x, y]. The space
(X, d) is said to be a geodesic space if every two points of X are joined by a geodesic,
and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for
each x, y ∈ X. A subset Y ⊆ X is said to be convex if Y includes every geodesic segment
joining any two of its points.

A geodesic triangle ∆(x1, x2, x3) in a geodesic metric space (X, d) consists of three
points x1, x2, x3 in X (the vertices of ∆) and a geodesic segment between each pair of
vertices (the edges of ∆). A comparison triangle for the geodesic triangle ∆(x1, x2, x3)
in (X, d) is a triangle ∆(x1, x2, x3) := ∆(x1, x2, x3) in the Euclidean plane E2 such that
dE2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}. Such a triangle always exists (see [2]).

A geodesic space is said to be a CAT (0) space [2] if all geodesic triangles satisfy the
following comparison axiom; see, e.g., [24, 33, 34, 36, 42–44] and the references therein.

CAT (0) : Let ∆ be a geodesic triangle in X and let ∆ be a comparison triangle for ∆.
Then, ∆ is said to satisfy the CAT (0) inequality if for all x, y ∈ ∆ and all comparison
points x, y ∈ ∆,

d(x, y) ≤ dR2(x, y).

If x, y1, y2 are points in a CAT (0) space and if y0 is the midpoint of the segment [y1, y2],
then the CAT (0) inequality implies

d2(x, y0) ≤ 1
2d

2(x, y1) +
1
2d

2(x, y2)− 1
4d

2(y1, y2). (CN)
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This is the (CN) inequality of Bruhat and Tits [4]. In fact (cf. [2], p. 163), a geo-
desic space is a CAT (0) space if and only if it satisfies the (CN) inequality.

Recall that a mapping T on a metric space X is said to be nonexpansive if

d(T (x), T (y)) ≤ d(x, y)

for all x, y ∈ X. T is called asymptotically nonexpansive if there is a sequence {kn} of
positive numbers with the property limn→∞ kn = 1 and such that

d(Tn(x), Tn(y)) ≤ knd(x, y)

for all n ≥ 1 and x, y ∈ X.
A point x ∈ X is called a fixed point of T if x = Tx. We shall denote with F (T ) the

set of fixed points of T . The existence of fixed points for asymptotically nonexpansive
mappings in CAT (0) spaces was proved by Kirk [21] as the following statement.

Theorem 2.1. Let C be a nonempty bounded closed and convex subset of a complete
CAT (0) space X and T : C → C be asymptotically nonexpansive. Then T has a fixed
point.

Let {xn} be a bounded sequence in a metric space X. For x ∈ X, we set r(x, {xn}) =
lim supn→∞ d(x, xn) The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known that in a complete CAT (0) space, A({xn}) consists of exactly one point
(see [10], Proposition 7).

We now give the definition of ∆-convergence.

Definition 2.2. ([23, 28]) A sequence {xn} in a metric space X is said to ∆− converge
to x ∈ X if x is the unique asymptotic center of {un} for every subsequence {un} of {xn}.
In this case we write ∆− limn xn = x and call x the ∆− limit of {xn}.

Recall that a subset K in a metric space X is said to be ∆ − compact ([28]) if every
sequence in K has a ∆-convergent subsequence. A mapping T from a metric space X
to a metric space Y is said to be completely continuous if T (K) is a compact subset of
Y whenever K is a ∆-compact subset of X. We now collect some elementary facts about
CAT(0) spaces which will be used in the proofs of our main results.

Lemma 2.3. ([23]) Every bounded sequence in a complete CAT (0) space always has a
∆− convergent subsequence.

Lemma 2.4. ([9]) If C is a closed convex subset of a complete CAT (0) space and if
{xn} is a bounded sequence in C, then the asymptotic center of {xn} is in C.

Lemma 2.5. ([30]) Let C be a closed and convex subset of a complete CAT (0) space X
and T : C → X be an asymptotically nonexpansive mapping. Let {xn} be a bounded
sequence in C such that limnd(xn, Txn) = 0 and ∆− limnxn = x. Then x = Tx.
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Lemma 2.6. ([11]) Let (X, d) be a CAT (0) space.
(i) For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y).

We use the notation (1− t)x⊕ ty for the unique point z satisfying (2.1).
(ii) For x, y, z ∈ X and t ∈ [0, 1], we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

(iii) For x, y, z ∈ X and t ∈ [0, 1], we have

d2((1− t)x⊕ ty, z) ≤ (1− t)d2(x, z) + td2(y, z)− t(1− t)d2(x, y).

Lemma 2.7. ([46]) Let an and bn be sequences of nonnegative real numbers satisfying
the inequality

an+1 ≤ (1 + bn)an, n ≥ 1.

If
∑∞

n=1 bn < ∞, then limn→∞ an exists.

3. Main Results

It this section, we establish some ∆-convergence and strong convergence results of the
new three-step iteration process (1.8) for an asymptotically nonexpansive mapping in a
CAT (0) space. We will denote the set of fixed points of T by F (T ), that is, F (T ) =
{x ∈ X : Tx = x} .

Lemma 3.1. Let C be a nonempty closed, bounded and convex subset of a complete
CAT(0) space X and let T : C → C be an asymptotically nonexpansive mapping with
{kn} satisfying {kn} ≥ 1 and

∑∞
n=1(kn−1) < ∞. Let {αn}, {βn}, {γn} be real sequences

in [0, 1]. For a given x1 ∈ C, the sequence {xn}, {yn} and {zn} defined by (1.8). Then
limn→∞d(xn, x

∗) exists for all x∗ ∈ F (T ).

Proof. We first note that F (T ) ̸= ∅ by Theorem 2.1. Setting kn = 1 + un for all n ≥ 1.
Using

∑∞
n=1(kn − 1) < ∞, we have

∑∞
n=1 un < ∞. For each x∗ ∈ F (T ), we have

d(zn, x
∗) = d(γnT

nxn ⊕ (1− γn)xn, x
∗)

≤ γnd(T
nxn, x

∗) + (1− γn)d(xn, x
∗)

≤ γn(1 + un)d(xn, x
∗) + (1− γn)d(xn, x

∗)

= (1 + γnun)d(xn, x
∗)

≤ (1 + un)d(xn, x
∗). (3.1)

Also

d(yn, x
∗) = d(βnT

nzn ⊕ (1− βn)zn, x
∗)

≤ βnd(T
nzn, x

∗) + (1− βn)d(zn, x
∗)

≤ βn(1 + un)d(zn, x
∗) + (1− βn)d(zn, x

∗)

= (1 + βnun)d(zn, x
∗)

≤ (1 + un)d(zn, x
∗). (3.2)
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By (3.1) and (3.2), we have

d(xn+1, x
∗) = d(αnT

nyn ⊕ (1− αn)T
nzn, x

∗)

≤ αnd(T
nyn, x

∗) + (1− αn)d(T
nzn, x

∗)

≤ αn(1 + un)d(yn, x
∗) + (1− αn)(1 + un)d(zn, x

∗)

≤ αn(1 + un)(1 + un)d(zn, x
∗) + (1− αn)(1 + un)d(zn, x

∗)

= αn(1 + un)d(zn, x
∗) + αnun(1 + un)d(zn, x

∗) + (1 + un)d(zn, x
∗)

− αn(1 + un)d(zn, x
∗)

= αnun(1 + un)d(zn, x
∗) + (1 + un)d(zn, x

∗)

≤ un(1 + un)d(zn, x
∗) + (1 + un)d(zn, x

∗)

= (un + u2
n + 1 + un)d(zn, x

∗)

≤ (1 + 2un + u2
n)(1 + un)d(xn, x

∗)

= (1 + un + 2un + 2u2
n + u2

n + u3
n)d(xn, x

∗)

= (1 + (3un + 3u2
n + u3

n))d(xn, x
∗).

Since
∑∞

n=1 un < ∞, using Lemma 2.7, we have limn→∞d(xn, x
∗) exists.

Lemma 3.2. Let C be a nonempty closed, bounded and convex subset of a complete
CAT(0) space X and let T : C → C be an asymptotically nonexpansive mapping with
{kn} satisfying {kn} ≥ 1 and

∑∞
n=1(kn − 1) < ∞. Let {αn}, {βn}, {γn} be real sequences

in [0, 1] satisfying
(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1 and
(ii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.
For a given x1 ∈ C. Consider the sequences {xn}, {yn} and {zn} defined by (1.8). Then
limn→∞ d(xn, Txn) = 0.

Proof. Let x∗ ∈ F (T ). Setting kn = 1 + un for all n ≥ 1. From
∑∞

n=1(kn − 1) < ∞, we
have

∑∞
n=1 un < ∞. Using Lemma 2.6 and (1.8), we have

d2(zn, x
∗) = d2(γnT

nxn ⊕ (1− γn)xn, x
∗)

≤ γnd
2(Tnxn, x

∗) + (1− γn)d
2(xn, x

∗)− γn(1− γn)d
2(Tnxn, xn)

≤ γn(1 + un)
2d2(xn, x

∗) + (1− γn)d
2(xn, x

∗)− γn(1− γn)d
2(Tnxn, xn)

= γn(1 + 2un + u2
n)d

2(xn, x
∗) + (1− γn)d

2(xn, x
∗)

− γn(1− γn)d
2(Tnxn, xn)

≤ (1 + 2un + u2
n)d

2(xn, x
∗)− γn(1− γn)d

2(Tnxn, xn)

= (1 + un)
2d2(xn, x

∗)− γn(1− γn)d
2(Tnxn, xn). (3.3)

Also

d2(yn, x
∗) = d2(βnT

nzn ⊕ (1− βn)zn, x
∗)

≤ βnd
2(Tnzn, x

∗) + (1− βn)d
2(zn, x

∗)− βn(1− βn)d
2(Tnzn, zn)

≤ βn(1 + un)
2d2(zn, x

∗) + (1− βn)d
2(zn, x

∗)− βn(1− βn)d
2(Tnzn, zn)
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= βn(1 + 2un + u2
n)d

2(zn, x
∗) + (1− βn)d

2(zn, x
∗)

− βn(1− βn)d
2(Tnzn, zn)

≤ (1 + 2un + u2
n)d

2(zn, x
∗)

= (1 + un)
2d2(zn, x

∗). (3.4)

Using (3.3) and (3.4), we have

d2(xn+1, x
∗) = d2(αnT

nyn ⊕ (1− αn)T
nzn, x

∗)

≤ αnd
2(Tnyn, x

∗) + (1− αn)d
2(Tnzn, x

∗)

− αn(1− αn)d
2(Tnyn, T

nzn)

≤ αn(1 + un)
2d2(yn, x

∗) + (1− αn)(1 + un)
2d2(zn, x

∗)

− αn(1− αn)d
2(Tnyn, T

nzn)

≤ αn(1 + un)
2
(
(1 + un)

2d2(zn, x
∗)
)
+ (1− αn)(1 + un)

2d2(zn, x
∗)

− αn(1− αn)d
2(Tnyn, T

nzn)

≤ αn(1 + un)
4d2(zn, x

∗) + (1− αn)(1 + un)
4d2(zn, x

∗)

− αn(1− αn)d
2(Tnyn, T

nzn)

= (1 + un)
4d2(zn, x

∗)− αn(1− αn)d
2(Tnyn, T

nzn)

≤ (1 + un)
4
(
(1 + un)

2d2(xn, x
∗)− γn(1− γn)d

2(Tnxn, xn)
)

− αn(1− αn)d
2(Tnyn, T

nzn)

≤ (1 + un)
6d2(xn, x

∗)− γn(1− γn)d
2(Tnxn, xn)

− αn(1− αn)d
2(Tnyn, T

nzn). (3.5)

Since C is bounded, there exists BM [x0] = {x ∈ X : d(x, x0) ≤ M} such that C ⊂
BM [x0] for some M > 0. By using (3.5), we obtain the following two important in-
equalities:

αn(1− αn)d
2(Tnyn, T

nzn) ≤ d2(xn, x
∗)− d2(xn+1, x

∗)

+M2(6un + 6u2
n + 6u3

n + 6u4
n + 6u5

n + u6
n), (3.6)

γn(1− γn)d
2(Tnxn, xn) ≤ d2(xn, x

∗)− d2(xn+1, x
∗)

+M2(6un + 6u2
n + 6u3

n + 6u4
n + 6u5

n + u6
n). (3.7)

By (i), (3.6) and
∑∞

n=1 un < ∞ along with the proof of Lemma 2.2 in [45] with p = 2
and ω(λ) = λ(1− λ) for λ ∈ [0, 1] , we can obtain

lim
n→∞

d(Tnyn, T
nzn) = 0. (3.8)

Similarly, using (ii), (3.7) and
∑∞

n=1 un < ∞, we may show that

lim
n→∞

d(Tnxn, xn) = 0. (3.9)
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In addition using (1.8) and (3.9), we have

d(zn, xn) = d(γnT
nxn ⊕ (1− γn)xn, xn)

≤ γnd(T
nxn, xn) + (1− γn)d(xn, xn)

≤ d(Tnxn, xn)

→ 0 (as n → ∞). (3.10)

Using (3.9), (3.10) and
∑∞

n=1 un < ∞, we have

d(Tnzn, xn) ≤ d(Tnzn, T
nxn) + d(Tnxn, xn)

≤ (1 + un)d(zn, xn) + d(Tnxn, xn)

→ 0 (as n → ∞). (3.11)

From (3.8) and (3.11), we have

d(Tnyn, xn) ≤ d(Tnyn, T
nzn) + d(Tnzn, xn)

→ 0 (as n → ∞). (3.12)

Using (1.8), (3.9), (3.11) and (3.12), we have

d(xn+1, T
nxn+1) ≤ d(xn+1, xn) + d(Tnxn+1, T

nxn) + d(Tnxn, xn)

≤ d(xn+1, xn) + knd(xn+1, xn) + d(Tnxn, xn)

= (1 + kn)d(xn+1, xn) + d(Tnxn, xn)

= (1 + kn)d(αnT
nyn ⊕ (1− αn)T

nzn, xn) + d(Tnxn, xn)

≤ (1 + kn)(αnd(T
nyn, xn) + (1− αn)d(T

nzn, xn)) + d(Tnxn, xn)

≤ (1 + kn)d(T
nyn, xn) + (1 + kn)d(T

nzn, xn) + d(Tnxn, xn)

→ 0 (as n → ∞). (3.13)

By (3.9) and (3.13), we have

d(xn+1, Txn+1) ≤ d(xn+1, T
n+1xn+1) + d(Tn+1xn+1, Txn+1)

≤ d(xn+1, T
n+1xn+1) + k1d(T

nxn+1, xn+1)

→ 0 (as n → ∞),

which implies limn→∞ d(xn, Txn) = 0 as desired.

Now, we are ready to prove the ∆-convergence theorem.

Theorem 3.3. Let C be a nonempty closed, bounded and convex subset of a complete
CAT (0) space X and let T : C → C be an asymptotically nonexpansive mapping with
{kn} satisfying kn ≥ 1 and

∑∞
n=1(kn − 1) < ∞. Let {αn}, {βn}, {γn} be real sequences

in [0, 1] satisfying
(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1 and
(ii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.
For a given x1 ∈ C, consider the sequences {xn}, {yn} and {zn} defined by (1.8). Then
{xn} ∆-converges to a fixed point of T.
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Proof. It follows from Lemma 3.2 that limn→∞ d(xn, Txn) = 0. Now we let ωw(xn) :=∪
A({un}) where the union is taken over all subsequences {un} of {xn}. We claim that

ωw(xn) ⊂ F (T ). Let u ∈ ωw(xn), then there exists a subsequence {un} of {xn} such
that A({un}) = {u}. By Lemmas 2.3 and 2.4 there exists a subsequence {vn} of {un}
such that ∆− limn vn = v ∈ C. Since limn→∞ d(vn, T vn) = 0, then v ∈ F (T ) by Lemma
2.5. We claim that u = v. Suppose not, since v ∈ F (T ), by Lemma 3.1 limn→∞ d(xn, v)
exists. By the uniqueness of asymptotic centers,

lim sup
n

d(vn, v) < lim sup
n

d(vn, u)

≤ lim sup
n

d(un, u)

< lim sup
n

d(un, v)

= lim sup
n

d(xn, v)

= lim sup
n

d(vn, v)

a contradiction, and hence u = v ∈ F (T ). To show that {xn} ∆-converges to a fixed
point of T, it suffices to show that ωw(xn) consists of exactly one point. Let {un} be a
subsequence of {xn}. By Lemmas 2.3 and 2.4 there exists a subsequence {vn} of {un}
such that ∆ − limn vn = v ∈ C. Let A({un}) = {u} and A({xn}) = {x}. We have seen
that u = v and v ∈ F (T ). We can complete the proof by showing that x = v. Suppose
not, since lim supn d(xn, v) exists, then by the uniqueness of asymptotic centers,

lim sup
n

d(vn, v) < lim sup
n

d(vn, x)

≤ lim sup
n

d(xn, x)

< lim sup
n

d(xn, v)

= lim sup
n

d(vn, v)

a contradiction, and hence the conclusion follows.

By using to the above same ideas and techniques, we can also obtain a strong conver-
gence theorem for completely continuous asymptotically nonexpansive mappings. There-
fore we can state the following result without proofs.

Theorem 3.4. Let C be a nonempty closed, bounded and convex subset of a complete
CAT (0) space X and let T : C → C be a completely continuous asymptotically nonexpan-
sive mapping with {kn} satisfying kn ≥ 1 and

∑∞
n=1(kn − 1) < ∞. Let {αn}, {βn}, {γn}

be real sequences in [0, 1] satisfying
(i) 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1 and
(ii) 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1.
For a given x1 ∈ C, consider the sequences {xn}, {yn} and {zn} defined by (1.8). Then
{xn} converges strongly to a fixed point of T.

Now, we give an example of an asymptotically nonexpansive mapping as in Theorem
3.3.
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Let R be the real line with the usual norm |.| and let C = [−1, 1] . Define a mapping
T : C → C by

Tx =

{
−2 sin x

2 , if x ∈ [0, 1],
2 sin x

2 , if x ∈ [−1, 0).

Clearly, F (T ) = {0} . Now, we show that T is an asymptotically nonexpansive mapping.
In fact, if x, y ∈ [0, 1] or x, y ∈ [−1, 0), then

d(Tx, Ty) = |Tx− Ty|

= 2| sin x

2
− sin

y

2
|

≤ |x− y|
= d(x, y).

If x ∈ [0, 1] and y ∈ [−1, 0) or x ∈ [−1, 0) and y ∈ [0, 1], then

d(Tx, Ty) = |Tx− Ty|

= 2| sin x

2
+ sin

y

2
|

= 4| sin x+ y

4
cos

x− y

4
|

≤ |x+ y|
≤ |x− y|
= d(x, y).

That is, T is nonexpansive. It follows that T is an asymptotically nonexpansive mapping
with kn = 1 for each n ≥ 1. Additionally, let

αn =
n

2n+ 1
, βn =

n

3n+ 1
, γn =

n

4n+ 1
, ∀n ≥ 1.

Therefore, the conditions of Theorem 3.3 are fulfilled. So, the convergence of the sequence
{xn} generated by (1.8) to a point 0 ∈ F (T ) can be received. For convenience, we call the
iteration (1.8) as the proposed iteration process. For supporting our main theorem, the
proposed iteration process is demonstrated by chosen x1 = 1 and run our process within
250 iterations through an example of an asymptotically nonexpansive mapping T .
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Figure 1. Numerical solution of an asymptotically nonexpansive mapping T by

using the proposed iteration process.
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Figure 1 shows the numerical solution of the proposed method. It can be seen that the
sequence generated by these proposed method converge to the solution of an example.

In the remainder of this section, we give the characterization of strong convergence for
the new three-step iteration process on a CAT (0) space as follows.

Theorem 3.5. Let X,C, T, {αn} , {βn} , {γn} , {xn} , {yn} , {zn} satisfy the hypotheses of
Theorem 3.3. Then the sequence {xn} converges strongly to a fixed point of T if and only
if

lim inf
n→∞

d(xn, F (T )) = 0,

where d(x, F (T )) = inf {d(x, x∗) : x∗ ∈ F (T )} .

Proof. Necessity is obvious. Conversely, suppose that lim infn→∞ d(xn, F (T )) = 0. As
proved in Lemma 3.1, for all x∗ ∈ F (T ),

d(xn+1, x
∗) ≤ (1 + (3un + 3u2

n + u3
n))d(xn, x

∗).

This implies that

d(xn+1, F (T )) ≤ (1 + (3un + 3u2
n + u3

n))d(xn, F (T )).

By Lemma 2.7, limn→∞ d(xn, F (T )) exists. Thus by hypothesis limn→∞ d(xn, F (T )) = 0.
Next, we show that {xn} is a Cauchy sequence in C. Let ϵ > 0 be arbitrarily chosen.
Since limn→∞ d(xn, F (T )) = 0, there exists a positive integer n0 such that

d(xn, F (T )) <
ϵ

4
for all n ≥ n0. In particular, inf {d(xn0

, x∗) : x∗ ∈ F (T )} < ϵ
4 . Thus, there exists p ∈ F (T )

such that

d(xn0 , p) <
ϵ

2
.

Now, for all m,n ≥ n0, we have

d(xn+m, xn) ≤ d(xn+m, p) + d(xn, p) ≤ 2d(xn0
, p) ≤ 2

( ϵ

2

)
= ϵ.

Hence {xn} is a Cauchy sequence in the closed subset C of a complete CAT (0) space
and so it must be convergent to a point q in C. Now, limn→∞ d(xn, F (T )) = 0 gives that
d(q, F (T )) = 0 and closedness of F (T ) forces q to be in F (T ). This completes the proof.

Senter and Dotson [38] introduced the concept of Condition (I) as follows.

Definition 3.6. ([38], p.375) A mapping T : C → C is said to satisfy Condition (I) if
there exists a non-decreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for
all r > 0 such that

d(x, Tx) ≥ f(d(x, F (T ))),∀x ∈ C.

With respect to the above definition, we have the following strong convergence theorem.

Theorem 3.7. Let X,C, T, {αn} , {βn} , {γn} , {xn} , {yn} , {zn} satisfy the hypotheses of
Theorem 3.3 and let T be a mapping satisfying Condition (I). Then the sequence {xn}
converges strongly to a fixed point of T.
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Proof. As proved in Theorem 3.5, limn→∞ d(xn, F (T )) exists. Also, by Lemma 3.2, we
have limn→∞ d(xn, Txn) = 0. It follows from Condition (I) that

lim
n→∞

f(d(xn, F (T ))) ≤ lim
n→∞

d(xn, Txn) = 0.

That is, limn→∞ f(d(xn, F (T ))) = 0. Since f : [0,∞) → [0,∞) is a non-decreasing
function satisfying f(0) = 0 and f(r) > 0 for all r > 0, we obtain

lim
n→∞

d(xn, F (T )) = 0.

The conclusion now follows from Theorem 3.5.
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