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1. Introduction

Suppose that H is a real Hilbert space, C ⊂ H is a nonempty closed convex set, and
Ω is an open convex subset in H containing C. In 1992, Blum, Muu and Oettli [14, 15]
presented the equilibrium problem (shortly, EP (C,F )) that is to find x ∈ C such that

F (x, y) ≥ 0,∀ y ∈ C, (1.1)

where F : Ω × Ω → R is a bifunction satisfying F (x, x) = 0 for every x ∈ C. The Minty
equilibrium problem (shortly, MEP (C,F )) is to find u ∈ C such that

F (y, u) ≥ 0,∀ y ∈ C. (1.2)

We denote the solution set of EP (C,F ) and MEP (C,F ) by SEP and SMEP , respectively.
Furthermore, there is a simple formulation of EP (C,F ) which can apply in applied math-
ematics: variational inequality problem, fixed point problem, saddle point problem, and
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others (for example [14, 15, 18, 19]). The classical variational inequality problem (shortly,
V I(C,A)) is to find x̂ ∈ C such that

⟨Ax̂, v − x̂⟩ ≥ 0,∀ v ∈ C, (1.3)

where a mapping A : C → H. Later, the solution method of equilibrium problems have
been usually extended from those for variational inequality problem (for more detail see
in [3, 29–32]) because if F (x, y) = ⟨Ax, y − x⟩ where a mapping A : C → H for every
x, y ∈ C then z ∈ EP (C,F ) if and only if ⟨Az, y − z⟩ ≥ 0 for every y ∈ C, i.e., z is a
solution of the variational inequality problem. There are a lot of iterative processes for
finding a solution of the variational inequality problem [4, 17, 20–29]. Among them, the
Extragradient method which was introduced by Korpelevich [17], that is, x0 = x ∈ C,

x̄n = PC(xn − λAxn)
xn+1 = PC(xn − λAx̄n),

for all n ≥ 0, where λ ∈ (0, 1
k ), and A is a monotone and k−Lipschitz continuous mapping

of C into Rn. He proved that if V I(C,A) ̸= ∅, then the sequences which generated by this
method converge to the same point z ∈ V I(C,A). After, authors extended this method
to equilibrium problem [33, 34] that is an important method. However, it always requires
the condition SEP ⊂ SMEP . This condition is guaranteed under the pseudomonotonicity
assumption of bifunction F on C, that is, if x, y ∈ C, F (x, y) ≥ 0, then F (y, x) ≤ 0.
Thus, if SEP is not contained in SMEP , then the existing extragradient method cannot
be applied for EP (C,F ) directly. In 2015, Ye and He [8] suggested a new method which
is called a double projection method under the only assumption that the solution set of
dual variational inequality is nonempty. They also proved that their method can solve
the solution set of variational inequality problem without the monotonicity of A, and
gave some numerical experiments. Recently, motivated by the idea of a double projection
method [8], Dinh and Kim [1] proposed projection algorithms for solving equilibrium
problems where the bifunction is not required to be satified any monotone property.
Under assumptions on the continuity, convexity of the bifunction and the nonemptyness
of the solution set of Minty equilibrium problem. They also proved a weak convergence
theorem which is generated by their proposed algorithms.

Another interseting problem is the problem for finding a common element of the set of
fixed point of a nonexpansive mapping and the solution set of the variational inequality
problem for an inverse strongly-monotone mapping which was presented by Takahashi
and Toyoda [16]. A mapping S of C into itself is called nonexpansive if

∥Sx− Sy∥ ≤ ∥x− y∥ ∀x, y ∈ C. (1.4)

The fixed point problem is to find a point x ∈ C such that x = Tx where a mapping T :
C → C. We denote by F (S) the set of fixed point of S. By the way, their process obtained
a weak convergence theorem for two sequences. In 2006, Nadezhkina and Takahashi [7]
presented the iterative algorithm for finding the common solution of F (S) ∩ V I(C,A),
that is,  x0 = x ∈ C,

yn = PC(xn − λAxn)
xn+1 = αnxn + (1− αn)SPC(xn − λAyn), ∀n ≥ 0.

Furthermore, they proved that the sequence {xn} and {yn}, generated by their method,
converge weakly to z ∈ F (S) ∩ V I(C,A). Thereby, Jaiboon, Kumam, and Humphries [2]
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introduced a new iterative algorithm for finding the common solution of fixed point, equi-
librium, and variational inequality problems and proved the following weak convergence
theorem.
Assumptions A bifunction F : C × C → R satisfies the following conditions:

(C1) F (x, x) = 0 for every x ∈ C;
(C2) F is monotone, i.e, F (x, y) + F (y, x) ≤ 0 for every x, y ∈ C;
(C3) for each x, y, z ∈ C, limt→0 F (tz + (1− t)x, y) ≤ F (x, y);
(C4) for each x ∈ C, y 7→ F (x, y) is convex and lower semicontinuous.

Theorem 1.1. Let F : C × C → R be a bifunction satisfying (C1)-(C4) and let A be
a monotone k−Lipschit continous mapping of C into H and let S be a nonexpansive
mapping of C into itself such that F (S)∩V I(C,A)∩EP (C,F ) ̸= ∅. Suppose x1 = u ∈ C
and {xn}, {yn}, and {un} are given by

un ∈ C;F (un, y) +
1
rn
⟨y − un, un − xn⟩ ≥ 0

yn = PC(xn − λAun)
xn+1 = αnxn + (1− αn)SPC(xn − λAyn), ∀n ≥ 0,

for all n ∈ N, where {αn} ⊂ (a, b) ⊂ (0, 1) and {λn} is a sequence in (0, 1
k ) and {rn} ⊂

(0,∞) satisfying the following conditions:
(i) lim infn→∞ rn > 0,

∑∞
n=1 ∥rn+1 − rn∥ < ∞, and

(ii) limn→∞λn = 0, then {xn}, {yn}, and {un} converge weakly to the same point
p ∈ F (S) ∩ V I(C,A) ∩ EP (C,F ), where p = limn→∞ PF (S)∩V I(C,A)∩EP (C,F )xn.

Motivated by [1], [2] and [3], we introduce a modification of Extragradient method for
solving fixed point, variational inequality, and equilibrium problems without the mono-
tonicity of the bifunction F . Our method is a combination between the projection algo-
rithm [1] for solving nonmonotone equilibrium problems in Hilbert space and the Extra-
gradient method [2] for solving the common solution of fixed point, variational inequality,
and equilibrium problems. Moreover, we prove a weak convergence theorem which is
generated by this method.

The paper is organized as follows. Section 2 contains some preliminaries on the metric
projection and equilibrium problems. Section 3 introduces a modification of extragra-
dient method for solving the common solution of F (S) ∩ V I(C,A) ∩ EP (C,F ). When
reducing some mappings in the method, it can find solutions of various problems without
the monotonicity.

2. Preliminaries

In this section, we contain definitions and useful lemmas for using in the next
section. A unique nearest point in C, denoted by PC(x), is for every x ∈ H such that

∥x− PC(x)∥ ≤ ∥x− y∥, ∀ y ∈ C.

PC is called the metric projection of H onto C.

Lemma 2.1. [12] For any x ∈ H and z ∈ C,
(A) ∥PC(x)− z∥2 ≤ ∥x− z∥2 − ∥PC(x)− x∥2;
(B) ⟨PC(x)− x, z − PC(x)⟩ ≥ 0.
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Lemma 2.2. [7] Let {αn} be a sequence of real numbers such that 0 < a ≤ αn ≤ b < 1
for every n = 0, 1, 2, . . . , and {vn}, {wn} sequences in H such that

lim sup
n→∞

∥vn∥ ≤ c, lim sup
n→∞

∥wn∥ ≤ c, and lim
n→∞

∥αnvn + (1− αn)wn∥ = c,

for some c ≥ 0. Then limn→∞ ∥vn − wn∥ = 0.

Lemma 2.3. [7] Let {xn} be a sequence in H. Suppose that for each u ∈ C,

∥xn+1 − u∥ ≤ ∥xn − u∥

for every n = 0, 1, 2, . . .. Then, the sequence {PCxn} converges strongly to some z ∈ C.

Lemma 2.4. [13] Let H be a Hilbert space, C a closed convex subset of H, and T : C → C
a nonexpansive mapping with F (T ) ̸= ∅. If {xn} is a sequence in C weakly converging to
x ∈ C and if {(I − T )xn} converges strong to y, then (I − T )x = y.

Opial Condition [2] For every {xn} with xn ⇀ x, the inequality

lim inf
n→∞

∥xn − x∥ < lim inf
n→∞

∥xn − y∥,

holds for any y ∈ H with y ̸= x.

Definition 2.5. A bifunction ϕ : C × C → R is said to be jointly weakly continuous
on C × C if for all x, y ∈ C and {xn}, {yn} are two sequences in C converging weakly
to x and y respectively, then ϕ(xn, yn) converges to ϕ(x, y). In the sequel, we need the
following assumptions:

(A1) F (x, ·) is convex on Ω for every x ∈ C;
(A2) F is joint weakly continuous on Ω× Ω.

For each z, x ∈ C, by ∂2F (z, x) we denote the subdifferential of the convex function
F (z, ·) at x, i.e.,

∂2F (z, x) := {w ∈ H : F (z, y) ≥ F (z, x) + ⟨w, y − x⟩,∀y ∈ C}.

In paticular,

∂2F (z, z) = {w ∈ H : F (z, y) ≥ ⟨w, y − z⟩,∀y ∈ C}.

Lemma 2.6. [1] Suppose the bifunction F satisfies the assumptions (A1), (A2). If {xn} ⊂
C is bounded, ρ > 0, and {un} is a sequence such that

un = argmin{F (xn, y) +
ρ

2
∥y − xn∥2 : y ∈ C},

then {un} is bounded.

3. Main results

This section, we propose two algorithms for finding the common solution. Firstly, Al-
gorithm 1 for solving fixed point, variational inequality, and equilibrium problems without
the monotonicity of the bifunction F is presented.
Algorithm 1 Pick x0 ∈ C and choose η ∈ (0, 1), ρ > 0, {αn} ⊂ (0, 1),
{λn} ⊂ (0, 1/k) and C0 = C.
Step 1. Compute

yn = PC(un − λnAun), (3.1)
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where un = argmin{F (xn, y) +
ρ
2∥y − xn∥2, y ∈ C}.

If yn = xn, then stop. Otherwise, do Step 2.
Step 2. (Armijo linesearch rule) Find mn as the smallest positive integer number m
satisfying  zn,m = (1− ηm)xn + ηmun

wn,m ∈ ∂2F (zn,m, zn,m)
⟨wn,m, xn − un⟩ ≥ ρ

2∥un − xn∥2.
(3.2)

Step 3. Set ηn = ηmn , zn = zn,mn , wn = wn,mn . Take

Hn = {x ∈ H : ⟨wn, x− zn⟩ ≤ 0}, Cn+1 = Cn ∩Hn. (3.3)

Step 4. Compute

xn+1 = αnxn + (1− αn)SPCn+1(xn − λnAyn), (3.4)

and go to Step 1 with n is replaced by n+ 1.

Lemma 3.1. If SMEP ̸= ∅. Then the sequence {xn} generated by Algorithm 1 is well
defined in the sense that there exists m > 0 satisfying the inequality in (3.2) for every
wn,m ∈ ∂2F (zn,m, zn,m), Cn is nonempty closed convex, and

⟨wn, xn − zn⟩ ≥
ηnρ

2
∥xn − un∥2 (3.5)

for each iteration n.

Proof. The proof is similar to Lemma 3.1 in [1]

Theorem 3.2. Let F : C × C → R be a function satisfying (A1),(A2) and A : C →
H be a monotone k-Lipschitz continuous mapping and S : C → C be a nonexpansive
mapping. If F (S) ∩ V I(A,C) ∩ EP (C,F ) ̸= ∅, SMEP ̸= ∅ and limn→∞ λn = 0 then
{xn}, {yn} and {un} which generated by Algorithm 1 converges weakly to the same point
u = limn→∞ PF (S)∩V I(A,C)∩EP (F )xn.

Proof. Let bn = PCn+1
(xn − λnAyn) for every n = 0, 1, 2, . . .. Let u ∈ F (S)∩ V I(C,A)∩

EP (F ). From Lemma 2.1 (A), we have

∥bn − u∥2 ≤ ∥xn − λnAyn − u∥2 − ∥xn − λnAyn − bn∥2

= ∥xn − u∥2 − ∥xn − bn∥2 + 2λn⟨Ayn, u− bn⟩
= ∥xn − u∥2 − ∥xn − bn∥2 + 2λn(⟨Ayn −Au, u− yn⟩

+⟨Au, u− yn⟩+ ⟨Ayn, yn − bn⟩)
≤ ∥xn − u∥2 − ∥xn − bn∥2 + 2λn⟨Ayn, yn − bn⟩
= ∥xn − u∥2 − ∥xn − yn∥2 − 2⟨xn − yn, yn − bn⟩ − ∥yn − bn∥2

+2λn⟨Ayn, yn − bn⟩
= ∥xn − u∥2 − ∥xn − yn∥2 − ∥yn − bn∥2 + 2⟨xn − λnAyn − yn, bn − yn⟩.

Thank to Lemma 2.1 (B), we receive

⟨xn − λnAyn − yn, bn − yn⟩ = ⟨xn − λnAxn − yn, bn − yn⟩
+⟨λnAxn − λnAyn, bn − yn⟩

≤ ⟨λnAxn − λnAyn, bn − yn⟩
≤ λnk∥xn − yn∥ ∥bn − yn∥.
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This implies that

∥bn − u∥2 ≤ ∥xn − u∥2 − ∥xn − yn∥2 − ∥yn − bn∥2

+2λnk∥xn − yn∥ ∥bn − yn∥
≤ ∥xn − u∥2 − ∥xn − yn∥2 − ∥yn − bn∥2

+λ2
nk

2∥xn − yn∥2 + ∥yn − bn∥2

≤ ∥xn − u∥2 + (λ2
nk

2 − 1)∥xn − yn∥
≤ ∥xn − u∥2.

We also have

∥xn+1 − u∥2 = ∥αnxn + (1− αn)Sbn − u∥2

= ∥αn(xn − u) + (1− αn)(Sbn − u)∥2

≤ αn∥xn − u∥+ (1− αn)∥Sbn − u∥2

≤ αn∥xn − u∥2 + (1− αn)∥bn − u∥2

≤ αn∥xn − u∥2 + (1− αn)(∥xn − u∥2 + (λ2
nk

2 − 1)∥xn − yn∥2)
= ∥xn − u∥2 + (1− αn)(λ

2
nk

2 − 1)∥xn − yn∥2

≤ ∥xn − u∥2.

Since the sequence {∥xn−u∥} is a bounded and nonincreasing sequence, limn→∞ ∥xn−u∥
exists, that is there exists

c = lim
n→∞

∥xn − u∥. (3.6)

Moreover, limn→∞ ∥xn+1−xn∥ = 0. Thus the sequence {xn}, {bn} are bounded. Accord-
ing to Lemma 2.6, it obtians that {un}, {zn}, {wn} are also bounded. Furthermore, we
have

lim
n→∞

∥xn − yn∥ = 0. (3.7)

Note that

∥yn − bn∥ = ∥PC(un − λnAun)− PC(xn − λnAyn)∥
≤ ∥(un − λnAun)− (xn − λnAyn)∥
≤ ∥un − xn∥+ λn∥Aun −Ayn∥
≤ ∥un − xn∥+ kλn∥un − yn∥.

Since λn → 0 as n → ∞, we get

∥yn − bn∥ ≤ ∥un − xn∥. (3.8)

Therefore limn→∞ ∥yn − bn∥ = 0 and limn→∞ ∥xn − bn∥ = 0.
Now, we are going to prove that {xn} converges weakly to some point u. Assume

that ū and u are two weak accumulation points of {xn}. There exist {xni
} ⊂ {xn} and

{xnj} ⊂ {xn} such that xni ⇀ ū and xnj ⇀ u. By (3.6), it yields limn→∞ ∥xn − ū∥2 = γ
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and limn→∞ ∥xn − u∥2 = κ. We can see that

γ = lim
n→∞

∥xn − ū∥2 = lim
j→∞

∥xnj − ū∥2

= lim
j→∞

(∥xnj
− u∥2 + 2⟨xnj

− u, u− ū⟩+ ∥u− ū∥2)

= lim
j→∞

(∥xnj
− u∥2 + ∥u− ū∥2)

= lim
n→∞

(∥xn − u∥2 + ∥u− ū∥2)

= lim
n→∞

(∥xn − ū∥2 + 2∥u− ū∥2)

= γ + 2∥u− ū∥2. (3.9)

Obviously, ∥u− ū∥ = 0. This means that {xn} converges weakly to u.
After that we will show that u ∈ EP (C,F ). We know that {wn} is bounded. There

exists L > 0 such that ∥wn∥ ≤ L for all k. Combining with Lemma 3.1 (3.5), we have

∥xn+1−xn∥ = d(xn, Cn) ≥ d(xn,Hk) =
|⟨wn, xn − zn⟩|

∥wn∥
≥ ηnρ

2L
∥xn−un∥2. (3.10)

Thus

lim
n→∞

ηn∥xn − un∥2 = 0. (3.11)

We will consider two cases.
In the case of lim supn→∞ ηn > 0. There exists η′ > 0 and a subsequence {ηni

} ⊂ {ηn}
such that ηni > η′. From (3.11), we have

lim
i→∞

∥xni − uni∥ = 0. (3.12)

Since xn ⇀ u and (3.12), we get that uni
⇀ u as i → ∞. By the definition of uni

, we
obtain 0 ∈ ∂2F (xni , uni)+ ρ(uni −xni)+NC(uni). There exists vni ∈ ∂2F (xni , uni) such
that

⟨vni
, y − uni

⟩+ ρ⟨uni
− xni

, y − uni
⟩ ≥ 0,∀y ∈ C. (3.13)

We combine (3.13) with

F (xni , y)− F (xni , uni) ≥ ⟨vni , y − uni⟩,∀y ∈ C.

This implies that

F (xni
, y)− F (xni

, uni
) + ρ⟨uni

− xni
, y − uni

⟩ ≥ 0,∀y ∈ C. (3.14)

In addition, ⟨uni
− xni

, y − uni
⟩ ≤ ∥uni

− xni
∥∥y − uni

∥, we receive

F (xni , y)− F (xni , uni) + ρ∥uni − xni∥∥y − uni∥ ≥ 0. (3.15)

Taking i → ∞, we have F (u, y)− F (u, u) ≥ 0. So F (u, y) ≥ 0 for all y ∈ C which means
that u ∈ EP (C,F ).

In the case of limn→∞ ηn = 0. By the boundedness of {un}, there exists {uni
} ⊂ {un}

such that uni
⇀ u∗ as i → ∞. We replace y by xni

in (3.14). So

F (xni
, uni

) + ρ∥uni
− xni

∥2 ≤ 0. (3.16)

Whereas, by the Armijo linesearch rule, for mni
− 1,

there is wni,mni
−1 ∈ ∂2F (zni,mni

−1, zni,mni
−1) such that

⟨wni,mni
−1, xni − uni⟩ <

ρ

2
∥uni − xni∥2. (3.17)



800 Thai J. Math. Vol. 19 (2021) /T. Seangwattana

By the convexity of F (zni,mni
−1, ·), we see that

F (zni,mni
−1, uni

) ≥ F (zni,mni
−1, zni,mni

−1) + ⟨wni,mni
−1, uni

− zni,mni
−1⟩

= (1− ηni,mni
−1)⟨wni,mni

−1, uni
− xni

⟩

≥ −(1− ηni,mni
−1)

ρ

2
∥uni

− xni
∥.

By (3.16) and (3.17), we obtain

F (zni,mni
−1, uni

) ≥ −(1−ηni,mni
−1)

ρ

2
∥uni

−xni
∥2 ≥ 1

2
(1−ηni,mni

−1)F (xni
, uni

).

Since zni,mni
−1 = (1− ηmni

−1)xni
+ ηmni

−1uni
, ηni,mni

−1 → 0, xni
⇀ u, and uni

⇀ u∗,
it can imply that zni,mni

−1 ⇀ u as i → ∞. Without loss of generallity, we may suppose
that limi→∞ ∥uni − xni∥2 = 0 because {∥uni − xni∥2} is bounded. Therefore

F (u, x∗) ≥ −ρ

2
lim
i→∞

∥uni
− xni

∥2 ≥ 1

2
F (u, u∗).

That is F (u, u∗) = 0 and limi→∞ ∥uni
− xni

∥2 = 0. From the Case 1, u is a solution of
EP (C,F ). Now, we want to show that u ∈ V I(C,A) but the same argument as in the
proof of Theorem 3.1 in [7]. We can prove that u ∈ V I(C,A).

We will show that u ∈ F (S). Since ∥Sbn − u∥ ≤ ∥bn − u∥ ≤ ∥xn − u∥ and (3.6), we
have lim supn→∞ ∥Sbn − u∥ ≤ c. Consider

lim
n→∞

∥αn(xn − u) + (1− αn)(Sbn − u)∥ = lim
n→∞

∥xn+1 − u∥ = c.

From Lemma 2.2, it can imply that limn→∞ ∥Sbn − xn∥ = 0. Moreover, we have

∥Sxn − xn∥ ≤ ∥Sxn − Sbn∥+ ∥Sbn − xn∥
≤ ∥xn − bn∥+ ∥Sbn − xn∥.

Thus limn→∞ ∥Sxn − xn∥ = 0. By using the demiclosedness of I − S, we obtain that
xni ⇀ u and limn→∞ ∥Sxn − xn∥ = 0. So u ∈ F (S). Let {xnj} be another subsequence
of {xn} such that xnj ⇀ u′ ∈ EP (C,F ) ∩ V I(C,A) ∩ F (S). We are going to show that
u = u′. Assume that u ̸= u′. The Opial condition yields

lim
n→∞

∥xn − u∥ = lim inf
n→∞

∥xni − u∥ < lim inf
n→∞

∥xni − u′∥

= lim
n→∞

∥xn − u′∥ = lim inf
n→∞

∥xnj − u′∥

< lim inf
n→∞

∥xnj
− u∥ = lim

n→∞
∥xn − u∥.

This is a contradiction. Therefore u = u′. That is

xn ⇀ u ∈ EP (C,F ) ∩ V I(C,A) ∩ F (S).

Next, we will prove that u = limn→∞ PEP (C,F )∩V I(C,A)∩F (S)xn. Suppose that
zn = PEP (C,F )∩V I(C,A)∩F (S)xn. For every u ∈ EP (C,F ) ∩ V I(C,A) ∩ F (S), we have

∥xn+1 − u∥ = ∥αn(xn − u) + (1− αn)(SPC(xn − λnyn)− u)∥
≤ ∥xn − u∥.

By using Lemma 2.3, it obtains that {zn} converges strongly to some u∗ ∈ EP (C,F ) ∩
V I(C,A) ∩ F (S). Since ⟨u− zn, zn − xn⟩ ≥ 0. So ⟨u− u∗, p0 − p⟩ ≥ 0. We can conclude
that u = u∗ = limn→∞ PEP (C,F )∩V I(C,A)∩F (S)xn.



A modification of Extragradient method ... 801

By setting S = IH , we obtain the following algorithm for solving the equilibrium and
variational inequality problems without the monotonicity of the bifunction F .
Algorithm 2 Pick x0 ∈ C and choose η ∈ (0, 1), ρ > 0, {αn} ⊂ (0, 1),
{λn} ⊂ (0, 1/k) and C0 = C.
Step 1. Compute

yn = PC(un − λnAun), (3.18)

where un = argmin{F (xn, y) +
ρ
2∥y − xn∥2, y ∈ C}.

If yn = xn, then stop. Otherwise, do Step 2.
Step 2. (Armijo linesearch rule) Find mn as the smallest positive integer number m
satisfying  zn,m = (1− ηm)xn + ηmun

wn,m ∈ ∂2F (zn,m, zn,m)
⟨wn,m, xn − un⟩ ≥ ρ

2∥un − xn∥2.
(3.19)

Step 3. Set ηn = ηmn , zn = zn,mn , wn = wn,mn . Take

Hn = {x ∈ H : ⟨wn, x− zn⟩ ≤ 0}, Cn+1 = Cn ∩Hn. (3.20)

Step 4. Compute

xn+1 = PCn+1
(xn − λnAyn), (3.21)

and go to Step 1 with n is replaced by n+ 1.
By Theorem 3.2, we obtain the following corollary.

Corollary 3.3. Let F : C × C → R be a function satisfying (A1),(A2) and A : C → H
be a monotone k-Lipschitz continuous mapping. Suppose that V I(A,C) ∩ EP (C,F ) ̸=
∅, SMEP ̸= ∅ and limn→∞ λn = 0. Then {xn}, {yn} and {un} which generated by Algo-
rithm 2 converges weakly to u = limn→∞ PV I(A,C)∩EP (F )xn.

Remark 3.4. When setting A = 0, Algorithm 2 can imply the projection algorithms for
solving nonmonotone equilibrium problem in Hilbert space (see in [1])

4. Conclusions

A modification of Extragradient method for finding a common solution of variational
inequality, equilibrium and fixed point problems has been proposed, in which the bi-
function F is a nonmonotone mapping on C, A is a monotone k−Lipschitz continuous
mapping, and S is a nonexpansive mapping. When setting the solution of dual equilib-
rium is nonempty, we can obtain a weak convergence theorem which generated by our
method. Furthermore, we have another algorithm for solving the common solution of
variational inequality and equilibrium problems without the monotonicity of F .
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